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Abstract

Primary sclerosing cholangitis (PSC) is a complex bile duct disorder. Its etiology is incompletely understood, but environmental
chemicals likely contribute to risk. Patients with PSC have an altered bile metabolome, which may be influenced by environmental
chemicals. This novel study utilized state-of-the-art high-resolution mass spectrometry (HRMS) with bile samples to provide the first
characterization of environmental chemicals and metabolomics (collectively, the exposome) in PSC patients located in the United
States of America (USA) (n¼ 24) and Norway (n¼ 30). First, environmental chemical- and metabolome-wide association studies were
conducted to assess geographic-based similarities and differences in the bile of PSC patients. Nine environmental chemicals (false
discovery rate, FDR< 0.20) and 3143 metabolic features (FDR< 0.05) differed by site. Next, pathway analysis was performed to identify
metabolomic pathways that were similarly and differentially enriched by the site. Fifteen pathways were differentially enriched
(P< .05) in the categories of amino acid, glycan, carbohydrate, energy, and vitamin/cofactor metabolism. Finally, chemicals and path-
ways were integrated to derive exposure–effect correlation networks by site. These networks demonstrate the shared and differential
chemical–metabolome associations by site and highlight important pathways that are likely relevant to PSC. The USA patients dem-
onstrated higher environmental chemical bile content and increased associations between chemicals and metabolic pathways than
those in Norway. Polychlorinated biphenyl (PCB)-118 and PCB-101 were identified as chemicals of interest for additional investigation
in PSC given broad associations with metabolomic pathways in both the USA and Norway patients. Associated pathways include gly-
can degradation pathways, which play a key role in microbiome regulation and thus may be implicated in PSC pathophysiology.
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Introduction
Primary sclerosing cholangitis (PSC) is a rare, chronic cholestatic
liver disease characterized by inflammation and fibrosis of the bile
ducts and impaired bile flow that leads to end-stage liver disease
and hepatobiliary neoplasia.1 Liver transplantation is currently the
only evidence-based option for advanced disease—no drug therapy
exists to improve transplant-free survival.2 PSC likely develops
from a combination of genetic and environmental contributors,
but these are incompletely understood, either individually or to-
gether.3-5 These complex interactions between environment and
host have galvanized research into the exposome in PSC.6

The exposome is defined as the cumulative environmental
influences and corresponding biological responses throughout the
lifespan.7 While endogenous processes can be characterized using
well-developed -omic technologies (eg, genomic, proteomic,
transcriptomic, and metabolomic instruments), the ability to
characterize environmental exposures on the -omic scale has been
limited by challenges in measuring complex exposure profiles that
potentially include thousands of exposure biomarkers.7-10 However,
recent advances in high-resolution mass spectrometry (HMRS) for
small molecule profiling facilitate improved, -omic-scale investiga-
tion of the exposome.11 This enables measurement and analysis of
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internal chemical doses and biological responses, with sufficient
exposome coverage to investigate the complex relationships be-
tween potential disease drivers, biological effects, and clinical out-
comes.

Through integrative analysis of HRMS-detected exposures and
endogenous metabolic pathways, a relationship between chemi-
cal exposure and biological response has been identified in the
plasma of patients diagnosed with PSC.6 This suggests a critical
role for environmental exposures in PSC pathophysiology. Given
that PSC is a disease of the bile ducts, characterizing the expo-
some of bile, which directly contacts the diseased tissue, is im-
perative for advancing our molecular understanding of the
disease. It is well known that the excretion of biotransformed
chemicals (such as via glucuronidation and sulfation) into bile is
a major metabolic elimination mechanism. Parent chemicals as
well as conjugated metabolites may enter bile,12 yet in PSC, these
parent compounds and metabolic conjugates have not been iden-
tified. The only human PSC bile metabolomic study to date sug-
gested aberrant bile formation in PSC (n¼ 7), compared to
individuals with noncholestatic end-stage liver disease (n¼ 19),
and nondisease controls (n¼ 12).13 However, those specimens
were collected as part of a liver transplant procedure. Additional
characterization of bile exposures from samples collected via en-
doscopic retrograde cholangiopancreatography (ERCP), a more
representative procedure for bile collection, is warranted for bet-
ter biological understanding of PSC.

In this work, we utilized a novel HRMS-based strategy to char-
acterize environmental chemicals and endogenous metabolites
present in the bile of patients with PSC, providing the first com-
prehensive exposome characterization of bile in complex liver
disease (Figure 1). We hypothesized that integrative network
analysis between different geographical locations would (1) pro-
vide insights into the shared and distinct bile exposures of
patients with PSC and (2) facilitate exploration of the role of envi-
ronmental chemicals in any observed differences. The statistical
interactions between environmental chemicals and endogenous
metabolites derived from network analysis may inform potential
mechanisms underlying the pathophysiology of PSC.

Methods
Study design and population
The sample comprised of 54 patients with PSC (n¼ 24 who
received care at Mayo Clinic in Minnesota, USA, and n¼ 30 who
received care at Oslo University Hospital in Oslo, Norway)
(Table 1). As collecting bile from individuals without liver disease
is challenged by the invasiveness and risk of complications of
ERCP, this cohort included only patients with PSC aimed at bile
characterization. All patients met the diagnostic criteria for
PSC according to the guidelines published by the American
Association for the Study of Liver Diseases and the European
Association for the Study of the Liver: (1) biochemical evidence of
chronic cholestasis (�6 months); (2) cholangiographic findings of
multifocal strictures alternating with segmental dilatations in
the bile ducts and/or histological findings consist with PSC; and
(3) causes of secondary sclerosing cholangitis have been ex-
cluded.14,15 Medical charts of all patients were reviewed for the
accuracy of PSC diagnosis and related clinical complications. For
each patient, the following data were extracted: sex, age at the
time of diagnosis of PSC, date of last known clinical follow-up,
liver biochemistry measurement performed within 3 months of
bile collection (alkaline phosphatase, alanine aminotransferase,
aspartate aminotransferase, and total bilirubin), inflammatory

bowel disease (IBD) status, progression to/development of clini-
cally important endpoints (eg, compensated and decompensated
cirrhosis, cholangiocarcinoma, liver transplantation, and devel-
opment of colorectal cancer), and medications recorded at the
time of bile collection (Table 1). Bile was collected during pre-
scheduled ERCP as part of the patient’s clinical care. Collected
specimens were kept and transported on ice, centrifuged to re-
move debris, and aliquots were stored frozen at �80�C until use.
Research procedures were conducted in accordance with the ap-
proval of the Institutional Review Board at the Mayo Clinic and
the Research Ethics Committee at Oslo University Hospital.
Written informed consent was obtained from all participants.

High-resolution exposomics
Environmental chemicals were measured in bile using gas chro-
matography high-resolution mass spectrometry (GC–HRMS) and
liquid-chromatography high-resolution mass spectrometry (LC–
HRMS). GC–HRMS was utilized as the primary environmental
chemical platform as many environmental chemicals are hydro-
phobic, semi-volatile, and present ionization challenges with
popular LC–HRMS methods.11 LC–HRMS data (described in the
“High-resolution metabolomics” section) were used as an addi-
tional data source for annotating environmental chemicals.16

The analytes selected for targeted GC–HRMS analysis were based
on a library of organic environmental chemicals that are widely
used and occur frequently in the environment. This includes the
common persistent organic pollutants (POPs) such as polychlori-
nated biphenyls (PCBs), polybrominated diphenyl ethers, and
pesticides. These bioaccumulate over time, disrupt metabolic
and endocrine function, and have a high toxicity.17

In addition to the routinely biomonitored chemicals (eg, by the
National Health and Nutrition Examination Survey program), we
also included contemporary contaminants such as polycyclic ar-
omatic hydrocarbons (PAHs), insecticides/pesticides, flame
retardants, plasticizers, flavoring agents and food additives,
phthalates, and chemicals used for personal care. It is hypothe-
sized that these may be present in bile as bile provides a major
route for metabolic elimination of conjugated chemicals (eg,
through glucuronidation or sulfation) and parent compounds.12

These chemicals may also be subject to enterohepatic circulation
mediated by the bile, increasing their retention time (RT) within
the bile ducts, liver, blood, and digestive system.

Briefly, for GC–HRMS sample profiling, 13C-labeled chemical
standards, each with 99% isotope enrichment, were spiked at a fi-
nal concentration of 1 ng/mL for quality control and assurance,
as previously reported.11,18 Environmental chemicals in 150 mL
bile samples were extracted with 50 mL formic acid followed by
200 mL hexane–ethyl acetate (2:1 v/v, �99% pure, Sigma-Aldrich).
The chilled mixture was shaken vigorously and centrifuged to ob-
tain the organic supernatant, which was further cleaned with
high-purity MgSO4. MgSO4 provides similar efficacy and similarly
high reproducibility for cleaning compared with dispersive solid
phase extraction.11 The bile extracts were analyzed with three
injections using GC–HRMS with a Thermo Scientific Q Exactive
GC hybrid quadrupole Orbitrap mass spectrometer with 2 mL per
injection. Data were collected from 3 to 24.37 min with positive
electron ionization mode (þ70 eV), scanning from m/z 85.0000 to
850.0000 with a resolution of 60 000. National Institute of
Standards & Technology Standard Reference Materials (SRM)
1958 and SRM-1957 were analyzed in every batch of 20 samples
to support quality control and batch effect evaluation.
Contamination and carryover were assessed in isooctane washes,
solvent blanks, and method blanks, which were run at the
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beginning of each batch by monitoring of peak baseline. Raw
data were extracted using XCMS.19 Ninety-two environmental
chemicals met the criteria for “Level 1” identification11 by com-
parison of accurate mass, fragmentation patterns, and RT to an
in-house library of authentic standards run on the same instru-
ment using identical analytical parameters.11 Average peak in-
tensities of the three technical replicates per sample were used to
quantitatively represent levels of environmental chemicals.

High-resolution metabolomics
Untargeted, LC–HRMS profiling of bile was completed in batches
of 40 study samples using established methods with two plat-
forms, C18 chromatography with negative electrospray ionization
(ESI), and hydrophilic interaction liquid chromatography (HILIC)
with positive ESI, as described in detail.20 Briefly, 65 mL bile ali-
quots were treated with two volumes of ice-cold acetonitrile to
precipitate the proteins. A mixture of 10 stable isotope internal
standards was included for quality control as previously
reported. Following 30 min incubation on ice, samples were cen-
trifuged for 10 min at 16 100g at 4 �C. The supernatants were ana-
lyzed with dual chromatography-coupled HRMS (Thermo
Scientific HF Q-Exactive). The HRMS was operated in full scan
mode at 120 000 resolution and mass-to-charge ratio (m/z) range
of 85–1275. Raw data files were extracted and aligned using the R
package apLCMS21 with modifications by xMSanalyzer (for
details, see Supplementary materials).22 Amongst additional
functions, xMSanalyzer evaluates the quality of each feature and
removes the low-quality features.22 For example, features with
<75% correlation amongst the three technical replicates were

deemed low quality and removed. Uniquely detected peaks con-
sisted of m/z, RT, and ion abundance referred to as metabolite
features. Peak extraction detected 9735 C18 and 1522 HILIC me-
tabolite features. For quality control purposes, a 10% feature
missingness threshold was employed, leaving 3526 C18 features
and 5978 HILIC features for inclusion in subsequent analyses.
Peak annotation for endogenous metabolites was performed fol-
lowing metabolome-wide association study (MWAS) (described
under the “Statistical analysis” section) using the mummichog
2.0 algorithm23 on Metaboanalyst24 and the Homo sapiens MFN
pathway library, a manually curated library that originates from
numerous sources including KEGG, BiGG, and Edinburgh Model.24

Peak annotation for environmental compounds in LC–HRMS data
was conducted using xMSannotator16 with the Human
Metabolome Database (HMDB) (for details, see Supplementary
materials).25 xMSAnnotator uses a multi-stage clustering algo-
rithm to derive compound annotation and confidence scores,
which range from 0 (no confidence) to 3 (high confidence).16

Chemical annotations derived from xMSAnnotator with high or
medium confidence scores (�2) and with the MþH adduct (posi-
tive mode) or M�H (negative mode) are equivalent to the Level 2
confidence score by the Mass Spectrometry Imaging (MSI) crite-
ria.26 Lower confidence annotations (MSI Level 4) were derived
from HMDB and the Metlin mass spectrometry databases at
5p.p.m. tolerance.

Statistical analysis
All statistical analyses were implemented in R version 4.0.327

using RStudio version 1.3.28

Figure 1. Conceptual overview. (A) Bile samples were collected from patients with PSC located in the USA and Norway. Samples were assayed for
environmental chemicals and metabolites using GC and LC–HRMS. (B) Analytical pipeline. Intensities of 92 chemicals were characterized and
compared across sites. Metabolomic pathway analysis was performed, and pathways were compared for enrichment by the site. All identified
chemicals and pathways were integrated using a network science approach to derive chemical–metabolite association networks that best characterize
each site. Site-specific analyses were done given observed differences in chemical intensities and metabolomic pathway enrichment by site. Figure
created with the help of Biorender.com.
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Exposomic analysis - Environmental-wide association study
(EWAS)
GC–HRMS and LC–HRMS assayed exposures were analyzed sepa-
rately because the GC–HRMS workflow produced 92 confidently
identified environmental compounds, while the LC–HRMS work-
flow produced annotations for environmental compounds. Peak
intensities were log2 transformed and standardized using their
median and interquartile range prior to all statistical analyses.
Following transformation and standardization, hierarchical clus-
tering using Euclidean distance and complete linkage was per-
formed on both patients and GC–HRMS identified chemicals, by
site, to assess whether groups of patients with similar clinical
and demographic features would cluster by bile chemical pro-
files. Next, multiple linear regression was used to evaluate the as-
sociation of environmental chemicals with geographical location
(EWAS). In this EWAS, for each chemical, the log2-transformed
intensity was modeled as a function of location (USA or Norway),
controlling for age, sex, and duration of PSC, which are known to
influence biochemical concentrations and/or disposition.29-31 To
reduce the number of false positives, all chemicals associated at
FDR <0.20 with the location were considered significant.
Additionally, given the high comorbidity of IBD with PSC,32 a sec-
ond, exploratory analysis was conducted to assess potential asso-
ciations (FDR< 0.20)6 of GC–HRMS-identified environmental
chemicals with IBD status. This analysis controlled for patients’
location, sex, age, and duration of PSC. LC–HRMS-annotated

environmental exposures were manually curated based on accu-
rate mass matches to dietary, environmental chemical, and
microbiome metabolites from xMSannotator.16

Metabolome-wide association study
MWAS was performed to identify site-associated metabolic fea-
tures (reported by m/z and RT).33 Data pre-processing and analy-
ses were performed separately for the C18 and HILIC columns.6,34

Multiple linear regression was utilized to model the log2 feature
intensity as a function of site (USA or Norway), controlling for
age, sex, and duration of PSC (as in EWAS). Due to the large
number of features, an FDR threshold of <0.05 was used to
account for multiple testing and to reduce false positives. This
more stringent LC-data FDR threshold compared with the GC
threshold (FDR< 0.20) was implemented to further reduce the
possibility of false positives in the LC analyses, which were based
on the untargeted chemical intensities, compared to the GC
analyses based on identified chemicals.

Metabolomic pathway analysis
Pathway analysis was performed using Mummichog23 imple-
mented through MetaboAnalyst.24 Mummichog enables the iden-
tification of pathways enriched by a condition (presently,
geographical location) from untargeted metabolomics data with-
out a priori identification of metabolites. Mummichog predicts
metabolite identity and calculates pathway enrichment using
Fisher’s exact test.23 A list of all detected features which passed

Table 1. Demographics and clinical characteristics

USA Norway

Patients (N) 24 30
Sex (N male, N Female) 13M, 11F 15M, 15F
Age at PSC Diagnosis [Median (Min, Max)] 40 (11, 73) 37 (15, 64)
Age at Bile Collection [Median (Min, Max)] 50 (20, 77)* 43 (17, 70)*
Duration of PSC (years) [Median (Min, Max)] 7.6 (0.3, 38.1) 4.3 (0.1, 21.8)
Laboratory tests
Total bilirubin (mg/dL) [Median (Min, Max)] 1.5 (0.4, 13.6) 0.76 (0.23, 12.3)
Alkaline phosphatase (IU) [Median (Min, Max)] 322 (96, 637) 244 (36, 749)
AST (IU) [Median (Min, Max)] 70.5 (16, 157) 48 (16, 395)
ALT (ID) [Median (Min, Max)] 82 (17, 362) 66 (11, 521)
Comorbidities
Inflammatory Bowel Disease (% yes) 66% 75%
Colorectal Cancer (% yes) 12.5% 0%
Cirrhosis (% yes) 4.2% 3.3%
Splenomegaly (% yes) 4.2% 3.3%
Varices (% yes) 4.2% 3.3%
Ascites (% yes) 4.2% 0%
Cholangiocarcinoma (% yes) 0% 0%
Prior liver transplant (% yes) 0% 0%
Pharmacotherapy
Vitamins/Supplements (%) 62%** 20%**
Blood Pressure Medications (%) 38%* 10%*
Ursodiol (%) 29% 33%
Gastrointestinal Medications (%) 29% 20%
Endocrine Medications (%) 25% 10%
Antidepressant (%) 25%** 0%**
Inflammatory Bowel Disease (IBD) Medications (%) 46% 47%
IBD: Mesalamine (Asacol), Mesalamine (Asacol) þInfliximab, or Mesalamine (Asacol) þVedolizumab (N) 6 10
IBD: Balsalazide (N) 1 2
IBD: Infliximab (N) 0 1
IBD: Sulfasalazine (N) 1 1
IBD: Budesonide (N) 1 0
IBD: Mercaptopurine (N) 2 0

* P< .05
** P< .01 significantly different according to Wilcoxon rank sum test or Fischer’s exact test. Laboratory test data are based on available measures taken within

3 months of bile collection from 11 US patients and 29 Norway patients. IBD rates reflect patients with either Crohn’s disease or ulcerative colitis compared to those
without either condition. Pharmacotherapy prevalence rates are reported for drugs prescribed to �20% of the patients at either geographical location, with drug
names listed for IBD medications.
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the 10% feature missingness threshold (for a combined total of
9506 features from C18 and HILIC chromatography) was
imported to Mummichog. Features were ranked by their MWAS
statistical significance. Pathways that were differentially
enriched by location in features meeting an FDR-adjusted MWAS
significance threshold of 0.05 were identified. All significantly dif-
ferent pathways were required to contain at least three mapped
metabolites meeting the FDR threshold of 0.05. Similarly enriched
pathways (by the same cutoff) were also identified. Analysis was
performed with a mixed ion mode, with a mass tolerance of
5 p.p.m., with RT present, and with primary ions enforced.

Metabolomics–Exposomics integration analysis
The exposome–metabolome network analysis aimed to identify
associations between environmental chemicals and metabolomic
pathways that best characterize the bile content of patients with
PSC by geographical location. This facilitates an understanding of
the common and distinct composition of PSC bile at different geo-
graphical locations. Inputs to the analysis included the 92 envi-
ronmental chemicals assayed and the 95 metabolomic pathways
identified in pathway analysis, all of which were adjusted for age,
sex, and duration of PSC. Pathways were represented by principal
component 1 of all pathway metabolites.6 The analysis was com-
pleted using xMWAS,35 which provides an automated framework
for integrative and differential network analysis. Pairwise integra-
tion between chemicals and metabolomic pathways was per-
formed through a canonical sparse partial least squares (sPLS)
regression analysis. All associations jrj� 0.6 and a Bonferroni-
adjusted value of P< 5.72 � 10�6 (.05 divided by [92 chemicals �
95 pathways]) were retained and visualized using Cytoscape.36

Communities of tightly correlated chemicals and pathways were
detected by multilevel community detection.37 The assumption
underlying community detection is that communities comprised
functionally related molecules.35 Networks and communities
were visualized to compare the associations of environmental
chemicals and metabolomic pathways by the geographical site.

Results
Demographic and clinical characteristics
We summarize patient characteristics in Table 1. The sample
comprised of 46% and 50% women in the US and Norway groups,
respectively. Patients had a similar median age at PSC diagnosis
(40 years of age in the USA and 37 years of age in Norway). There
was no difference in the prevalence of IBD between cohorts. The
most prescribed IBD medication in both cohorts was Mesalamine
(Asacol). Furthermore, there were no differences in the rates of
clinically important endpoints between the two cohorts (see
comorbidities, Table 1). No patients had received a liver trans-
plant before the time of bile collection. At the time of bile collec-
tion, the Norway patients were on average slightly younger and
had lower rates of antidepressant medication, antihypertensive
medication, and vitamin/supplement use. Overall, 69% of the
patients in these samples had comorbid IBD, which is consistent
with the literature.32

Exposomic analysis - EWAS
Nine environmental exposures identified using GC–HRMS were
associated with geographical location (FDR< 0.20) (Figure 2;
Supplementary Table SI). These include pesticide and insecticide
compounds (alpha-BHC, bioallethrin, prothiofos), a PAH (fluo-
rene), and five PCBs congeners. Levels of all of these chemicals
were higher in patients in the USA compared with Norway.

Hierarchical clustering showed no patient clustering patterns by
sex, age group, duration of PSC, Crohn’s disease status, ulcerative
colitis status, ursodiol prescriptions, or vitamin supplementation.
For example, men did not separate from women through cluster-
ing (and likewise, the remaining variables did not show separa-
tion by groups) (Figure 2C; see Supplementary Figure SI for
clustering of all chemicals). The remaining 83 GC–HRMS-identi-
fied compounds had similar concentrations in the bile of patients
with PSC in the USAand in Norway. The compound with the high-
est median concentration in both sites was di-n-butyl phthalate
(DBP), followed by prothiofos. Pyriproxyfen had the third highest
concentration in Norway patients, while Bioallethrin had the
third highest concentration in the USA patients (Supplementary
Table SI). The exploratory analysis assessing associations of envi-
ronmental chemicals with IBD status controlling for location,
sex, age, and duration of PSC demonstrated that no compounds
were associated (FDR<0.20) with IBD status, although six were
associated at a nominal P< .05 (Supplementary Table SII).
Ninety-seven of the 241 LC–HRMS-annotated environmental
compounds met the quality control criteria of having <10% fea-
ture missingness. Of these 97, 22 were significantly different be-
tween the USA and Norway patients (Supplementary Table SIII).
These annotated chemicals include drugs (Cotinine methonium
ion), nutritive compounds (Vanillic acid), and environmental
chemicals (Benzofuran).

Metabolomic differences by site
Following a 10% feature missingness threshold, 3526 features
from the C18 chromatography column and 5978 features from
the HILIC column were assessed for association with the geo-
graphical location through MWAS (described in the
“Metabolome-wide association study” section). A total of 581 C18
features and 2562 HILIC features met an FDR threshold of 0.05,
indicating that their intensity could be modeled through linear
regression as a function of the geographical site, accounting for
age, sex, and duration of PSC (Figure 3).

Metabolomic pathway analysis
Pathway enrichment analysis was performed using mummi-
chog,23 which infers pathway activities from a ranked list of mass
spectrometry peaks that were derived through MWAS. Ranked
features were imported into mummichog, then pathway enrich-
ment of top-ranked features (FDR< 0.05 associating with geo-
graphical location) was calculated. Fifteen pathways were
significantly enriched in top-ranked features by geographical lo-
cation (P< .05), and 80 were similarly enriched between sites
(Figure 4A for differential pathways; for all pathways, see
Supplementary Table SIV). The differentially enriched pathways
fall under broad categories of amino acid, glycan, carbohydrate,
and vitamin/cofactor metabolism. Concentrations of putative
metabolites localizing to these 15 differential pathways were
both increased and decreased in the USA patients, depending on
the metabolite (Figure 4B; Supplementary Table SV). Of these 15
pathways, compounds in the tyrosine metabolism pathway had
the highest fold-change differences (both higher and lower) in
patients across locations (Figure 4B).

Exposome–Metabolome integration analysis
The integrative network analysis was performed to characterize
associations between identified environmental chemicals and
metabolic pathways in bile and to compare these associations by
geographical location (Figures 1 and 5). A canonical sPLS regres-
sion approach enabled pairwise integration of the 92 identified
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Figure 2. Environmental chemicals by geographical location. (A) Associations of the 92 environmental chemicals with the site. The compound number
(1 through 92) is represented on the x-axis. Labels are provided as space allows (please see Supplementary Table S1 for a complete list of chemicals). (B)
Abundance versus site for the nine exposures which associate with the site (P< .05) after adjusting for age, sex and duration of PSC. (C) Log2
transformed and normalized chemical intensities of the nine site-associated exposures (FDR <0.2) with hierarchical clustering by site (average linkage,
Manhattan distance).
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chemicals and 95 metabolic pathways and selection of those
which best characterize bile of patients with PSC by site.
Additionally, communities of highly associated pathways and
chemicals within networks were detected.

Four communities comprising a total of 33 pathways were as-
sociated with one or multiple of six chemicals in the USA
patients. The chemicals represented on the USA network include
five, which are significantly higher in the USA than the Norway
patients by EWAS (PCB-101, PBC-87, PBC-118, and bioallethrin),
and one that was detected at comparable levels in the USA and
Norway patients (2-monobromodiphenylether). The metabolic
pathways associated with these chemicals included those with
significantly different enrichment by geographical location (in
the broad categories of amino acid metabolism, carbohydrate
metabolism, and glycan biosynthesis and metabolism) and with
similar concentrations.

Comparatively, fewer environmental chemicals are associated
with fewer metabolic pathways in the Norway network. Only 3
communities comprising only 11 pathways were associated with
one of three chemicals in Norway patients (Figure 5). PCB-118,
PCB-101, and quintozene were retained in the Norway network.
These were associated with glycan biosynthesis and metabolism
and energy metabolism pathways, which were differentially
enriched between sites, as well as pathways that were similar in
the USA and Norway bile samples.

Four metabolic pathways were similarly enriched between the
USA and Norway patients and associated with environmental
chemicals in each sample. The specific chemical–metabolome
associations differed by site. In the Norway sample, caffeine me-
tabolism, n-glycan degradation, and glycosphingolipid biosynthe-
sis (ganglioseries) were associated with PCB-101, while these
pathways were associated with the bioallethrin and 2-monobro-
moeiphenlether community in the USA sample. Bile acid biosyn-
thesis was associated with quintozene in the Norway sample and
PCB-118 in the USA sample. Network statistics can be found in
Supplementary Tables SVI and SVII.

Lastly, the nontargeted analysis study reporting tool was uti-
lized to evaluate all study designs and reporting procedures
(Supplementary Table SVIII).38

Discussion
This is the first comprehensive characterization of the bile expo-
some in patients with PSC. Characterization of bile in PSC is criti-
cal, as bile directly contacts the diseased bile ducts. Through
state-of-the-art HRMS technology- and network-based analytical
approaches, patients with PSC located in distinct geographical
regions were found to have shared and differential environmen-
tal chemicals, endogenous metabolites, and chemical–metabolo-
mic associations in bile. The derived chemical–metabolomic
associations are an important step in understanding the bio-
chemical changes that coincide with environmental chemical ex-
posure in PSC, as they may reflect mechanisms toward disease
pathogenesis or progression. Therefore, the present findings
serve as a starting point that highlights key exposures and princi-
ples toward understanding the interplay between the environ-
ment and host in the bile of patients with PSC.

The MWAS found 3143 of 12 647 (�25%) features to differ be-
tween sites, and pathway analysis demonstrated that 15 of the 95
metabolomic pathways were differentially enriched by the geo-
graphical site. Thus, this first characterization of metabolomic
content by geographical site suggests heterogeneity of bile
metabolomic content in patients with PSC based purely on the
geographical location. These differences may stem from different
environmental exposures, lifestyle variance, or a combination of
the two.

This work is the first to reveal the diverse range of environ-
mental chemicals in human bile. Numerous human exposure as-
sessment studies have demonstrated that these chemicals,
especially the persistent contaminants, can be detected in vari-
ous biospecimens and confer adverse effects in several tissues
(eg, neurotoxicity and nephrotoxicity). We speculate that the
chemicals detected in bile also will affect the liver (the primary
site of biotransformation), the digestive system (the primary
source of chemical ingestion through food and water), and the
bile ducts (through direct contact). It is noteworthy to mention
that many chemicals are subject to enterohepatic circulation me-
diated by the bile, which increases the RT and chemical burden
in the liver, blood, digestive system, and bile ducts. Eighty-three
environmental chemicals were detected at statistically similar
concentrations in patients across the two geographic sites. At
both sites, DBP had the highest median bile concentration. DBP is
an endocrine disruptor that associates with splenic toxicity, obe-
sity, and type II diabetes, with no current known associations
with PSC.39,40 Interestingly, DBP is used for enteric coating in cer-
tain formulations of mesalamine (Asacol, Asacol[HD]),41 a drug
used to treat IBD, the most common comorbidity in this popula-
tion. DBP-containing IBD medications were the most prescribed
IBD medications in both the USA and Norway samples. Given the
known associations between DBP and disease and the high DBP
bile concentrations in these samples, future investigations are
warranted to study whether (1) DBP in bile contributes to the de-
velopment of PSC and (2) IBD pharmacotherapy promotes high
DBP bile concentrations.

The bile concentrations of five PCB congeners (PCB-87, PCB-99,
PCB-101, PCB-110, PCB-118), three pesticide/insecticide com-
pounds (bioallethrin, prothiofos, and alpha-BHC), and a PAH (flu-
orene) differed by location in these patients. For all of these,
concentrations were higher in patients in the USA compared with
Norway. The effect of higher environmental chemical concentra-
tions appears to be increased crosstalk with metabolomic activ-
ity, represented through network analysis by the larger number
of chemical–metabolomic associations in the USA patients

Figure 3. MWAS for associations of m/z features with geographical site
for the (A) C18-negative HPLC column and (B) HILIC-positive HPLC
column.
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compared with Norway. Thus, upon entry of environmental com-
pounds into bile, the bile ducts encounter not only those environ-
mental compounds but also all associated metabolites. Whether
these exogenous agents, the associated endogenous metabolites,
or the combination of the two directly harm the bile ducts should
be explored in future functional experiments.

The network analyses enable assessment of the chemical–
pathway associations which exist in patients at both geographi-
cal sites. No chemical–pathway associations observed in the USA
patients were also observed in the Norway patients. However,
pathways represented in the USA network (without their USA
network-associated environmental chemicals) and environmen-
tal chemicals of the USA network (without their USA network-
associated pathways) were observed in the Norway patients.

Specifically, chemicals that were associated with metabolomic
activity in both cohorts include PCB-118 and PCB-101. PCBs are
highly stable organic chemicals that were widely manufactured
in plasticizers, paints, and electrical equipment until they
were banned by the Stockholm Convention on POPs. PCB-118
is known to promote the development of cholangiocarcinoma,
hepatocholangioma, and hepatocellular adenoma in rats.42,43

Cholangiocarcinoma is the most common malignancy in patients
with PSC.44,45 PCB-101 associates with fatty liver diseases.46

Whether PBC-118 and PCB-101 promote the development of PSC,
and whether this is mediated by metabolomic activity of pathways
represented in the network analyses, warrant future investigation.

In the Norway cohort, PCB-118 most highly associated with two
differentially enriched pathways, heparan sulfate degradation and

Figure 4. Pathway analysis for enrichment by geographical location. (A) Pathways significantly enriched by geographical location (P< .05). The size of
the circles corresponds to the number of compounds mapping to that pathway. (B) Metabolites represented in differentially enriched pathways.
Log2(FC): log2 fold-change, with higher values corresponding to higher metabolite concentrations in the USA compared with Norway.
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chondroitin sulfate degradation, both of which are glycan degrada-
tion pathways. PCB-101 most highly associated with one differen-
tially enriched pathway, keratan sulfate degradation (an additional
glycan degradation pathway), as well as N-glycan degradation.
This contrasts with the USA cohort, where PCB-118 and PCB-101
associate broadly with a larger number of diverse metabolomic
pathways. In the USA cohort, the glycan degradation pathways
(heparan sulfate degradation, N-glycan degradation, chondroitin
sulfate degradation) were associated most strongly with 2-mono-
bromodiphenylether and bioallethrin. The differential chemical–
pathway associations across networks may reflect differences in
chemical concentrations or chemical–chemical interactions. Of
note, however, is the fact that glycan degradation pathways were
associated with one or multiple environmental chemicals in both
samples of patients. This indicates that metabolomic activity in

these pathways may have multifactorial chemical contributors de-
pendent on chemical concentrations or chemical mixtures that
these patients are exposed to. Glycans are complex oligosacchar-
ides, which modify proteins, and glycan degradation is one of the
major metabolic processes to shape the composition of the gastro-
intestinal microbiome.47 The high comorbidity of PSC with IBD has
led to accumulating evidence of altered gastrointestinal micro-
biome in the pathogenesis of PSC.48-51 Given the relevance of gly-
cans to PSC pathophysiology, the chemicals and chemical
mixtures characterized in this work which may affect glycan degra-
dation (PCB-101, bioallethrin, 2-Monobromodiphenylether) warrant
additional investigation.

To assess whether the metabolic pathways represented in
these networks were enriched in the plasma of an independent
cohort of patients with PSC, comparisons were drawn between

Figure 5. Multi-omics integration. Integrated networks of environmental chemicals and metabolomic pathways stratified by location. Arrow-shaped
labeled pathways represent those that are differently enriched (P< .05) by the site. Large circular pathways represent those that are similarly enriched
(P> .05) by the site and represented in both the USA and Norway networks. Pathways with smaller circles labeled as ‘P#’ are similarly enriched (P> .05)
by the site and represented on either the USA or the Norway network. Pathway number corresponds to the pathway analysis results, ordered by the
significance of differential enrichment between sites.
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the present analysis and a recent case–control plasma PSC
study.6 None of the compounds (n¼ 12), which significantly dif-
ferentiated patients with PSC (n¼ 80) from healthy controls
(n¼ 40) in the plasma study were assayed in the present work.
This highlights the need to determine relevant biomarkers of in-
terest to be explored in multiple physiological compartments (eg,
bile, plasma, liver) in future studies.

There are limitations to this study. This study considered 92
environmental chemicals identified by GC–HRMS, providing the
first such characterization of bile in patients with PSC. However,
it is estimated that more than 100 000 chemicals are present in
the environment8 and that any given individual may have cur-
rent or past exposures to thousands of chemicals. Therefore,
there may be additional chemicals present in the bile of patients
with PSC that are below current detection limits or were, due to a
transient nature, not present at the time of sampling. Current
technologies limit the extent of environmental chemical detec-
tion and must continue to evolve to enable large-scale assess-
ments. Additionally, while PSC is a rare disease and collecting
bile via ERCP is challenging, the sample size was relatively small.
Larger cohorts are necessary to validate the characterized associ-
ations between environmental chemicals and metabolomic path-
ways. Given that this study included PSC cases only, it remains
unclear if the presence of environmental and endogenous chemi-
cals in bile fluid is causally or coincidentally related to liver dis-
ease. The inclusion of healthy controls requires the performance
of an ERCP—an invasive procedure with no benefit and a real risk
to the participant, conferring significant challenges to the collec-
tion of appropriate control samples. Additionally, these analyses
are correlational in nature, and associations between chemicals
and metabolic pathways do not necessarily imply causative
effects. It is therefore possible that the differential chemical con-
centrations observed between geographical sites are mediated by
sociodemographic factors not collected in the present work (eg,
diet, physical activity, occupation, body fat percentage).
Mechanistic studies in laboratory animals or in vitro systems are
necessary to determine the cause–response relations between
these molecules.

In conclusion, this novel study provides the first characterization
of the exposome in the bile of patients with PSC. The study demon-
strates that it is possible to measure dozens of environmental
chemicals in human bile. The results show the heterogeneity of bile
in PSC, with shared and variable endogenous and exogenous factors
relating to geographical location. Higher concentrations of environ-
mental chemicals in the USA cohort are associated broadly with en-
dogenous metabolic pathways, suggesting functional crosstalk.
Derived associations between glycan degradation pathways with
environmental chemicals suggest a potential interaction of the gut
microbiome with the metabolome and exposome in patients with
PSC in a chemical concentration-dependent manner. Future case–
control and longitudinal studies are warranted to further elucidate
the endogenous and environmental contributors to PSC, which may
ultimately guide necessary pharmacotherapy development in PSC.
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