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Abstract Wear debris-induced osteolysis remains the
greatest limitation of long-term success for total joint re-
placements with ultra-high molecular weight polyethylene
(UHMWPE) bearings. To address oxidative degradation
post-gamma irradiation, manufacturers are investigating

the incorporation of antioxidants into PE resins. Similarly,
larger molecular weight monomers have been developed to
increase crosslinking and decrease wear debris, and ulti-
mately osteolysis. However, the effects of modifying mono-
mer size, crosslink density, and antioxidant incorporation on
UHMWPE particle-induced osteoclastic bone resorption
and coupled osteoblastic bone formation have never been
tested. Here, we review the field of antioxidant-containing
UHMWPE, and present an illustrative pilot study evaluating
the osteolytic and osteogenic potential of wear debris gen-
erated from three chemically distinct particles (MARATHON®,
XLK, and AOX™) as determined by a novel 3D micro-CT
algorithm designed for the murine calvaria model. The
results demonstrate an approach by which the potential
osteoprotective effects of antioxidants in UHMWPE can
be evaluated.
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Introduction

Total hip replacement (THR) is most commonly performed
for end-stage osteoarthritis, although this procedure is also
performed for rarer conditions such as rheumatoid arthritis,
avascular necrosis of the hip, and femoral neck fractures.
Despite its well-known propensity to generate wear debris
and subsequent periprosthetic osteolysis, polyethylene bear-
ing surfaces remain the gold standard for THR based on their
consistent results and survivorship of ~85% after 15 years [1],
and the significant pitfalls of alternative articulation designs
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(i.e. metal-on-metal and ceramic-on-ceramic) [2••, 3]. Thus, a
major focus of ultra high molecular weight polyethylene
(UHMWPE) research has been on formulations that minimize
host response that leads to aseptic loosening.

One of the consequences of early UHMWPE devices,
which are sterilized using high-dose gamma irradiation
(25−100 kGy), while exposed to air to also crosslink the
polymer chains, is the formation of free radicals that become
trapped in the final product [4]. These residual reactive oxy-
gen species (ROS), left unaddressed, cause oxidative degra-
dation as seen in UHMWPE components stored on the shelf
for a long time in air-permeable packaging prior to implanta-
tion [5], leading to increased wear and decreased performance
in vivo [6]. Additionally, ROS is known to increase the host
response to wear debris [7].

Subsequent improvements in UHMWPE processes intro-
duced temperature-driven manufacturing operations, specif-
ically remelting and annealing, which increases the
molecular mobility and facilitates recombination of the free
radicals. These additional processes are not without draw-
backs, leading either to reduced mechanical properties or
only giving a partial protection against oxidation due to
ROS [8••]. While annealing methods that heat the
UHMWPE to temperatures just below their peak melting
point have been adopted to reduce ROS in the manufactur-
ing process, the implants may still be sterilized with gamma
irradiation after final packaging, exposing the devices to
potentially significant oxidation [9•].

Yet another approach to stabilizing UHMWPE is to provide
oxidation resistance without decreasing UHMWPE fatigue
strength, by means of the incorporation of antioxidants such
as vitamin E into the resin [10], or by diffusing it into already
consolidated and radiated UHMWPE [11•]. This advance adds
yet another variable to the chemical composition and molecu-
lar response to the irradiation/annealing conditions that can be
used to generate novel UHMWPE implants. Since the in vivo
wear debris properties of each of these constructs will need to
be empirically determined to define their effects on osteoclastic
bone resorption (osteolysis) and coupled bone formation
(osteogenesis), there is a great need for cost-effective in vitro
and in vivo models [12, 13], and the pros and cons of the
current murine models have recently been reviewed [14].

Our research, aimed at understanding the biological re-
sponses to wear debris particles, has relied heavily on the
murine calvaria model, which was originally developed to
study titanium and polymethylmethacrylate particles with
histology [15, 16]. Subsequently, this model has been used
as a small animal surrogate to study novel interventions for
wear debris-induced osteolysis including: bisphosphonates,
cyclo-oxygenase inhibitors, TNF and RANKL biologic an-
tagonists, NF-kappa B inhibitors, Jun kinase inhibitors, in-
hibitors of the NALP3 inflammasome, and adenosine
receptor activators [16–26, 27••]. Most recently, this murine

calvaria model was modified to study UHMWPE particles
[28], using volumetric micro-CT [18]. Since osteolysis is the
result of uncoupled bone resorption, an important compo-
nent of the murine calvaria model is the robust bone forma-
tion that occurs on resorption surfaces within 2 weeks of
wear debris implantation [29], which occurs in the complete
absence of osteoclasts [22]. This allows for the analysis of
both osteolysis and osteogenesis from longitudinal micro-
CT data if a faithful 3D registration algorithm can be devel-
oped to quantify the wear debris-induced osteolysis (day
0 calvaria bone volume – day 10 calvaria bone volume)
and osteogenesis (day 10 osteoid and under-mineralized
bone volume). Here, we describe these methods in a pilot
study evaluating the effects of particles from three distinct
UHMWPE materials (MARATHON, XLK, and AOX), ver-
sus sham surgery and hydrogel (PVA-PAA) particle controls
(Table 1), aimed at testing the hypothesis that UHMWPE
particles of similar size distribution would illicit similar
biological response, despite variations in the starting resin
or the presence of the antioxidant.

Wear Debris Particle Generation

Particles from three different compositions of UHMWPE
(MARATHON, XLK, AOX) were generated from DePuy pro-
duction barstock lots using high speed cryomilling and
cryopulverization (BioEngineering Solutions, Chicago, IL,
USA). Particle filtering was used to isolate particles in the
1−10 um range, and they were characterized using low angle
laser light scattering (Microtrac-X100,) and scanning electron
microscopy with EDS to confirm particle size, shape, and com-
position. The major differential characteristics of these parti-
cles are summarized in Table 2. Particles were EtO sterilized
and verified free of endotoxins (<0.01 uE; Kinetic QCL).

In Vivo Studies

All animal studies were performed under protocols approved
by the University of Rochester Committee for Animal Re-
sources. Eight-week-old C57B/6 mice were shaved prior to
calvaria surgery, and the area was sterilized with 70 % ethanol
and iodine. A 0.5–×0.5-cm area of calvarial bone was ex-
posed by making a midline sagittal incision over the calvaria,
leaving the periosteum intact. A low threshold dose of parti-
cles known to be required to induce osteolysis (2 mg) or a high
dose (5 mg) of MARATHON, XLK, AOX and hydrogel
(PVA-PAA) control were spread over the area of each mouse
and hydrogel were directly injected onto the calvaria surface
(n=6). Afterwards, the incisionwas closedwith 2.0 interrupted
sutures. One assigned group consisting of an incision of only
the skin served as a sham surgery control.
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Micro-CT Scanning and Osteolysis vs. Osteogenesis
Analysis

Micro-CT scans were performed with a VivaCT40 (ScanCo
Medical, Basserdorf, Switzerland) using an isometric resolu-
tion of 15 um. Baseline calvaria volume was obtained from in
vivo scans on day 0 (before surgery), while the mice were
anesthetized with 2 % isofluorine and 1 L/min oxygen. After
sacrifice on day 10, the skulls were rescanned with the same
parameters. The DICOMmicro-CT files were then transferred
to Amira v.5.4 (Visage Imaging, San Diego, CA, USA) for
quantitative analysis. Quantification of the osteolytic and os-
teogenic volume was performed as show Fig. 1. Briefly, in
vivo micro-CT scans of the calvaria are performed prior to
surgical implantation of the wear debris particles (day 0), and
ex vivo scans of the calvaria are performed after tissue harvest
on day 10. The DICOM files are used to generate an initial 3D
image of the calvaria at each time point, and these images are
then imported into the Amira program for volumetric regis-
tration and analyses. Three distinct tissues types were defined
by this process based on their bone mineral density (BMD). In
the region of interest (ROI), the original calvarial bone, which
has a high BMD (zoom and data window=1,000–7,000;
display and masking=1,700–7,000), was initially identified.
Then an under-mineralized tissue with a lower BMD (zoom
and data window=1,000–3,000; display and masking=
1,000–2,500), was identified within the ROI, which we de-
fined as new bone that formed in response to the wear debris-
induced osteolysis. Finally, the unmineralized soft tissue, with
a lower BMD, was identified within the ROI between the
original calvaria, and the new woven bone was defined as
inflammatory tissue. Based on this tissue segmentation, we
were able to calculate the volumes and determine the
osteolytic versus osteogenic potential of the different particles
via liner regression analysis (Fig. 1).

The results from the sham and hydrogel-treated calvaria
demonstrated minimal osteolysis and the lack of a significant
osteogenesis response in these groups. In contrast, all three
particles displayed a significant osteolytic and osteogenic
effect vs. sham controls (p<0.01). Additionally, all three
particles demonstrated a dose-dependent effect on both
osteolysis and osteogenesis, in which the effects of the 5-mg
dose appeared to saturate the host responses. Therefore, lower
doses are recommended for future studies. The results from
the 2-mg dose produced some interesting trends that warrant
further investigation. Of note was that the MARATHON
particles induced the smallest osteolytic response among the
UHMWPE particles tested, suggesting that at low doses it
elicits the best biological response. However, when we ana-
lyzed the osteolytic versus osteogenic potential of the parti-
cles, the MARATHON particles appear to have uncoupled
osteolysis and osteogenesis with a slope=0.59 (Fig. 1). Thus,
this uncoupling highlights the importance of measuring both
bone responses when evaluating UHMWPE particles for bio-
compatibility and toxicity. In contrast, AOX particles slightly
favor osteogenesis over osteolysis (slope=1.27). This sug-
gests that the presence of the antioxidant may produce a more
favorable environment for bone formation following wear
debris-induced bone resorption.

Conclusions and Future Directions

Under non-pathologic conditions, wear debris-induced bone
resorption is coupled to bone formation to prevent osteolysis.
This is why only a small fraction of joint replacement patients
develop periprosthetic osteolysis and aseptic loosening, while
most patients display a linear wear rate over time [30–32]. The
theory that aseptic loosing may be due to an uncoupling of
osteogenic/osteolytic processes rather than a specific negative

Table 1 Parameters of
UHMWPE composition, gamma
irradiation, and annealing

Factors MARATHON XLK AOX (PVA-PAA hydrogel)

Resin (GUR) 1,050 1,020 1,020 + AO Poly (vinyl alcohol) and Poly (acrylic acid)

Gamma dose 50 kGy 50 kGy 80 kGy 50 kGy

Remelt Yes Yes No No

Table 2 Physical characteristics
of the UHMWPE particles MARATHON XLK AOX

Average Range Average Range Average Range

Particle size (μm) 2.67 0.48~23.08 3.9 0.82~24.94 3.16 0.11~17.18

Aspect ratio 1.73 1.1~4.63 1.86 1.04~8.11 1.75 1.07~16.94

Roundness 0.62 0.22~0.91 0.59 0.12~0.97 0.64 0.06~0.94

Form factor 0.64 0.12~0.92 0.57 0.14~0.88 0.58 0.01~0.91

Perimeter (μm) 11.48 1.78~138.26 17.59 2.94~15.50 14.47 0.43~194.87
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wear debris responses is supported by longitudinal volumetric
CT analysis of patients with varying degrees of periprosthetic
bone loss [31–33]. It is for this reason that we have chosen
micro-CT as the primary outcome measure in our preclinical
studies, and aimed to develop faithful quantitative measures of
coupled vs. uncoupled responses to wear debris. Here, we
demonstrate that volumetric longitudinal micro-CT can be
used to quantify these events using the murine calvaria model.
Using this model, we observed differences in the induced
osteolysis. Material factors which may have contributed to
these differences include the average molecular weight of the
resin (5 vs. 2 million), the presence or absence of the antiox-
idant, but also the average particle size. In this experiment,
attempts weremade to control for the particle size, but filtering
still produces a distribution of particle sizes with significant
overlap, which is an issue that requires attention in the future.

Moreover, inclusion of anti-oxidants into the larger particles
from lower molecular weight resin without remelting results
in UHMWPE (AOX) that has similar osteolytic and osteo-
genic properties to low dose MARATHON, suggesting a
biological effect of the anti-oxidants that compensates for
the lack of ROS release from remelting.

One limitation of our pilot study is that the UHMWPE
particles differed in more than one variable (Tables 1 and 2).
Thus, we are not able to make firm conclusions about the
effects of anti-oxidant incorporation. However, it was inter-
esting to see that the AOX particles induced less osteolysis
than the XLK particles, and significantly more osteogenesis
than the MARATHON (p<0.05). Formal studies are now
planned to directly assess the potential effect of a free
radical scavenging antioxidant presence on the overall
osteolysis process.

Fig. 1 Longitudinal micro-CT
analysis and quantification of
UHMWPE particle induced
osteolysis and osteogenesis in
vivo. 3D reconstructions of
DICOM images were generated
from the micro-CT raw data of
the region of interest (ROI)
(circled bone) obtained on day
0 and day 10 following surgical
implantation of 2 mg of
UHMWPE particles. After ROI
confirmation via Amira image
analysis, the day 0 (yellow
bone) and day 10 (green bone)
ROIs are co-registered in 3D.
The osteolytic volume is then
determined by the bone void in
the day 10 ROI, and the
osteogenic volume is calculated
from the under calcified bone in
the ROI of the co-registered 3D
images. To assess the relative
osteolytic versus osteogenic
potential of a particular
UHMWPE particle, a linear
regression analysis is performed
by plotting the osteolysis versus
the osteogenic volume for each
mouse (n=6), in which slope=
1.0 signifies perfect coupling
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