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Abstract: Internet of Things (IoT) has become the driving force in modern day technology with
an increasing and rapid urge to create an intelligent, efficient, and connected world. IoT is used
in manufacturing, agriculture, transportation, education, healthcare and many other business
environments as well as home automation. Authentication for IoT devices is essential because
many of these devices establish communication with servers through public networks. A rigorous
lightweight device authentication scheme is needed to secure its physical hardware from cloning or
side-channel attacks and accommodate the limited storage and computational power of IoT devices
in an efficient manner. In this paper, we introduce a lightweight mutual two-factor authentication
mechanism where an IoT device and the server authenticate each other. The proposed mechanism
exploits Physical Unclonable Functions (PUFs) and a hashing algorithm with the purpose of achieving
a secure authentication and session key agreement between the IoT device and the server. We conduct
a type of formal analysis to validate the protocol’s security. We also validate that the proposed
authentication mechanism is secure against different types of attack scenarios and highly efficient
in terms of memory storage, server capacity, and energy consumption with its low complexity cost
and low communication overhead. In this sense, the proposed authentication mechanism is very
appealing and suitable for resource-constrained and security-critical environments.

Keywords: physical unclonable functions; arbiter; HMAC; SRAM; IoT device authentication;
invasive attack

1. Introduction

An Internet of Things (IoT) device can be considered as a form of embedded system that is
limited in its memory capacity, processing power, and energy sources, i.e., batteries [1]. Traditional
cryptographic key storing and authentication methods, such as using public key or symmetric key
algorithms in IoT authentication, are not suitable for power-constrained IoT environments as they
require too much memory, power, and high battery use [2]. Although securing the Internet and
network have been the main focus of digital security for decades, IoT devices are still vulnerable to
malicious cyberattacks, not only from a software perspective with privacy, user profiling, tracking,
and authentication, but also to physical attacks [3]. With an increasing number of IoT devices being
used in an array of industries, including healthcare, public frameworks, and smart cities, the need
for more enhanced security methods is paramount in these environments. Most security techniques
are vulnerable because of potential threats by data hackers. The tools and techniques that are used
to ensure the information and systems security should always be up to date and utilized to their
optimum performance. In traditional authentication methods where the device that stores the key
is kept physically secure, cloning or side-channel attacks are not much of a concern. The situation
is different for IoT devices because they need to be placed in various places including public places
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where attackers have the opportunity to tamper with the physical device. For example, the stored keys
in the non-volatile memory can be read and used to maliciously initiate an attack. Thus, IoT devices
require more rigorous and lightweight authentication schemes to prevent them from being tampered
with physically [1,3,4]. Security researchers have recently paid more attention to PUFs in the security
context because Physical Unclonable Functions (PUFs) eliminate the need to store keys in the nodes.
PUFs are the outcome of a manufacturing process for Integrated Circuits (IC) where the physical
variations in the microstructure are random and allow the creation of a function that is physically
unclonable and unpredictable [3]. PUFs are proving to be an ideal solution to more secure mutual
authentication schemes for IoT systems.

In this paper, we propose a two-factor mutual authentication mechanism between the IoT device
and the server that it communicates with, based on deploying two PUFs in the IoT device along with a
hashing algorithm. To eliminate the vulnerability introduced by storing a cryptographic key in the
IoT device’s non-volatile memory [5], we utilize a SRAM (Static random-access memory) PUF in our
proposed mechanism. We distill a cryptographic key from the SRAM PUF. We also use an Arbiter
PUF to achieve a reliable two-factor mutual authentication. The proposed mechanism does not use
encryption during the authentication process hence no encryption algorithm is required in the IoT
device or the server for authentication. Using encryption algorithms dissipates relatively a large amount
of energy in IoT devices [2], causing the device battery to drain more quickly. The key feature of the
proposed authentication mechanism is only to utilize a hashing algorithm for the mutual authentication
in comparison to the existing ones. That makes our mutual authentication mechanism lightweight
and more desirable for power-constrained IoT network applications. Many conventional mutual
authentication algorithms are vulnerable to physical attacks as they have to store a secret cryptographic
key in the IoT device’s non-volatile memory [6–8] to be used in the encryption/decryption process.
Our proposed authentication mechanism does not require storing the secret cryptographic key or any
sensitive data in the IoT device memory, making it resilient to physical attacks.

Our contribution in this paper is a mutual authentication mechanism that provides:

• A novel two-factor mutual authentication approach for IoT devices in which a hashing algorithm
is utilized for the IoT device and the server to authenticate each other,

• Use of two PUFs in the IoT device for two-factor authentication for stronger security
against cyberattacks,

• Low power consumption during the authentication, which is very appealing to resource-constrained
applications of the IoT.

The paper is organized as follows: in Section 2, we discuss three commonly used techniques in IoT
device authentication and provide a literature review in Section 3. In Section 4, we present our proposed
mutual authentication mechanism, followed by the protocol analysis in Section 5. The performance
evaluation is provided in Section 6. We conclude our study of the proposed mechanism and present
the next steps for future works in Sections 7 and 8, respectively.

2. Authentication Techniques in IoT Devices

A secured mutual authentication is essential to ensure the privacy and confidentiality of the data
exchange between a device and the server. Many protocols have been developed for authenticating
IoT devices. The three main ones are: (1) the encryption/decryption cryptography authentication
technique where an encryption/decryption algorithm is utilized for authentication, (2) the localization
and device environmental data authentication technique where the placement and surrounding
information of the IoT device can be used to authenticate it, and (3) the PUF authentication technique
which makes use of the intrinsic characteristics of IC in the IoT device. We briefly discuss each
technique in the subsections below.
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2.1. Authentication via Encryption/Decryption

A device in the IoT system can be authenticated using either the symmetric or asymmetric
key cryptography technique. In symmetric key authentication, the IoT device and the server share
and store a secret key. The most popular algorithm used in symmetric key cryptography is the
Advanced Encryption Standard (AES) [9]. In asymmetric key authentication, both the IoT device and
the server use a public–private key pair, where the public key is shared but the private key is not
shared between one other. The private key is used for signature generation, whereas the public key
is used for signature verification [10]. Both symmetric and asymmetric methods need a key to be
securely stored on the device. Various techniques have been developed for utilizing and protecting
the secret cryptographic key in the device [11,12]. For example, there are credential specific software
applications that can be configured with the purpose of managing the authentication credentials in a
device [13]. Other techniques make use of physical components such as the Central Processing Units
(CPUs) or ICs with memory storage and store the secret keys in their memory that is always power
backed [14]. Storing the cryptographic keys on the IoT device has an intrinsic vulnerability to certain
types of attacks, where the attacker either physically or remotely connects to the device and reveals the
stored key, e.g., firmware attacks [5].

2.2. Authentication via Localization and Device Environmental Data

An IoT device can be authenticated by locating it or knowing information about its neighboring
devices or a communication link’s characteristics. The server can collect the IoT device placement and the
device surrounding environment information such as time of arrival and/or received signal strength [15],
examine the collected information, and accordingly authenticate the IoT device. Localization of
the device can be achieved by using different technologies such as Global Positioning System
(GPS) or a base radio station as in the Wireless Local Area Network (WLAN) [16]. The smart
phone also can be used in this technique. After the server registers the device identity information,
location information, and authorization policies, the protocol performs the actual location-based
authentication and authorization process every time the device requests access to some resources or
service from the system [17].

2.3. Authentication via Physical Unclonable Functions (PUFs)

PUFs are a robust and lightweight solution to secure IoT devices [18] they are low cost and
are resilient security resources [19]. PUF-based authentication protocols can perform authentication
between an IoT device and a server. In this approach, the server sends a challenge C to the IoT device
and evaluates the corresponding response R received from the device. The PUF is usually implemented
in intrinsic IC and used for secure key generation and storage in security-related applications. Each PUF
exploits the random variations in delays of wires and logic gates implemented inside the circuit [19].
These unique characteristics are obfuscated, obscure to the users and cannot be duplicated in a
manufacturing process. Moreover, any execution of an invasive attack (hardware attack) to the circuit
completely damages PUF, resulting in no useful information being extracted from the circuit. There are
two levels of PUF architectures, namely, strong PUF and weak PUF in terms of implementations.
The strength of the PUF depends on the number of unique Challenge–Response Pairs (CRPs) that a
single device can generate [19,20].

2.3.1. Weak PUFs

Weak PUFs support a relatively small number of CRPs, which make them more suitable for secure
key storage and entity authentication techniques in IoT. The common types of weak PUF include the
Ring Oscillator (RO) PUF and SRAM PUF [19]. Brief descriptions of these two types of weak PUFs are
provided below.
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• SRAM PUF

Figure 1 shows the typical cell structure of a SRAM PUF. During the manufacturing process of
the transistors small variations of electrical parameters will occur which results in threshold voltage
mismatch between adjacent transistors. When the SRAM cell powers up, one of the two positive
feedback loops will force the cell output to settle on a logic of “1” or “0” [19]. SRAM cell evaluation is
based on the measurement of cell parameters such as the cell area, cell leakage, and the cell powers
dissipated during the read and write operations. The measurements of these parameters can vary
due to the silicon aging, electrical source noise, or temperature variations. Therefore, extracting a
cryptographic key from SRAM PUF is not a straightforward process [21]. In the effort of extracting
a reliable cryptographic key from the SRAM PUF with much less entropy, many algorithms have
been proposed, which utilize fuzzy extractor and helper data as error correction methods to tackle the
error probabilities of the SRAM cells values. An example of these methods can be found in [21,22]
where authors were successfully able to extract stable SRAM output bits that can be used as a secret
key (cryptographic key) to authenticate an IoT device without having to store this secret key in a
non-volatile memory.
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• Ring Oscillator (RO) PUF

Due to manufacturing variations, identically laid out delay loops produce oscillations with
different frequencies. The dissimilarity of the frequency has been exploited to design the RO PUF [23].
RO PUF can be implemented on either an Application-Specific Integrated Circuit (ASIC), or a
Field-Programmable Gate Array (FPGA) circuit. The design architecture of the typical RO PUF consists
of N identical delay loops and counters. The oscillation frequencies are compared with each other in
the given identical delay loops and the output value, one or zero, is equally likely to occur due to the
random variations [19].

2.3.2. Strong PUFs

Strong PUFs support a large number of CRPs in which a complete determination of the whole
CRPs within a limited period of time is impractical [20]. A brief demonstration of the two types of
strong PUFs are shown below.

• Arbiter PUF

Gassend et al., in [24], described the silicon structure for strong PUF. The researchers showed that
the gate circuit delay represents randomness that is feasibly unclonable. Figure 2 below shows one
of the Arbiter PUF implementations in which two identical logic circuits are utilized to generate an
output bit Y based on a race between the two circuits. The 128 input bits X [0] to X [127] represent the
challenge and the output bit Y represents one bit of the PUF response R. The output bit Y changes
according to the 128 input bits. A 128-bit output response is achieved by repeating the circuit in
Figure 2 below 128 times to construct one Arbiter PUF circuit [19].



Sensors 2020, 20, 4361 5 of 21

• Optical PUF

Optical PUF has been described by Pappu et al. [25] as a device that receives a laser input and
outputs a corresponding pattern. Each output pattern (PUF response) is dependent on the challenge
(PUF input) which is represented by the laser polarization and location XY.
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3. Literature Review

Mughal et al., in [6], proposed an IoT authentication protocol based on PUF. In their authentication
protocol, initially, the smart device registers its credentials, such as device serial number and fingerprint
generated using PUF. Then, the gateway proves the authenticity of the device by matching the device
PUF fingerprint with what is stored in the gateway’s repository. In case of a new device, the gateway
registers its serial number after matching the device PUF fingerprint successfully. The smart device
and the gateway share an initial secret key, the smart device stores the secret key in a non-volatile
memory and the gateway stores the secret key in its repository. The initial secret key is then used to
perform the initial message encryption and decryption processes. The proposed authentication scheme
has to store an initial cryptographic key in the IoT device’s secure non-volatile memory to set up an
initial connection with the gateway. That makes it vulnerable to being compromised by an attacker
who has remote access to the IoT device and uses a firmware attack technique [5].

Aman et al., in [1], proposed a mutual authentication protocol based on PUF where the IoT device
and the server authenticate each other. The proposed protocol constructs a session key using the
hash of two random nonce values. When a new IoT device attempts the first access to the server, a
password needs to be inserted into the device by a system operator, resulting in the device exchanging
an initial CRP (Ci, Ri) with the server using the Time-Based One-Time Password (TOTP) approach [26].
The mutual authentication between the IoT device and the server is accomplished in three phases.
First, the IoT device sends its identity, i.e., IDA and a nonce N1 to the server. Second, the server
tries to locate the CRP (Ci, Ri) that belongs to the received IDA, otherwise the communication will
be rejected. After successfully locating the CRP in repository, the server sends Ci, MA, and a Message
Authentication Code (MAC(MA)) to the IoT device. The MA is a message of {RS1, IDA, N1} encrypted
by the Ri encryption key, and RS1 is a randomly generated number by the server. Lastly, IoT device
generates the response Ri according to Ci, obtains RS1 by decrypting MA using Ri, verifies the integrity
of MA, and authenticates the source. If integrity or authentication fail, the IoT device terminates the
communication. The session key in both the IoT device and the server is constructed using exclusive OR
operation between Hash(RS1) and Hash(NA). Although their proposed algorithm is carefully designed
to ensure message integrity, confidentiality, and freshness between the IoT device and the server,
one of the unfavorable aspects is the aggregated power consumption in the encryption/decryption,
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hash, and MAC processes throughout the mutual authentication process. This is not desirable in
resource-constrained systems.

Alizai et al., in [7], proposed a mutual authentication protocol that is based on public key encryption
and the IoT device’s capability to calculate a predesigned functional operation. The functional operation
can be a crypto puzzle or a function that can be calculated using the IoT device capabilities and a
secret. Both the IoT device and the server store their own private key and the other’s public key. The
proposed scheme for the device authentication is as follows: First, the IoT device sends a connection
request to the server. Then, the server signs a nonce using its private key and sends the signed nonce
alongside with a timestamp to the IoT device with the purpose of authenticating the IoT device.
Second, the IoT device authenticates the server by verifying the server signature and the IoT device
performs a functional operation on the received nonce, signs the output obtained from the functional
operation using its private key, and sends the signed output alongside with a timestamp to the server.
Lastly, the server decides whether the IoT device is authenticated by verifying the IoT device signature
and the functional operation’s response. The proposed algorithm includes a timestamp to prevent
a replay attack. The authors also mention that a window of five seconds will be used for the IoT
device and the server to respond to a received request before the session timeout. There are two main
drawbacks in this authentication protocol: Firstly, two secret keys have to be securely stored in a
non-volatile memory in the IoT device which can be compromised and maliciously used by an attacker
through firmware attack techniques. Second, using public key encryption in IoT mutual authentication
is computationally expensive for resource-limited systems.

Han and Kim [8], proposed a lightweight mutual authentication scheme for IoT devices.
In this scheme, a block cipher algorithm is deployed in the IoT device–server mutual authentication,
where a secret key is initially stored in both the IoT device and the server, and a session key is
dynamically generated using this secret key. The authentication mechanism is a typical application
of using the encryption/decryption cryptography algorithms in authenticating IoT devices. As we
can see, the proposed lightweight mechanism in [8] exhibits the same vulnerability as was previously
explained about Mughal et al. and Alizai et al.’ protocols, where storing an initial secret in IoT devices
can be compromised by an intruder using a firmware attack method.

Our literature review shows that the vulnerabilities of current authentication algorithms mainly
stem from utilizing encryption techniques as in [6–8], where a secret key has to be stored in the IoT
device’s non-volatile memory. Moreover, utilizing PUF, encryption/decryption, MAC, and hash
algorithms all in one authentication scheme consumes relatively more power with respect to
power-constrained IoT devices [1]. Therefore, we are proposing a new authentication mechanism for
IoT devices that fits well for the resource-constrained devices and is resistant towards cryptanalysis
attacks, as illustrated in the following sections.

4. Proposed Authentication Mechanism

In this section we provide a step-by-step description of the proposed mutual two-factor
authentication mechanism between an IoT device and the server. Then, we list the steps for secure
session key establishment for further data communication after a successful authentication.

4.1. Mutual Authentication Mechanism

Our proposed authentication algorithm is based on deploying two silicon PUFs in the IoT device,
a strong PUF (Arbiter), and a weak PUF (SRAM), to achieve two-factor authentication. The mutual
authentication is achieved by (1) the IoT device’s SRAM PUF secret key which “only the server and the
SRAM knows” and (2) the IoT device’s Arbiter PUF, where the Arbiter PUF serves as the fingerprint of
the IoT device which is “something that characterizes the IoT device”. Utilizing two PUFs in the IoT device
provides a significant robustness throughout the mutual authentication process.

We use a keyed Hash-Based Message Authentication Code, in particular HMAC-SHA-256, in
our proposed mechanism. HMAC uses a (one-way) hashing algorithm and supports verifying two
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significant security properties of a message: integrity and authenticity. It has high resistance against
cryptanalysis and is considered a secure authentication technique [27]. Despite the fact that the
SHA-3 hash standard algorithm has a proven security robustness and a high performance with a
promising future in security applications, the migration from SHA-2 to SHA-3 has been slow. Therefore,
we decided to consider using the SHA-2 hash standard algorithm in our proposed authentication
mechanism as SHA-2 has been unbreakable since it was designed and published by the National
Security Agency (NSA) in 2001. SHA-2 is implemented in well-known security applications such as
Secure Sockets Layer (SSL) and Transport Layer Security (TLS). In addition, it has been utilized by
several United States government applications to secure sensitive data. Moreover, SHA-2 has been
implemented in many security ICs for commercial purposes. In contrast to SHA-3, SHA-2 has more
hardware and software support which makes it easier and more trusted to utilize, whereas SHA-3
does not have the same level of support [28].

For application and transport layers, we assume utilization of the Constrained Application
Protocol (CoAP), the common transfer protocol for power-constrained IoT devices. It is secured with
the use of Datagram Transport Layer Security (DTLS) over User Datagram Protocol (UDP) [29]. The use
of HMAC results in a lightweight authentication in terms of computational complexity as it utilizes
only hash algorithms, which are fast compared to encryption/decryption algorithms, in particular,
public key ones.

In the proposed mechanism, the server stores the identifier, SRAM’s intrinsic key, and Arbiter
PUF’s Challenge–Response Pair (CRP) for each IoT device in its repository. These keys and CRPs
are used when an IoT device wants to establish a connection with the server. To ensure message
freshness and to prevent replay attacks, we send across a timestamp with each message throughout
the authentication process.

A symbolic model of the assumed system is shown in Figure 3. The IoT devices are assumed
to communicate with the server through a public channel such as the Internet. Each individual IoT
device is resource limited and is equipped with two PUFs. We assume that the server is in a highly
secured environment in the data center. The notation used in the algorithm is described in Table 1.
Figure 4 shows the steps in the mutual authentication protocol we propose. The details at each step are
shown below.
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In Step (1), the IoT device generates a cryptographic key SRAMk using its SRAM PUF,
a timestamp TS1, and calculates a keyed hash message authentication code HMAC(SRAMk, TS1)
using the HMAC-SHA-256 with the timestamp TS1 and the key SRAMk. Then, the IoT device sends its
identifier IDd, the generated timestamp TS1, and HMAC (SRAMk, TS1) message to the server.

In Step (2), upon receiving the message from the IoT device, the server tries to locate the IDd of the
IoT device in its repository. If it fails to locate it, the connection is rejected. Otherwise, the server finds
the IoT device’s IDd, and loads the SRAMk that belongs to this IDd from its repository to its memory,
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then calculates the HMAC(SRAMk, TS1) message. The server matches both the received and the
calculated hash messages to verify the IoT device’s message integrity. If the matching fails, the server
terminates the connection. This verification process makes sure that the IoT device’s message was not
tampered with or corrupted during transmission. This provides the first factor for authenticating the
IoT device. The server then generates a timestamp TS2, copies the CRP (C, R) that belongs to the IoT
device from its repository to its memory, generates (C ‖ TS2), and calculates HMAC(SRAMk, C ‖ TS2)
message. The server then sends the challenge C, the timestamp TS2, and the HMAC(SRAMk, C ‖ TS2)
message to the IoT device.

In Step (3), once the IoT device receives the server response, the IoT device generates (C ‖ TS2),
and calculates HMAC(SRAMk, C ‖ TS2) message. The IoT device compares the received and the
calculated hash messages. Because the server is the only device in the system that knows and stores
the IoT device’s SRAMk, the IoT device will verify the authenticity of the server based on the success of
matching the hash messages. If the message from the server to the IoT device was tampered with or
corrupted during communication, then the matching process will fail and the IoT device will terminate
the connection. Otherwise, the IoT device inputs the challenge C to its Arbiter PUF, and generates
the corresponding response R. The IoT device then generates a timestamp TS3, generates (R ‖ TS3),
and calculates HMAC(SRAMk, R ‖ TS3) message. The IoT device then sends the timestamp TS3, and
HMAC(SRAMk, R ‖ TS3) message to the server.

Table 1. Algorithm botation description.

Notation Description

‖ Concatenation symbol

IDd IoT device’s identifier

TS1, TS2, TS3, and TS4 Timestamps

SRAMk Secret key (identifier) extracted from SRAM

HMAC(SRAMk, TS1) A keyed hash message authentication code of the timestamp TS1

C Challenge for the Arbiter PUF of the IoT device

R Arbiter PUF’s response for the C challenge

CRP (C, R) Challenge–Response Pair of C and R

AESSRAMk ({Sk, TS4}) Encrypting {Sk, TS4} using AES algorithm and the SRAMk as the cryptography key
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Upon receiving the message from the IoT device, the server calculates HMAC(SRAMk, R ‖ TS3)
and compares the received and the calculated hash messages. If they match, the server verifies
the authenticity of the IoT device, as a successful matching of these two hash messages means that
the server communicates with the right IoT device. However, if the matching fails, then the server
terminates the connection. Note that this is the second factor used for authentication of the IoT device.
In addition to utilizing a timestamp throughout the mutual authentication process, the protocol
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will utilize a time duration delta t (∆t), after which, a request originator (IoT device or server) will
terminate the connection if it did not receive a response from the other party that it wants to establish a
connection with. The time duration ∆t can be determined by the system design engineer, which can be
based on the IoT network architecture, and the IoT device surrounding environment. Maintaining
time ∆t during the authentication is a significant defense mechanism against a replay attack, where an
attacker can try to delay the communication flow between the IoT device and the server. The time
duration is not included in Figure 4 to keep it simple.

The algorithm for our proposed mutual authentication mechanism is shown in detailed steps in
Algorithm 1.

Algorithm 1 The mutual authentication between IoT device and server.

Input: An IoT device with identity IDd, and server that stores the IoT device’s information (SRAMk, CRP, and IDd);
Output: A mutual authentication between the IoT device and the server;
Begin
1: The IoT device generates a SRAM PUF cryptography key SRAMk, a timestamp TS1, and HMAC(SRAMk,
TS1) message;
2: IoT device sends its IDd, TS1, and HMAC(SRAMk, TS1) message to the server;
3: If (the server finds IDd in its repository) then
4: The server loads the SRAMk, and CRP (C, R) that belongs to the IDd from its repository to its memory;
5: The server calculates HMAC(SRAMk, TS1) message;
6: If (the calculated hash message in step 5 matches the hash message that was sent in step 2)

then
7: The server generates a timestamp TS2, calculates (C ‖ TS2), and generates HMAC(SRAMk, C ‖ TS2) message;
8: The server sends C, TS2, and HMAC(SRAMk, C ‖ TS2) message to the IoT device;
9: else

Go to step 21;
end if

10: else
Go to step 21;

end if
11: The IoT device calculates (C ‖ TS2), and generates HMAC(SRAMk, C ‖ TS2) message;
12: If (the calculated hash message in step 11 matches the hash message that was sent in step 8)

then
The authenticity of the server is verified;

13: The IoT device passes the challenge C to its Arbiter PUF, and generates a response R;
14: The IoT device generates a timestamp TS3, calculates (R ‖ TS3), and generates HMAC(SRAMk, R ‖ TS3)
message;
15: The IoT device sends TS3, and HMAC(SRAMk, R ‖ TS3) message to the server;
16: else

Go to step 21;
end if

17: The server calculates (R ‖ TS3), and generates HMAC(SRAMk, R ‖ TS3) message;
18: If (the calculated hash message in step 17 matches the hash message that was sent in step 15)

then
The authenticity of the IoT device is verified;

19: A mutual authentication between the IoT device and the server is established;
20: else

Go to step 21;
then

21: Stop (terminates the connection);
End
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4.2. Secure Session Key Establishment

In this subsection we propose a method for secure session key establishment between the server
and the IoT device, with the assumption that they have achieved mutual authentication and trust
each other. Figure 5 shows the main steps in secure key establishment. The details of the steps are
shown below.
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1. The server generates a 128-bit random number which will be the session key Sk and timestamp
(TS4) to ensure the freshness of the message.

2. The server encrypts {Sk, TS4} using the IoT device cryptographic key SRAMk and a
strong symmetric encryption algorithm such as the AES block cipher encryption algorithm
(128-bit block size); M = AESSRAMk({Sk, TS4}).

3. The server generates HMAC (SRAMk, M ‖ TS4) and sends it alongside the message M and the
timestamp TS4 to the IoT device.

4. The IoT device generates (M ‖ TS4), and calculates HMAC (SRAMk, M ‖ TS4), and compares the
received and the calculated hash messages for the purpose of verifying the message integrity.
If the two hashes do not match, the IoT device terminates the connection. Otherwise, the IoT
device decrypts the message M using its SRAMk and AES encryption algorithm and retrieves the
secured session key Sk.

5. The session key Sk will be used by the IoT device and the server to encrypt and decrypt the
exchanged data between the IoT device and the server.

If the communication session gets disrupted and the connection gets terminated for any reason, the
IoT device and the server will have to repeat the entire mutual authentication steps that we described
in Section 4.1 to re-establish a new session key.

We would like to highlight some features of our mechanism that distinguish it from other
methods for mutual authentication between a server and IoT device: In the proposed mechanism,
the Challenge–Response Pair (C, R) and the SRAMk for the IoT device are securely stored in the
server’s repository. After the IoT device and the server create a session key Sk, both the IoT device and
the server delete the unneeded parameters from their memories. This includes the TS1, TS2, TS3, TS4, C,
R, IDd, and SRAMk. No sensitive data are exchanged in plaintext or in encrypted form in our proposed
mutual authentication method. Furthermore, the cryptographic key SRAMk, which is utilized for
achieving mutual authentication and securing a session key, is securely stored only in a server located
in a diligently protected data center. Therefore, even if an attacker intercepted the transferred messages
between the IoT device and the server, they will not be able to reveal the cryptographic key SRAMk nor
the session key Sk. This supports the confidentiality of the session key and the security resilience of
our proposed authentication mechanism.
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5. Protocol Analysis

In this section, we provide brief descriptions of various types of attacks against IoT systems. Then,
we describe how the proposed authentication mechanism stands strong against these common cyber
threats due to the defense features included in its design.

5.1. Cyberattack Scenarios

A brief definition of the common cyber threats that an attacker can launch on an IoT system is
demonstrated in Table 2.

Table 2. Cyberattack scenario descriptions.

ID. Attack Scenario: Definition

01 Replay attack: A type of network attack where a legitimate traffic is maliciously repeated
or delayed in order to disrupt the communications.

02 Machine Learning (ML) attack: PUF’s CRPs can be exploited to predict the PUF response
by using ML algorithms.

03 Man-in-the-middle attack: A type of attack where an attacker secretly intercepts the
traffic between two parties and possibly alters the communicated information.

04
Invasive attack: It is a hardware attack, where an attacker physically accesses the
hardware’s semiconductor, i.e., an IC, with the purpose of reading the stored secrets on it
or discovering its structure [30].

05 Firmware attack: An attacker remotely connects to the IoT device and alters or injects a
malicious software to compromise the stored secret key.

06 Impersonating/spoofing attacks: A type of attack where an attacker tries to act as if they
are a trusted node in an IoT system.

07 Eavesdropping attack: A form of sniffing attack where an attacker seeks out sensitive data
from insecure communication networks.

08

Side channel attack: A type of attack which requires physical access to the PUF. The attack
can be invasive, semi-invasive, and non-invasive. In the first two types, the attacker will
have access to the internal structure of the PUF. The attack would not damage the PUF if
semi-invasive, but it could damage the PUF if invasive. In non-invasive attack, the attacker
would try to recover PUF secret key by analyzing data such as the PUF power
consumption. Side channel attacks can be active where the attacker actively manipulates
the PUF environment such as its power supply, or they can be passive, where the attacker is
only collecting data about the PUF, such as the temperature, and analyzes these data [31].

Cyberattack scenarios may aim to compromise an initial encryption key which is used to
encrypt/decrypt the exchanged authentication messages. They may also aim to compromise the session
key which is usually used for data transfer between the IoT device and the server after successful
mutual authentication.

5.2. Cyber Defense Assessment

Our proposed mutual authentication mechanism is strong against the cyberattack scenarios we
have described in Table 2. The strength comes from deploying two different PUFs in the IoT device
which allows no secret values or keys to be transmitted between the IoT device and the server. A defense
assessment of the proposed scheme against the attack scenarios is given in the following points:

1. The IoT device and the server use timestamps in their communications which helps to prevent
replay attack attempts.

2. Machine learning attack to predict the Arbiter PUF’s responses is not feasible in our mutual
authentication. This type of attack is based on capturing PUF’s CRPs. In our mechanism, we do
not exchange the PUF response in plaintext, we utilize only one pair of the Arbiter PUF’s CRP for
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each IoT device in the system. Therefore, launching a machine learning attack on our proposed
protocol is not applicable (N/A). Machine learning or modeling attack requires capturing several
CRPs of the PUF in order to train the model and predict the PUF response. Furthermore, if an
attacker intercepted our exchanged PUF information, they will see only the PUF’s challenge
which will be useless for the ML algorithms. The PUF’s CRP in our proposed scheme is similar to
the user account’s password in any system, changing the user account’s password regularly is a
good security practice. Similarly, the PUF’s CRP in our scheme can be changed to another CRP on
a regular basis throughout the IoT device’s life cycle, which presents a strong security measure in
the system. Note that changing the PUF’s CRP regularly does not require storing all the PUF’s
CRPs in the production server. The PUF’s CRPs can be stored in backup storage for the future use.

3. In our authentication mechanism, the IoT device and the server do not exchange sensitive
data (such as SRAMk, PUF response R, or the session key Sk) in plaintext over the unsecure
communication channel. This supports the data confidentiality. In fact, in the proposed scheme
SRAMk and PUF response R are not exchanged in encrypted form either. No encryption
takes place before the session key establishment. The only exchanged data in plaintext during
authentication are the IoT device identity IDd, timestamps (TS1, TS2, TS3), PUF’s challenge C,
and hashed messages. In such a setting a man-in-the-middle attack will not benefit from any
captured data. Furthermore, if the man in the middle alters the transferred data, the intended
receiver will detect the alteration by matching the hashed messages and drop the connection.

4. A silicon PUF cannot be duplicated due to its unique characteristics [19]. An invasive attack
on the IoT device PUF to discover its structure will not succeed as duplicating the discovered
structure is infeasible. Because the initial secret key is not stored on a chip in the IoT device,
there is no useful information on the IoT device for an invasive attack technique to benefit from.

5. As we are utilizing a SRAM PUF in our authentication scheme, we do not store the secret key in
memory in the IoT device. Therefore, launching a firmware attack on the IoT device will fail to
reveal any useful information.

6. In our proposed authentication mechanism, although we do not exchange the Arbiter PUF
response with any device, it is possible that a side channel attack could succeed in recovering
the Arbiter PUF response. However, in our authentication mechanism, revealing the Arbiter
response will be useless because: (1) we do not use the Arbiter response to generate the session
key and (2) there are no sensitive data that can be recovered by knowing the Arbiter response.
Therefore, an attacker would have to launch a successful side channel attack on the SRAM PUF
to recover its key SRAMK to compromise the session key. It is possible to have the SRAM PUF
key highly secured as there have been attempts in research for improving the security level
of the SRAM PUF. One successful study in this field is presented in [32], where researchers
present a highly efficient and secure mechanism for extracting and securing the SRAM PUF key
against side channel attacks. Such a solution increases the reliability of using SRAM PUF in
IoT device security systems. Our approach of utilizing two PUFs in the IoT device and server
authentication reduces the effectiveness of side channel attacks against the authentication of
the devices, compared to authentication mechanisms that deploy one PUF.

7. Assume that an attacker somehow gets hold of the SRAM key SRAMk of the IoT device. To launch
a successful spoofing attack, they need to also know the Arbiter PUF responses. Since we do not
exchange the PUF response R in plaintext and the Arbiter PUF practically cannot be duplicated,
a spoofing attack against our mutual authentication mechanism is impractical.

8. As we mentioned above in point number 3, our mutual authentication mechanism does not
exchange sensitive data in plaintext. Therefore, if an attacker sniffs out the communication link
between the IoT device and the server, they will fail to reveal any useful information that might
help to obtain any sensitive data.
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In Table 3, we provide a comparison of our proposed mutual authentication mechanism and other
recent PUF-based authentication schemes. Our proposed scheme is the only one that resists all the
considered attacks. In particular, apart from Aman et al.’s authentication scheme, our scheme is the
only one that resists against firmware attacks which aim at compromising the secret keys fuzzy in
non-volatile memory.

Table 3. Comparison of the cyber defense capabilities of our proposed mutual authentication mechanism
and the most recent PUF-based mutual authentication methods.

Security Feature Mughal et al. [6] Aman et al. [1] Alizai et al. [7] Han and Kim
[8]

Xu et al.
[32]

Banerjee et al.
[33]

Proposed
Mechanism

Utilized security
algorithms

PUF and
Encryption and

Hash algorithms

PUF and
Encryption and
Hash algorithms

Functional
Operation and
Encryption and

Hash

Encryption
(Block Cipher

algorithm)

PUF and
Encryption

PUF and Hash
algorithm and
XOR operation

PUF and
Hash

algorithm

Number of security
methods used 3 3 3 1 2 3 2

Two-Factor
Authentication Yes No Yes No No Yes Yes

Resilience to replay
attack No No Yes No Yes Yes Yes

Resilience to machine
learning attack No Yes No N/A N/A N/A N/A

Resilience to
Man–in-the-middle
attack

No No No No Yes Yes Yes

Resilience to invasive
attack Yes Yes N/A N/A Yes Yes Yes

Resilience to firmware
attack No Yes No No No No Yes

Resilience to spoofing
attack No Yes No No Yes Yes Yes

Resilience to
eavesdropping attack No Yes No No Yes Yes Yes

The consequences of compromising the secret key stored in the memory would be devastating.
The attacker could exploit the compromised key to initiate different types of attacks, as in [6–8],
and possibly reconstruct the session key. This would enable the attacker to compromise sensitive
data and use them in malicious activities. However, compromising the secret key and/or trying to
reconstruct the session key is not possible in our proposed mutual authentication mechanism.

5.3. Formal Analysis

In this section, we conduct a type of formal security analysis to validate the protocol’s security
and prove its trustworthiness as a mutual authentication protocol for IoT devices. Our formal analysis
is based on the Burrows, Abadi, and Needham (BAN) belief logic of authentication [34]. The BAN logic
can be used as an illustrative method of the essential concepts of an authentication protocol, and as a
basic verification tool for a security protocol.

5.3.1. BAN Logic Assumption and Postulates

The BAN method formalizes the authentication protocol by symbolically representing the
protocol’s objects, i.e., the communication ends are called principals, and can be represented by A,
B, and S. Other protocol objects such as exchanged messages and shared secret keys take different
symbols. The protocol validation in BAN logic is inferred by applying some sets of assumptions and
logic postulates. The set of BAN assumptions and logical postulates that are used in the formal analysis
of our proposed mutual authentication protocol are as follows:

Assumptions

• P| ≡ X: Principal P believes that X is true. Principal P represents the IoT device or the server in our
protocol, whereas X represents an exchanged message between the IoT device and the server.
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• P C X: Principal P sees, can read and repeat X.
• P|~ X: Principal P believed X and sent it once.
• P =⇒ X: Principal P has the authority to generate X, and P should be trusted for that.
• ](X): Represents the freshness of the message X.

• P K
↔ Q: The key K is good for the communication between the principals P and Q, where no one

can compromise the key K.

• P X
⇔ Q: The message X is a shared secret, which is known only to the principals P, Q, and any

other principals that are trusted by them.
• (X)Y: This represents X and Y as a compound, where Y is a secret, and the presence of Y proves

the identity of the principal that sent (X)Y.

Logical Postulates

Here, we represent the postulates as set of rules, on which our analysis will be based.
Rule (1) is the message-meaning rule: It means that if principal P believes that K is a good shared

secret key with principal Q, and P sees the message X which is encrypted by K, then principal P believes
that principal Q once has said the message X.

P| ≡ Q K
↔ P, P C {X}K

P|≡ Q| ∼ X
(1)

Rule (2) is the shared secret rule: It means that if principal P believes that Y is a secret shared with
principal Q, and P sees the message X, then principal P believes that principal Q once has said the
message X.

P| ≡ Q Y
⇔ P, P C (X)Y

P|≡ Q| ∼ X
(2)

Rule (3) is the nonce verification rule: It means that if principal P believes that X “which should
be a plain text” has been recently generated, and that principal Q has said X once, then principal P
believes that principal Q believes X.

P| ≡ ](X), P|≡ Q| ∼ X
P|≡ Q| ≡ X

(3)

Rule (4) is the jurisdiction rule: It means that if principal P believes in the jurisdiction of principal
Q over X, then principal Q guarantees the truth of X and principal P trusts principal Q on that.

P|≡ Q =⇒ X, P | ≡ Q| ≡ X
P| ≡ X

(4)

Rule (5) is the belief rule: It means that principal P believes a combination of statements, only if P
believes each single statement of that combination.

P| ≡ (X, Y)
P| ≡ X

(5)

Rule (6) is also a belief rule: It means that principal P believes that principal Q said a combination
of statements, only if P believes that Q has said each single statement of that combination.

P|≡ Q| ∼ (X, Y)
P|≡ Q| ∼ X

(6)
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Rule (7) is another belief rule: It means that principal P believes that it sees a combination of
statements, only if P believes that it sees each single statement of that combination.

P C (X, Y)
P C X

(7)

Rule (8) is freshness rule: It means that if principal P believes that the message X is fresh, then P
must believe that (X)Y is also fresh, the same belief holds true if it was {X}K in the denominator instead.

P| ≡ ](X)

P| ≡ ](X)Y
(8)

Rule (9) is the hash function H rule: It means that if principal P believes that principal Q said a
hashed composite message, and P could see each individual component of the composite message,
then principal P believes that principal Q could say each individual component of the composite
message once.

P|≡ Q| ∼ H(X1, . . . , Xk), P C X1, . . . , P C Xk

P|≡ Q| ∼ ((X1 . . .Xk)
(9)

5.3.2. Proposed protocol Detailed Analysis

Based on BAN logic methodology, we are going to represent our authentication protocol in its
idealized form, which represents the protocol message, after omitting the message’s parts that have no
effect on the recipient’s belief of the message, i.e., the plain text in the message. Hence, the idealized
protocol is represented as follows:

For the simplicity, we notate the IoT device by ‘D’, and the server by ‘S’ in our analysis:
In step 1: D −→ S: H((X1)SRAMk

), where X1 is TS1

In step 2: S −→ D: H((X2)SRAMk
), where X2 is C ‖ TS2

In step 3: D −→ S: H((X3)SRAMk
), where X3 is R ‖ TS3

The in-session key generation step is:
S−→D: H((X4)SRAMk

), where X4 is ({TS4, Sk}SRAMk
‖ TS4)

Here, we state a set of assumptions for our proposed protocol:

D|≡D
SRAMk
↔ S, S|≡D

SRAMk
↔ S: Both assumptions indicate that the IoT device and the server initially

share a secret key, which is the SRAM secret key SRAMk.

D|≡ (S =⇒ D K
↔ S), S|≡ D

Sk
↔ S: Both assumptions indicate that the server has generated a new

session key Sk, and that the IoT device trusts the server to generate good session keys.
D|≡ ](TS1), D|≡ ](TS3), S|≡ ](TS2), S|≡ ](TS4): These assumptions indicate that the IoT device and

the server are able to generate a fresh nonce.

D|≡ D R
⇔ S, S|≡ D R

⇔ S: Both assumptions indicate that the IoT device and the server are
sharing a secret statement, which is the Arbiter PUF response R to the challenge C during the mutual
authentication process.

Now, from step 1 in the idealized protocol that mentioned above, and rules (2, 3, 8, 9), we can
simply deduce that S|≡ D|~ TS1, S C TS1, which means that the server believes that the IoT device has
said TS1, and the server can see TS1. As from the assumptions, we have that the IoT device guarantees
the freshness of TS1, and the IoT device and the server initially share the secret key SRAMk. Thereby,
the server here will have a partial belief in the existence of the IoT device; however, at step 3, the server
will be highly certain of the existence of the IoT device, as we will illustrate later. From step 2 in the
idealized protocol, and rules (2, 3, 5, 6, 7, 8, 9) we can deduce that D|≡ S|~ (C ‖ TS2), D C C, and D C TS2,
which means that the IoT device believes that the server has said the composite statement (C ‖ TS2),
and the IoT device can see the challenge C and TS2. Similarly, from our assumptions, we can see
that the server guarantees the freshness of TS2, and the IoT device and the server know that they
initially share the secret key SRAMk. Thus, here, the IoT device is certainly assured of the existence
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of the server. From step 3 in the idealized protocol, and rules (2, 3, 5, 6, 7, 8, 9) we can deduce that
S|≡ D|~ (R ‖ TS3), S C R, and S C TS3, which means that the server believes the IoT device has said the
composite statement (R ‖ TS3), and the server can see the IoT device’s Arbiter PUF response R and TS3.
As we can see from our assumptions, the IoT device guarantees the freshness of TS3, the IoT device
and the server share the secret key SRAMk as well as the Arbiter PUF secret response R. Therefore,
at this point, the server is certainly assured of the existence of the IoT device.

Hence, the server and the IoT device have mutually authenticated each other. Now the server
can send a new session key to the IoT device. This can be shown in the session key generation step
from the idealized protocol. As we can see from our assumptions, the IoT device trusts the server on
generating good new session key Sk, applying rule (4) states that the IoT device believes the authority
of the server to generate good new session keys, the server guarantees the freshness of TS4, and the IoT
device and the server share the secret key SRAMk. Therefore, we can infer the final protocol beliefs:

D|≡ S|~ (D
Sk
↔ S, TS4): The IoT device believes that the server has said a good new session key Sk.

S|≡ D
Sk
↔ S: The server believes that it shares a good new session key with the IoT device.

D|≡ S|≡ D
Sk
↔ S: The IoT device believes that the server guarantees the goodness of the session

key Sk.
S|≡ D|≡ (TS2, TS4): The server knows that the IoT device believe the freshness of the two

timestamps TS2, and TS4.
D|≡ S|≡ (TS1, TS3): The IoT device knows that the server believes the freshness of the two

timestamps TS1, and TS3.
Thus, by stating the above final beliefs, we validate our proposed mutual authentication protocol.

We formally prove our protocol correctness as a secure mechanism to authenticate an IoT device
and server, and to distribute a new session key that can be used for further data communication
between the IoT device and the server.

6. Performance Evaluation

In this section, we analyze and evaluate the performance of our proposed authentication
mechanism based on the computational complexity, communication overhead, and storage constraints.
We compare our mutual authentication mechanism to one of the most recent and relevant PUF-based
mutual authentication mechanism proposed by Mughal et al. [6].

6.1. Computational Complexity

The main operations in PUF-based IoT authentication schemes are hashing, encryption, and PUF
operations. Table 4 below shows the time required in the IoT device and server for authentication
in the proposed scheme and in Mughal’s scheme. The time is represented in terms of the main
operations required. The symbol NH represents the time for hashing, NPUF represents the time for PUF
operations, NENC represents the time for encryption/decryption, and NHMAC represents the time for
computing a hashed message authentication code.

Table 4. Computational complexity comparison between the proposed mechanism and the Mughal et
al.’s authentication mechanism.

Authentication Mechanism IoT Device Server

Mughal et al. [6] 6NH + 2NPUF + 3NENC 6NH + 3NENC

Proposed Mechanism 2NPUF + 3NHMAC 3NHMAC

We assume the use of the AES block cipher encryption algorithm. The block size for AES is 128 bits
and the key size can be one of 128, 192, or 256 bits [35]. The average encryption/decryption times vary
based on the length of the AES key length. The encryption/decryption takes longer time and more
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processing power with the increase in the AES key length [36]. In Figure 6, the number of operations
in the IoT device authentication of our proposed mechanism is compared with that of the mutual
authentication mechanism in [6]. We assume that the computational complexity of the NH operation
is approximately equal to that of the NHMAC operation. As depicted in Figure 6, both mechanisms
have the same number of PUF operations. On the other hand, the hash operation number of Mughal’s
algorithm is double our proposed authentication protocol’s. Note that our proposed authentication
protocol uses only hashing without encryption operation and has a lower computational complexity
than Mughal’s protocol.
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6.2. Communication Overhead

In order to compare the communication overhead of our mutual authentication mechanism with
that of Mughal et al., we list the message parameters that are communicated between the server and
the IoT device along with their sizes in Table 5 (The numbers in brackets are references). Based on the
values in Table 5 and the protocol steps for authentication and session key establishment in Figures 4
and 5 respectively, we infer that the total number of the transmitted bytes between the IoT device and
the server is 201 bytes. Which represents the communication overhead of our proposed protocol for
establishing secure data communication between the IoT device and the server.

Table 5. Authentication messages’ parameter values.

Message Parameters Size in Bits

IoT device/Server ID [37] 8

Nonces [38] 64

CRP (C, R) [19] 128

HMAC o/p [39] 256

Hash function o/p [39] 256

Timestamps TS1, TS2, and TS3 Assumed 48

IoT Device Serial No. Assumed 64

Assuming the use of the AES block cipher encryption algorithm (128-bit block size) in Mughal et al.
protocol with the sizes given in Table 5 for the messages’ parameters, the communication overhead
of Mughal et al.’s protocol is 240 bytes. Again, this is the total number of the transmitted bytes
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between the IoT device and the server for establishing secure data communication in their scheme.
Comparing the two protocols, the communication overhead in our proposed mutual authentication
mechanism is lower than the Mughal et al. mechanism by 16.25%, as represented in Figure 7.Sensors 2020, 20, x FOR PEER REVIEW 18 of 21 
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6.3. Storage Constraints

Our proposed mutual authentication mechanism does not impose any constraints on the IoT
device’s storage for storing any sensitive data, as the IoT device does not store the secret key. Moreover,
after the establishment of secure connection, the IoT device and the server delete all random numbers
that have been used during the authentication process. The server stores only an identifier and a
CRP (C, R) for each IoT device in the system. Therefore, the server in our proposed authentication
mechanism is more scalable for a large number of IoT devices that could be deployed in the system.
On the contrary, in [6] IoT device has a storage constraint as it has to store an initial secret key
in its memory. The server stores the IoT device identifier, the IoT device serial number, the IoT
device fingerprint, and the IoT device PUF CRPs. Hence, with a large number of IoT devices in the
system, a large server storage size will be required, which presents a server un-scalability issue.

7. Conclusions

In this study, we proposed a novel mutual two-factor authentication protocol between a server
and an IoT device that requires the use of only hash functions We also provided a mechanism for
secure session key establishment. We presented the concept of the proposed protocol in terms of
cyberattack assessment, formal security analysis, and computational complexity. Our careful analysis
validated the correctness of the proposed authentication protocol and our cyber defense assessment
showed that it is infeasible to compromise the protocol even if an adversary conducted an invasive
attack against the IoT device. The proposed authentication mechanism is the first mechanism that
replaces the traditional use of encryption for authentication by HMAC computation. It deploys
two PUFs in the IoT device to offer the desired level of security. It also achieves the required low
computational complexity for power-constrained IoT applications.

8. Future Work

In this paper, we provided the main concept of a PUF and hash based mutual two-factor
authentication scheme for IoT devices. We analyzed the scheme on the assumption that the robust
and secure SHA-2 algorithm is used for the hash algorithm. Other hash functions can be used instead.
We plan to expand this work to analyze the use of block cipher-based hash functions especially when
the confidentiality of the transmitted data is desired. We also plan to develop a proof-of-concept
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and analyze the practical efficiency and performance from a hardware point of view and security in
various attack scenarios, especially when combinations of attacks are launched against the system at
the same time. In addition, we plan to assess the resilience of the SRAM key generation against Denial
of Service (DoS) attacks.
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