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In healthy subjects, variation in cardiovascular responses to sympathetic stimulation

evoked by submaximal lower body negative pressure (LBNP) is considerable. This

study addressed the question whether inter-subject variation in cardiovascular responses

coincides with consistent and reproducible responses in an individual subject. In 10

healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters

(finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex

sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at −50

mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility.

In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart

rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR;

p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in

TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These

different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3

ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were

highly reproducible over time. In conclusion, we found distinct cardiovascular response

patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns

of preferential autonomic blood pressure control appeared related to resting cardiac BRS

and HR and were consistent over time.

Keywords: autonomic blood pressure control, central hypovolemia, baroreflex sensitivity, cardiovascular response

patterns, lower body negative pressure

INTRODUCTION

Lower body negative pressure (LBNP) is used in research settings as a model to study
the cardiovascular effects of central hypovolemia in humans (Hinojosa-Laborde et al., 2014).
Application of sub-atmospheric pressure to the lower body redistributes fluid from the upper parts
of the body into the compliant compartment of the lower extremities, leading to a decrease in
venous return, and central blood volume (Cooke et al., 2004). Central blood volume is important
for filling of the heart and directly affects stroke volume (SV) and cardiac output (CO). In response
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to a progressive reduction of central blood volume as elicited
by LBNP, both SV and CO decrease modifying arterial pulse
pressure and its pulsatility (Michard et al., 2000; Bronzwaer et al.,
2015). This results in a baroreceptor mediated reflex increase in
heart rate (HR) and total peripheral (vascular) resistance (TPR)
(Schadt and Ludbrook, 1991; Ryan et al., 2012). A reduction
in central blood volume evoked by LBNP or posture changes
(e.g., standing up) elicits a wide range of HR and blood pressure
(variation) responses among healthy individuals (Smith, 1990;
Ramirez-Marrero et al., 2008; Ryan et al., 2010; Bronzwaer
et al., 2014). Studies addressing the cardiovascular responses and
specifically tolerance to a reduction in central blood volume
evoked by LBNP reported that tolerance time and cardiovascular
responses were reproducible in a test-retest condition at varying
time intervals (Lightfoot et al., 1991; Convertino, 2001; Howden
et al., 2001; Lee et al., 2004; Kay and Rickards, 2015). From
observations in our lab we found considerable differences in
cardiovascular response patterns to LBNP between subjects. Only
a few studies have specifically addressed individual response
patterns from rest to maximal LBNP into some detail (Batzel
et al., 2009; Goswami et al., 2009). We questioned whether
the large variation in response patterns between subjects to
submaximal LBNP coincides with consistent and reproducible
responses in an individual subject.

Therefore, the present study was designed to evaluate
the individual cardiovascular reflex responses to sympathetic
stimulation and their robustness. To that purpose, we determined
intra-subject reproducibility of responses by central hypovolemia
evoked by LBNP in young healthy subjects over short (5min) and
longer (1 week) time intervals.

METHODS

Subjects
Ten healthy, non-smoking Caucasian subjects (5 females), with
normal physical fitness and with a median (range) age of
22 (19–26) year, height of 174 (166–177) cm, and weight 69
(55–77) kg participated in this study. Exclusion criteria included
a medical history of cardio- and/or cerebrovascular disease,
neurological disorders, diabetes mellitus, regular fainting, and
the use of medication (either prescription or non-prescription).
Subjects abstained from heavy exercise and caffeinated beverages
5 h prior to the experiment. Phase of menstrual cycle in female
subjects was not accounted for. Experiments were conducted in
a temperature-controlled laboratory (20–22◦C) at the same time
of the day (12–4 p.m.) to avoid potential effects of circadian
rhythm on the study outcomes. The institutional Medical Ethics
Committee approved the protocol and written informed consent
was obtained.

Experimental Protocol
Measurements were performed in a quiet room with subjects
in the supine position. After instrumentation, the lower body
was positioned inside the LBNP box (Dr. Kaiser Medizintechnik,
Bad Hersfeld, Germany) and sealed at the level of the iliac
crest (Goswami et al., 2009). The study protocol included
5 min of rest, followed by three 5 min trials of LBNP

at −50 mmHg separated by 5 min of rest. During the
experiment, subjects were instructed to breathe normally and
to avoid body movement. Reproducibility of cardiovascular
responses was evaluated by repeating the protocol 7 days
later.

The LBNP-box was equipped with a saddle to avoid leg muscle
pump activation during the application of sub-atmospheric
pressure. The pressure inside the box was manually controlled
and established within 10–20 s. LBNP was terminated upon
request or in case of (pre-)syncopal symptoms which were
determined by one or more of the following criteria: systolic
arterial pressure (SAP) below 80 mmHg, or rapid drop (SAP
by ≥20 mmHg/min, diastolic (DAP) by ≥10 mmHg/min), drop
in HR by ≥15 bpm, and/or sweating, light-headedness, nausea,
blurred vision, or skin pallor.

Measurements and Analysis
Continuous arterial pressure (AP) was measured non-invasively
by a volume clamp method using finger plethysmography
(Nexfin, Edwards Lifesciences BMEYE, the Netherlands). HRwas
expressed as the inverse of the inter-beat interval. Left ventricular
stroke volume (SV) and cardiac output (CO; SV multiplied by
instantaneous HR) were measured by a pulse contour method
(Nexfin CO-trek, Edwards Lifesciences BMEYE, Amsterdam,
the Netherlands) which is validated against thermodilution
estimates of CO (Bogert et al., 2010; Truijen et al., 2012b).
TPR was defined as the ratio of mean arterial pressure (MAP)
and CO. All recorded signals were visually inspected for
artifacts and analyzed offline (Matlab R2007b, Mathworks Inc.
MA, USA).

Time-domain cardiac baroreflex sensitivity (BRS) was
analyzed using the cross-correlation method (Westerhof et al.,
2004; Gisolf et al., 2005). First, beat-to-beat SAP and inter-
beat interval (IBI) were fitted with cubic spline functions and
resampled at 1 s intervals. The cross-correlation between 10 s
series of resampled SAP and IBI signals were computed for
various delays (τ) in IBI of 0–5 s. The delay between SAP
and IBI with the highest cross-correlation was selected if the
correlation was significant at p < 0.05. The regression slope was
recorded as one BRS value together with the τ. Subsequently,
the process was repeated by shifting the 10 s window. An average
value of BRS was calculated over the last minute of rest and
LBNP.

Statistical Analysis
Variables were presented as mean ± SD. One-way repeated
measures ANOVAs were used to compare the last minute of rest
and the last minute of LBNP across three consecutive trials on day
0 and 7, followed by Holm-Sidak’s post hoc tests. The responses
were grouped together per day when there were no differences
in baseline and LBNP responses across trials. The effect of
LBNP on the measured parameters was analyzed with a paired
two-tailed Student’s T-test (Sigmaplot 11.0, Systat Software
Inc., USA) comparing the last minute of rest with the last
minute of LBNP (average of three trials). Intraclass correlation
coefficients (ICC) and coefficients of variation (CV) were
calculated (IBM SPSS statistics 20, IBM corporation, USA) to
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TABLE 1 | Hemodynamic response to LBNP for three consecutive trials at day 0 and day 7.

Trial 1 Trial 2 Trial 3 Trial 1 vs. 2

vs. 3 (p-values)

Rest LBNP Rest LBNP Rest LBNP Rest LBNP

SAP (mmHg) day 0 120± 15 109± 14* 121± 14 107± 13* 123±12 109±11* 0.670 0.237

day 7 116± 10 102± 5* 115± 9 104± 4* 118±8 104±4* 0.194 0.245

DAP (mmHg) day 0 69± 12 71± 10 69± 10 69± 9 70±9 71±7 0.772 0.096

day 7 67± 6 67± 2 67± 5 68± 4 68±5 68±3 0.191 0.145

MAP (mmHg) day 0 88± 14 85± 12* 89± 12 83± 10* 89±10 85±8* 0.773 0.124

day 7 85± 7 80± 3* 84± 6 81± 4* 86±6 81±3* 0.124 0.124

HR (beats/min) day 0 66± 13 90± 10* 64± 12 85± 12* 62±13 87±10* 0.067 0.432

day 7 62± 13 83± 14* 60± 12 83± 15* 60±12 82±16* 0.137 0.496

SV (ml) day 0 112± 16 78± 16* 113± 17 78± 17* 114±17 79±16* 0.233 0.810

day 7 111± 15 76± 13* 109± 12 73± 12* 110±12 75±11* 0.476 0.326

CO (l/min) day 0 7.1± 1.3 6.8± 1.2* 7± 1 6.5± 1.1* 6.9±1.1 6.6±1.1* 0.435 0.098

day 7 6.4± 1.1 6.3± 0.9 6.5± 1.1 6.1± 0.7* 6.5±1.2 6.1±0.9* 0.976 0.178

TPR (dyn.sec/cm5) day 0 1000± 152 1048± 204 1023± 180 1033± 172 1039±164 1026±172 0.081 0.156

day 7 1017± 176 1042± 140 1046± 184 1086± 142 1045±180 1078±156 0.497 0.510

BRS (ms/mmHg) day 0 17± 8 8± 4* 19± 8 8± 2* 17±7 8±3* 0.089 0.765

day 7 17± 6 10± 3* 20± 7 10± 3* 20±10 10±4* 0.419 0.877

Values are presented as mean ± SD. AP, arterial pressure (Systolic, Diastolic, and Mean); HR, heart rate; SV, stroke volume; CO, cardiac output; TPR, total peripheral resistance; BRS,

baroreflex sensitivity. Rest and LBNP response were compared between Trial 1, Trial 2, and Trial 3. *p < 0.05 vs. rest.

assess intra-subject reproducibility. Intra-subject reproducibility
was evaluated across LBNP trials (5 min periods; three trials on
day 0) and sessions (1 week period; average response of three
trials between day 0 and day 7). One trial was defined as the last
3 min of rest, 5 min of LBNP and 2 min of recovery. ICC and CV
values were calculated per trial time point and then averaged for
all time points. No universal standard exists for classifying ICC
and tests of statistical significance of reproducibility measures are
of little practical utility (Morrow and Jackson, 1993). Therefore,
reproducibility was defined as poor if ICC < 0.40, acceptable
if coefficients ranged from 0.41 to 0.60, good if coefficients
ranged from 0.61 to 0.80 and excellent if ICC ≥ 0.81 (Landis
and Koch, 1977). Others have adopted these criteria in assessing
reproducibility of HR variability at rest (Marks and Lightfoot,
1999) and in response to LBNP (Lee et al., 2004). Intra-subject
reproducibility was defined good if group average CV < 10%.
A p < 0.05 was considered to indicate a statistically significant
difference.

RESULTS

A total of 60 LBNP trials were performed (three trials per subject
per measurement day). Six LBNP trials were prematurely aborted
due to a sudden drop in blood pressure (N = 2, different
subjects), insufficient quality of Nexfin signals (N = 2, same
subject) or failure to reach the required LBNP pressure level (N =

2, same subject). As a result, 54 LBNP trials entered final analysis.
In a separate trial, integrity of the cardiovascular autonomic
function was verified by passive head-up tilt testing (data not
shown).

Group Response
Table 1 summarizes the averaged cardiovascular response to 5
min of −50 mmHg LBNP for three consecutive trials measured
on day 0 and 7. There were no significant differences in absolute
values between consecutive trials at rest or in response to LBNP
such that responses were grouped together per day in further
analysis. Figure 1 (black line) shows the normalized group
response to LBNP for day 0. HR (37± 21%, p < 0.001) increased
with a fall in systolic (SAP; −11 ± 6%, p < 0.001) and mean
arterial pressure (MAP; −5 ± 5%, p = 0.02), SV (−31 ± 9%,
p < 0.001) and CO (−6 ± 7%, p = 0.02). Diastolic (DAP; p =

0.25) pressure as well as TPR (p = 0.17) did not change. BRS
decreased (−50± 13%, p < 0.001) in response to LBNP.

Individual Responses
The cardiovascular compensatory response to LBNP differed
between subjects (Figure 1, gray lines). Figure 2 gives the
distribution of maximal changes in HR, SV, and TPR.
Subsequently, subjects were dichotomized into two equal-
sized groups (A and B) based on the median change in HR
(Figure 3 and Table 2). Group A showed a prominent increase
in HR (54 ± 14%, p = 0.001) with no significant change in TPR
(p = 0.25) vs. group B demonstrating a moderate increase in HR
(21 ± 9%, p = 0.004) and a rise in TPR (7 ± 3%, p = 0.017).
The response pattern of group A vs. B coincided with a larger
decrease in SV (−37 ± 8 vs. −25 ± 6%, p = 0.026) and BRS
(−54 ± 14 vs. −34 ± 15%, p = 0.036) see Figures 4, 5. Group
A vs. B subjects did not differ in sex, age, or body mass index
(BMI), however lower resting HR (57 ± 8 vs. 71 ± 12 bpm, p =

0.047) and higher resting BRS (22± 8 vs. 11± 3 ms/mmHg, p=
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FIGURE 1 | Individual (gray) and averaged (black) hemodynamic

responses to LBNP. Data was normalized to the last 2 min of rest. MAP,

mean arterial pressure; HR, heart rate; SV, stroke volume; CO, cardiac output;

TPR, total peripheral resistance. *p < 0.05 last min of LBNP vs. last min of rest.

0.049) were found in group A. Figure 6 shows BRS results of one
representative subject.

Reproducibility
Figure 3 (dashed lines) visually demonstrated that the majority
of individuals responded similarly 1 week later. Intra-subject
reproducibility of the cardiovascular response to LBNP according
to the ICC and the CV is given in Table 3. HR, SV, CO, and
TRP demonstrated good to excellent intra-subject reproducibility
(ICC ≥ 0.61 and CV < 10%) for both short-term (5 min) and
long-term (1 week) repeats. The intra-subject reproducibility of
arterial pressure (SAP, DAP and MAP) responses across trials
and sessions was poor according to the ICC (i.e., ≤0.40) but
good according to CV with DAP just falling outside the criteria
of 10% CV.

DISCUSSION

The findings of the present study provide important information
regarding autonomic blood pressure control in humans.

FIGURE 2 | Distribution of maximal change in SV, HR, and TPR in

response to LBNP at day 0 (black bars) and day 7 (gray bars). SV, stroke

volume; HR, heart rate; TPR, total peripheral resistance.

We observed distinct cardiovascular response patterns to
sympathetic stimulation by LBNP in young healthy individuals.
These patterns of preferential autonomic blood pressure control
appeared related to resting cardiac BRS and HR. The finding
that these patterns within an individual were consistent over
a week suggest a programmed reflex response to sympathetic
stimulation.

The major neural pathway for acute BP regulation involves
baroreflex function (Rowell, 1986; Monahan, 2007). In response
to LBNP, blood is redistributed from the chest into the
lower parts of the body, which is largely contained in the
venous compartment and so does not contribute effectively to
the circulating blood volume (Sjöstrand, 1953; Rowell, 1986).
Traditionally, the first autonomic cardiovascular response to such
a reduction in cardiac preload is believed to be represented
by a fast and predominant increase in HR corresponding to
vagal withdrawal as the first line of defense. Arterial blood
pressure is maintained further by enhancement of sympathetic
influence on both HR and TPR which occurs more slowly due
to a longer time-constant (Lanfranchi and Somers, 2002; Shaffer
et al., 2014). Recently, a more balanced model of sympatho-
vagal control representing a continuous interplay between vagal
and sympathetic modulation of HR has been proposed without
clear on/off thresholds (White and Raven, 2014). In humans, the
relative contribution of arterial vs. cardiopulmonary baroreflex
involvement cannot be ascertained; for instance, evenmild LBNP
reduces aortic dimensions contesting selective low pressure area
receptor activation (Taylor et al., 1995). The present study
demonstrated two qualitatively different cardiovascular reflex
patterns in response to a similar degree of exposure of LBNP
varying from a predominant effect on HR to a consistent increase
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FIGURE 3 | Individual responses to LBNP for day 0 (solid line) and day 7 (dashed line). Data was normalized to the last 2 min of rest. Group A (A, upper panel)

showed a predominant increase in HR whereas group B (B, lower panel) responded by a consistent increase in TPR with smaller change in HR. MAP, mean arterial

pressure; SV, stroke volume; HR, heart rate; TPR, total peripheral resistance.

in TPR with a smaller change in HR. These differential responses
between HR and TPR coincided with a larger decline in SV and
CO. This conforms to data from Fu et al. (2004a) who raised
the hypothesis that decreases in pulse amplitude (a function of
SV) may preferentially influence the vagal component of the
baroreflex, whereas flow in baroreceptive arteries (a function of
CO) dominates the sympathetic component. In addition, our
data show that different reflex responses coincided with resting
values of dynamic baroreflex control and HR. Together with
an insubstantial increase in TPR in subjects with higher resting
BRS, this alludes to differential cardiovascular reflex control
in response to simulated central hypovolemia. The observed
variance in responses was reproducible for the individual

subjects suggesting an individually determined autonomic reflex
response.We consider that humansmay present with an identical
sigmoidal baroreflex relationship as estimated by neck cuff
suction-pressure plots but nevertheless may deliver different BRS
values depending on the operating set point (Raven et al., 2005).
Yielding multiple BRS values per minute rather than a single
value reduces the risk of inaccurate reflections of baroreflex
sensitivity which we consider a strength of the cross-correlation
method used in the present study (see Figure 6).

Generally, subjects with high tolerance to central hypovolemia
display signs and symptoms of greater sympathetic activition,
e.g., higher HR and peripheral vasoconstriction with elevated
neurohormonal activation (Convertino and Sather, 2000;

Frontiers in Physiology | www.frontiersin.org 5 June 2016 | Volume 7 | Article 235

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Bronzwaer et al. Cardiovascular Response Patterns to Central Hypovolemia

TABLE 2 | Baseline characteristics and hemodynamic response to LBNP

for group A and group B.

Group A (n = 5) Group B (n = 5)

Rest LBNP Rest LBNP

Sex (M/F) 2/3 3/2

Age (years) 21± 2 24± 2

BMI (kg/m2) 23± 3 23± 3

SAP (mmHg) day 0 123 ± 10 106 ± 14* 120± 17 110 ± 13*

day 7 117± 8 102± 4* 116± 9 104± 4*

DAP (mmHg) day 0 67± 7 68± 8 71± 14 71± 12

day 7 68± 4 69± 2 67± 6 67± 6

MAP (mmHg) day 0 87± 7 82± 10 88± 16 87± 14

day 7 86± 5 81± 2 84± 7 81± 5

HR (beats/min) day 0 57± 8 87± 13* 71± 12† 86± 12*

day 7 55± 7 88± 14* 67± 13† 81± 17*

SV (ml) day 0 121± 13 77± 17* 105± 17 79± 16*

day 7 113± 16 70± 13* 108± 10 76± 13*

CO (l/min) day 0 6.8± 1.1 6.6± 1.3 7.3± 1.2 6.6± 1*

day 7 6.1± 1.1 6.0± 0.8 6.8± 1.1 6.0± 0.8*

TPR (dyn.sec/cm5) day 0 1042± 80 1015± 89 994± 213 1062± 261*

day 7 1149± 160 1111± 105 977± 187 1100± 179*

BRS (ms/mmHg) day 0 22± 8 10± 4* 11± 4† 9± 4

day 7 22± 7 10± 3* 13± 3† 10± 3

Values are presented asmean± SD. BMI, bodymass index; AP, arterial pressure (Systolic,

Diastolic and Mean,); HR, heart rate; SV, stroke volume; CO, cardiac output; TPR, total

peripheral resistance; BRS, baroreflex sensitivity.

*p < 0.05 vs. rest.
†
p < 0.05 vs. group A.

Rickards et al., 2011; Convertino et al., 2012; Carter et al., 2016).
Specifically, Convertino et al. demonstrated greater increases in
muscle sympathetic nerve activity (MSNA) with an elevated total
peripheral resistance and also an elevated HR, higher baseline
cardiovagal BRS, and greater reductions in cardiovagal BRS
in individuals with high tolerance to LBNP (Convertino et al.,
2012). The magnitude of the autonomic responses to LBNP has
been defined as the HR and vasoconstrictor “reserve” according
to the concept that a greater physiological reserve capacity
for tachycardia and vasoconstriction related to high tolerance
to central hypovolemia is associated with greater reserves for
sympathoexcitation and cardiac vagal withdrawal (Schondorf
and Wieling, 2000; Fu et al., 2004b; Convertino et al., 2012). We
consider that the present study addressed the cardiovascular
responses to sub-maximal LBNP, i.e., beyond the “compensatory
reserve” (Convertino et al., 2016). It appears as though subjects
in group B may have a lower “HR reserve” and “BRS reserve”
due to a higher resting HR and lower resting BRS. We did not
determine the reproducibility of responses to maximal LBNP
leaving the question how these responses might affect tolerance
to maximal LBNP.

Of interest, in a retrospective study in a seemingly
homogenous population with high tolerance to central
hypovolemia a higher HR, TPR, SNA, and BRS appeared
not associated with greater tolerance to a reduced central blood
volume (Carter et al., 2016). This suggests that the autonomic
make-up determines whether an individual relies on cardiac

FIGURE 4 | Percent change from rest to LBNP for group A (gray bars)

and B (white bars). MAP, mean arterial pressure; CO, cardiac output; SV,

stroke volume; HR, heart rate; TPR, total peripheral resistance; BRS,

baroreflex sensitivity. *p < 0.05 rest vs. LBNP †p < 0.05 group A vs. group B.

filling and vagal withdrawal to defend arterial pressure, or on
sympathoexcitation to elevate HR and TPR (Carter et al., 2016).
These findings were interpreted as to demonstrate the existence
of subpopulations with analogous physiological abilities
though diverse contributions of cardiovascular compensatory
mechanisms to central blood volume depletion, and the present
data conform to that concept. The recent observation that those
subjects with high tolerance to central hypovolemia appear to
be protected by maintained frontal lobe cortical tissue oxygen
saturation links cerebral oxygen supply directly to brain function
(Kay and Rickards, 2016).

Cardiovascular control is subjected to considerable
environmental influences including level of deconditioning,
hydration status, and disease (Butler et al., 1991; Levine et al.,
1991; Schroeder et al., 2002; Truijen et al., 2010). Resting HR
is a determinant of BRS (Kardos et al., 2001) and physiological
factors, particularly age and sex, have significant impact on BRS
in healthy subjects (Laitinen et al., 1998; Kardos et al., 2001).

Age and Sex
With aging the magnitude of the reflex increase in HR declines
with BP maintained by a more substantial increase in forearm
and total peripheral resistance (Ebert et al., 1982). Regarding a
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FIGURE 5 | Individual (gray) and average (black) BRS responses to

LBNP for group A (filled symbols) and group B (open symbols) at day 0

and day 7. No BRS values could be determined for subject 2 (group B) at day

0 due to signal artifacts.

FIGURE 6 | A representative example (subject 5) of BRS computations

in response to LBNP. Each dot represents a BRS result, drawn horizontal

dashed lines represent period averages and the solid line represents moving

averages.

gender effect on the response to sympathetic stimulation, the
available data on vascular responsiveness as well as on changes
in HR and TPR during passive head-up tilt and/or LBNP is
not uniform (Frey and Hoffler, 1988; Shoemaker et al., 2001). A
gender effect on the vascular but not the HR response to LBNP
has been reported with lesser increase in TPR in women (Frey
and Hoffler, 1988). This conforms to recent data showing that
a strong association between MSNA and TPR is expressed in
young males only (Hart et al., 2012). In contrast, Shoemaker
et al. demonstrated gender-related differences in HR and MSNA
burst frequency but not in TPR in response to head-up tilt
(Shoemaker et al., 2001). An influence of age does not apply to
the participants in this study. We however cannot exclude that
the sample size may have obscured a possible sex effect but we
do consider that sex differences in baroreflex BP control during
carotid hypotension have not been established (Kim et al., 2011).

TABLE 3 | Intra-subject reproducibility in response to LBNP.

ICC CV

Across Across Across Across

trials sessions trials sessions

SAP (mmHg) 0.38±0.43 0.28±0.24 8.2±5.3 7.8±7.4

DAP (mmHg) 0.29±0.41 0.35±0.32 13.4±15.9 12.4±18.9

MAP (mmHg) 0.37±0.35 0.56±0.37 10.2±10.3 9.1±9.6

HR (beats/min) 0.87±0.10 0.92±0.05 4.2±3.2 4.5±3.7

SV (mL) 0.97±0.02 0.96±0.04 2.8±4.1 4.1±5.2

CO (L/min) 0.72±0.20 0.70±0.21 4.5±6.8 6.1±7.5

TPR (dyn.sec/cm5) 0.67±0.21 0.67±0.29 4.3±7.5 7.9±8.2

Intra-class correlation coefficients (ICC) and coefficients of variation (%CV) representing

intra-subject reproducibility across three trials and two sessions. Data presented as mean

± SD. AP, arterial pressure (Systolic, Diastolic and Mean); HR, heart rate; SV, stroke

volume; CO, cardiac output; TPR, total peripheral resistance.

Physical Fitness
An influence of differences in physical fitness level could be
considered. We did not quantify maximal oxygen uptake but
included subjects with normal physical fitness but without
specific sports training as documented by a questionnaire.
Exercise training does not affect vagal-cardiac control or
cardiovagal BRS in young and middle-aged healthy subjects
(Loimaala et al., 2000; Cooke and Carter, 2005). Accordingly,
the reduction in resting HR by exercise training in young and
middle-aged adults is limited (∼ −5 bpm) (Levy et al., 1998;
Loimaala et al., 2000) and does not account for the more than
two-fold difference in resting HR between the two groups. The
consistency of distinct cardiovascular response patterns as well
as BRS with both autonomic response patterns maintaining
blood pressure within the timeframe of the simulated central
hypovolemia rather suggests an individually programmed
strategy of reflex responses to sympathetic stimulation.

Genetic vs. Environmental
MSNA is considered as the primary index of sympathetic activity
in humans (Fagius and Wallin, 1993; Joyner et al., 2010) and
is characterized by large inter-individual differences but robust
intra-individual reproducibility over many years which is in
support of a genetic component (Fagius and Wallin, 1993).
Kardos et al. showed that only half of the variance in BRS is
attributable to simple anthropometric variables and common risk
factors like smoking and alcohol consumption (Kardos et al.,
2001). They suggested that the remaining variability reflects the
subjects’ different genetic background. In contrast, the significant
degree of variance in cardiovascular responses to head-up tilt
in identical twins suggests environmental respectively epigenetic
factors as important contributing factors (O’Leary et al., 2006)
that were not addressed in the present study.

Methodological Considerations
Several methodological considerations pertain to our data
inherent to the study design. We do not directly measure
individual differences in actual magnitude of the evoked fluid
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shift with LBNP. Inter-individual differences in SV are strongly
correlated to central venous pressure (Johnson et al., 2014), so
may reflect these fluid shifts, with subsequent consequences for
baroreceptor reflex responses (Chapleau and Abboud, 1989). The
inter-individual differences in central hypovolemia expressed
as the LBNP-induced reduction in SV, seem a confounding
factor related to the differential cardiovascular reflex responses
between groups. The degree of central hypovolemia during
LBNP is considered as the primary mover of cardiovascular
responses. Generally, differences in translocated volume between
subjects for the same box pressure are an intrinsic limitation of
LBNP. Surprisingly few studies have addressed study paradigms
enabling individualization LBNP-induced central blood volume
shifts. We propose leg (blood) volume (Truijen et al., 2012a) as a
controller of input to a sub-atmospheric pressure feedback loop.
The finding that resting cardiovascular variables (including SV,
HR, and MAP) were similar between consecutive trials, suggest
that 5 min of rest is sufficient to reverse LBNP-induced fluid
shifts.

Intra-subject reproducibility has been assessed in the present
study by two different methods of reliability testing. We found
that the results of both tests were contradictory for arterial blood
pressure responses: poor vs. good reproducibility. Using ICCs can
lead to inaccurately low reliability measurements as it is highly
sensitive for the spread of the data whereas typical error (e.g.,
CV) is not (Hopkins, 2000). Several researchers reported (highly)
reproducible blood pressure responses to repeated LBNP trials
(Lightfoot et al., 1991; Convertino, 2001; Kay and Rickards, 2015)
suggesting that CV is a more robust and accurate measure of
reliability.

A sudden blood pressure drop observed in two subjects (one
from group A and one from group B) during the last LBNP
trial of that session emphasizes that we do not know whether
blood pressure control would have been maintained beyond
the applied timeframe of simulated central hypovolemia. The
finding that a decline in blood pressure is more likely to occur
with accumulating exposure to LBNP conforms to previous
research (Lightfoot and Tsintgiras, 1995; Hinds and Stachenfeld,
2010).

Sympathetic stimulation is considered to enhance specifically
the inotropic condition and lusitropic properties of the healthy
heart (Thomas, 2011). We acknowledge that in the physiological
laboratory as well as in a clinical environment changes in intrinsic

cardiac muscle properties during sympathetic activation usually
go by unnoticed in part or in whole.

We did not evaluate MSNA respectively the sympathetic
BRS response, which might provide further insight into the
dichotomy.

This study does not answer the question whether or not the
distinct cardiovascular response patterns would have remained
consistent over months or years. Convertino reported that
re-testing after 1 year delivered comparable cardiovascular
responses to LBNP (Convertino, 2001). With aging the
interaction between neural and hemodynamic factors changes
with different sex effects which is expected to modify the

cardiovascular response to LBNP on the long run (Hart et al.,
2012).

Summary
In summary, the present study demonstrated distinct and
reproducible cardiovascular response patterns to sympathetic
stimulation by central hypovolemia in young healthy adults.
Differences in resting HR and BRS between subjects suggest
individually programmed reflex strategies of autonomic blood
pressure control which may contribute to the variance observed
in cardiovascular reflex responses to central hypovolemia. The
mechanisms responsible for this phenomenon and the extent to
which they operate in other groups of subjects deserve attention.
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