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ORIGINAL ARTICLE

A Pharmacometric Framework for Axitinib Exposure,
Efficacy, and Safety in Metastatic Renal Cell Carcinoma

Patients

E Schindler', MA Amantea?, MO Karlsson' and LE Friberg'*

The relationships between exposure, biomarkers (vascular endothelial growth factor (VEGF), soluble VEGF receptors
(SsVEGFR)-1, -2, -3, and soluble stem cell factor receptor (sKIT)), tumor sum of longest diameters (SLD), diastolic blood
pressure (dBP), and overall survival (OS) were investigated in a modeling framework. The dataset included 64 metastatic renal
cell carcinoma patients (mRCC) treated with oral axitinib. Biomarker timecourses were described by indirect response (IDR)
models where axitinib inhibits sVEGFR-1, -2, and -3 production, and VEGF degradation. No effect was identified on sKIT. A
tumor model using sSVEGFR-3 dynamics as driver predicted SLD data well. An IDR model, with axitinib exposure stimulating
the response, characterized dBP increase. In a time-to-event model the SLD timecourse predicted OS better than exposure,
biomarker- or dBP-related metrics. This type of framework can be used to relate pharmacokinetics, efficacy, and safety to
long-term clinical outcome in mRCC patients treated with VEGFR inhibitors. (ClinicalTrial.gov identifier NCT00569946.)
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

M A modeling framework in sunitinib-treated gastroin-
testinal stromal tumors identified circulating biomarkers
and adverse effects as better predictors of overall sur-
vival (OS) than tumor size (SLD). Similar relationships
may be of value for predicting OS in metastatic renal
cell carcinoma (mRCC) patients treated with axitinib.
WHAT QUESTION DID THIS STUDY ADDRESS?

M The relationships between axitinib exposure, bio-
markers related to VEGFR inhibition, hypertension (the
most common adverse effect for axitinib), SLD, and OS
were investigated in axitinib-treated Japanese mRCC
patients.

In metastatic renal cell carcinoma (mRCC) the vascular
endothelial growth factor (VEGF) is typically overexpressed
and mRCC is predominantly refractory to traditional cyto-
toxic chemotherapies. Several first-line treatment alterna-
tives with targeted therapies exist, including the tyrosine
kinase inhibitors (TKIs) sunitinib and pazopanib." However,
patients often develop biological resistance and receive
second-line treatment.? Axitinib is a potent and selective
oral TKI targeting the VEGF receptors (VEGFR) 1, 2, and 3
and primarily displays antiangiogenic activity. The drug is
approved in Europe, the United States, Japan, and else-
where for the treatment of advanced renal cell carcinoma
(RCC) after failure of one prior systemic therapy,® and is
currently a preferred choice as second-line therapy for
patients progressing after first-line therapy.2 Moreover, axiti-
nib has shown clinical activity in first-line mRCC in recent
phase Il and Il trials.*® Axitinib is approved at a starting

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

M Early changes in soluble VEGFR-3 could forecast
tumor response. This analysis is one of the first to
demonstrate SLD dynamics as a predictor of OS, which
was better than biomarker- or hypertension-related
metrics or tumor size change at a specific week.

HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?

M The modeling framework can be used as a template
to leverage data collected during oncology clinical trials
when developing new targeted therapies, facilitate iden-
tification of predictors for long-term clinical outcome,
and select the most promising dosing schedules.

dose of 5 mg twice daily (b.i.d.) and dose increase or
reduction is recommended based on individual safety and
tolerability, including increased blood pressure (BP). Dose
titration enables patients with good tolerability at a 5 mg
starting dose to reach higher exposures® and results in a
better objective response rate.*

The conventional Response Evaluation Criteria in Solid
Tumors (RECIST), which are based on a categorization of
the response seen on the sum of longest diameters (SLD),
were designed to evaluate therapeutic efficacy of cytotoxic
agents.7 However, RECIST may not reflect the clinical benefit
of antiangiogenic drugs for which tumor shrinkage may be
limited or delayed.® Increases in blood pressure are common
after initiation of anti-VEGF therapy® and have been pro-
posed as an independent predictor for overall survival (OS)
and progression-free survival (PFS) in axitinib-treated mRCC
patients'® and axitinib- and other TKI-treated solid tumors,"
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Table 1 Summary of study assessments and available data

Per protocol assessment
time (study day)

Variable

Available data (n; follow-up duration
in days, median [range])

VEGF, sVEGFR-1, -2, -3, sKIT Cycle 1: pre-dosing
Cycle 2-7: day 1
EoT/discontinuation

Sum of longest diameters Cycle 1: pre-dosing

Subsequent odd no. cycles: day 1

EoT/discontinuation
Diastolic blood pressure
Cycle 2-4: day 1, 15
Cycle >4: day 1
EoT/discontinuation
Overall survival

Cycle 1: pre-dosing, day 8, 15, 22

Until EoT/discontinuation and every 6 months thereafter

n = 436 for each biomarker; 168 [32-624]*

n = 476; 337 [36-731]°

n = 308; 29 [21-29]°

16/48 deaths/censored; 457 [85-781]

EoT, end of treatment; n, number of observations included in the analysis; sKIT, soluble stem cell factor receptor; sVEGFR-1, -2, -3, soluble vascular endothe-

lial growth factor receptor 1, 2, 3; VEGF, vascular endothelial growth factor.

aSummary statistics on follow-up duration exclude one patient with biomarker data available at baseline only.
PSummary statistics on follow-up duration exclude two patients with tumor data available at baseline only.
°Only data from the first month (all visits in Cycle 1 and day 1 in Cycle 2) were modeled.

including sunitinib-treated gastrointestinal stromal tumors
(GIST)."2'® Optimal axitinib exposure, leading to best
achievable long-term outcome, may, however, differ among
mRCC patients and dose selection cannot likely be solely
based on pharmacokinetics (PK) or BP measurements.®
Increases in VEGF and decreases in the soluble fragments
of its receptors (SVEGFR-1, -2, and -3) have been suggested
as biomarkers of angiogenesis inhibition and predictors for
clinical response in RCC treated with TKls,"* including axiti-
nib."®® A better understanding of the relationships between
axitinib exposure, plasma biomarkers, BP, SLD, and long-
term clinical outcome can be valuable for identifying robust
pharmacodynamic (PD) biomarkers and guide treatment
decisions.

By integrating quantitative knowledge on anticancer drugs’
safety and efficacy, pharmacometric modeling has shown
value in guiding oncology clinical trial design and rational
dose selection, thereby optimizing benefit/risk management
for cancer patients.’””2° As an example, in an overarching
modeling framework Hansson et al. elucidated the relations
between drug exposure, the timecourse of circulating bio-
markers (VEGF, sVEGFR-2, and sVEGFR-3, and soluble
stem cell factor receptor (sKIT)), SLD, adverse effects
(fatigue, hand-foot syndrome, neutropenia, and hyperten-
sion), and OS in sunitinib-treated GIST patients.'2?!
Increased VEGF, decreased sVEGFR-2, sVEGFR-3, and
sKIT concentrations and diastolic BP (dBP) elevation were
dependent on sunitinib exposure and dosing schedule. Suniti-
nib exposure together with sVEGFR-3 and sKIT dynamics
predicted the SLD timecourse. A smaller baseline SLD and
larger sVEGFR-3 decrease over time were associated with
longer OS. Alternatively, hypertension and neutropenia could
be used as predictors for OS.

In the present work, the relationships between axitinib
exposure, the timecourses of potential biomarkers (VEGF,
sVEGFR-1, -2, and -3, sKIT), SLD, dBP, and OS in axitinib-
treated Japanese mRCC patients were explored and quanti-
fied using pharmacometric models.

CPT: Pharmacometrics & Systems Pharmacology

METHODS

Patients and data

During the development of axitinib, biomarker data were
collected from 64 Japanese cytokine-refractory mRCC
patients involved in a single-arm, open-label, multicenter
phase Il study.?? Axitinib was administered in 4-week cycles
at a starting dose of 5 mg b.i.d. In eligible patients axitinib
dose was increased by 2-3 mg b.i.d. up to 10 mg b.i.d.
every 2 weeks or more (n = 5), or decreased to 2 mg b.i.d.
(n = 41) based on tolerability (BP and other nonhemato-
logic adverse effects) and dosing history was recorded.
The major reason for dose reduction or treatment discontin-
uation/interruption was proteinuria (28%). SLD was mea-
sured according to RECIST 1.0. Biomarkers, SLD, dBP,
and OS assessment times are summarized in Table 1. This
study was conducted in accordance with the Declaration of
Helsinki, the International Conference on Harmonisation
guidelines on Good Clinical Practice, and applicable local
regulatory requirements and laws. All participants provided
informed consent. The study protocol was approved by an
institutional review board at each site.

Model development

Nonlinear mixed effect models were developed using NON-
MEM software v. 7.3.2° Parameters were estimated using
the first-order conditional estimation method with interaction
(FOCEI), and for dropout and OS analysis, the Laplacian
estimation method. R v. 3.1.1, the R-based package Xpose
v. 4, Perl-speaks-NONMEM (PsN) toolkit v. 4, and Pirana v.
2.9.0 were used for data pre- and postprocessing, graphical
visualization, and model diagnostics.2*

Model selection was based on goodness-of-fit plots and
the objective function value (OFV, —2-log-likelihood). A sig-
nificance level of P<0.05 as assessed by the OFV differ-
ence (dOFV) was used to discriminate between nested
models. The predictive performance of the biomarkers,
SLD, and dBP models was assessed using (prediction-
corrected) visual predictive checks ((pc)VPCs),?® where
95% confidence intervals (Cls) derived from 500 simulated



datasets were compared to the observed data. Kaplan—
Meier VPCs, comparing the 95% CI derived from 200 simu-
lations to the observed time-to-event (TTE) data, were
used to evaluate the dropout and OS model performance.
Relative standard errors (RSE) of parameter estimates
were obtained from the NONMEM Sandwich matrix for con-
tinuous data and from the R matrix for dropout and OS
models.

Exponential and additive interindividual variability (I1V)
were evaluated as appropriate. Semiparametric distribu-
tions were tested when indicated graphically.?® Residual
unexplained variability (RUV) was evaluated for all continu-
ous data models using additive, proportional, or combined
error models.

Pharmacokinetics

Empirical Bayes estimates (EBEs) of apparent clearance
(CL/F) obtained from a published population PK model'®
were used to calculate the daily area under the concentra-
tion—time curve AUCqaiyy=Do0Segiy/(CL/F), where Doseygiy,
is the daily dose accounting for dose increases and reduc-
tions. Since axitinib has a relatively short typical elimination
half-life (3 h in Japanese patients),° AUCyziy, Was assumed
to be 0 on days off-therapy.

Biomarker models

Indirect response (IDR) models®” where axitinib inhibits
sVEGFR-1, -2, and -3 and sKIT production, and VEGF
degradation, were investigated. Linear, maximal effect
(Emax) and sigmoidal Emax drug effects driven by AUC4ai,
were evaluated. Linear disease progression functions were
explored to describe potential changes in biomarkers in the
absence of drug. Models for each biomarker were devel-
oped separately before being combined into a joint model
to explore correlations between model parameters.

Tumor size model

Tumor models where axitinib induces a decrease in SLD
were investigated. Zero-order and first-order tumor growth
were evaluated. The axitinib effect on SLD was driven
either directly by axitinib exposure (AUCgai), Or indirectly
by individual model-predicted changes in the different bio-
markers (absolute value, or absolute or relative change
from baseline). An approach similar to population PK
parameters and data (PPP&D) was adopted,®?° i.e., popu-
lation biomarker parameters were fixed while individual bio-
marker parameters were predicted simultaneously with SLD
parameters based on both biomarker and SLD data. Driv-
ers were tested alone and in combination. An exponential
decay in drug effect describing potential tumor regrowth
was investigated.

As dropout from tumor measurements may not be
completely random, a logistic regression model was devel-
oped to mimic varying measurement durations in the SLD
simulations. Investigated predictors in the dropout model
included the time since start of treatment, AUCga, the
observed baseline SLD and predicted SLD at the time of
evaluation, and progressive disease (PD, yes/no) defined
as a 20% increase in SLD from nadir. During simulations,
dosing records were imputed based on the last observed
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dose until the time of last observed tumor assessment in
the study.

Diastolic blood pressure model

According to protocol, new or additional antihypertensive
treatments would be prescribed to patients having dBP ele-
vation during axitinib therapy. Therefore, only data from the
first treatment cycle were modeled. IDR models were inves-
tigated with axitinib stimulating the production of dBP
response through linear, power, or (sigmoidal) Eax drug
effects driven by Dosegaiy, of AUCqaiy

Overall survival model

Parametric TTE models were developed for OS data. Expo-
nential, Weibull, Gompertz, log-normal, and log-logistic distri-
butions were investigated to describe the baseline hazard.
Predictors were tested one by one and thereafter in combina-
tion. Individual parameters were used to compute the model-
based predictors. Due to model instability their uncertainty
could not be accounted for.3° Evaluated baseline predictors
included Eastern Cooperative Oncology Group (ECOG) per-
formance status, demographics (age, sex, body weight), and
model-predicted baseline biomarkers, dBP and SLD values.
Time-varying predictors included Dos€qyiy, AUCqaiy, the pre-
dicted timecourse, absolute and relative change from base-
line in biomarkers and SLD, and the derivative of SLD
predicted timecourse. Dose and time-varying predictors were
extrapolated based on the last recorded dose assuming that
patients were treated with axitinib until death or censoring, as
the protocol supported treatment continuation in case of clini-
cal benefit (no new lesion and SLD smaller than at baseline)
despite progressive disease according to RECIST. Addition-
ally, model-predicted relative changes from baseline in bio-
markers at week 4, in dBP at weeks 2 and 4, and in SLD at
week 8, the maximum absolute dBP during cycle 1 and a
dBP greater than 90 mmHg during cycle 1 (yes/no) were
evaluated.

Censoring, defined as loss to follow-up or nonoccurrence
of death at the end of the study, was described by a com-
peting hazard function to account for varying follow-up
durations.

RESULTS

A schematic representation of the final modeling framework
is depicted in Figure 1.

Patients and data

Patients were treated with axitinib for a median of 51 weeks
(range, 1.7—104). Available biomarker, SLD, dBP, and OS
data are summarized in Table 1. Four sVEGFR-1 and four
sVEGFR-3 concentration values (<1%) were below the limit
of quantification and omitted from the analysis dataset. Two
patients had SLD data available at baseline only. At the
end of the follow-up period, 16 patients had died and 48
patients were censored from OS analysis.

Biomarkers’ models

Log-transformed biomarker data were well described by IDR
models where axitinib inhibits VEGF degradation (Eq. 1) and
sVEGFR-1, -2, and -3 production (Eqg. 2) (Figure 1). A linear
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Figure 1 Schematic representation of the modeling framework for axitinib in metastatic renal cell carcinoma (mRCC). Axitinib daily
area under the curve (AUCq,;,) Was used as a driver of the timecourses of biomarkers (the vascular endothelial growth factor VEGF
and its soluble receptors sVEGFR-1, -2, and -3) and diastolic blood pressure (dBP). Biomarker timecourses were described by indirect
response models where axitinib inhibits the loss of VEGF response and the production of sSVEGFR-1, -2, and -3 responses. sKIT was
not affected by axitinib. The model describing tumor size (sum of longest diameters, SLD) included an exponential growth and an effect
of the relative change in sVEGFR-3 from baseline over time (sSVEGFR-3,¢(t)) that induces tumor size reduction and washes out over
time. The SLD timecourse (SLD(t)) was predictive of overall survival. Kg, first-order growth rate constant; k., first-order rate constant
for the degradation or loss of response; ksvegrr.3, tumor size reduction rate constant related to sVEGFR-3 response; /, tumor resis-
tance/regrowth appearance rate constant; R;,, zero-order rate constant for the production of response. Dashed arrows represent rela-

tionships identified as significant.

time-dependent disease progression component with slope o
described a drug-independent VEGF increase, whereas no
disease progression was identified for sVEGFR-1, -2, and -3.
Drug effects were described by inhibitory En.x (VEGF,
sVEGFR-1 and -3) or sigmoidal E,x models (sVEGFR-2)
assuming that maximum inhibition can be achieved (maxi-
mum inhibitory effect /5= 1).

dA lmax ) AUCZQ;/
— =R (1o )=kt - | 1= —— | - A (1)
a " . < AUC},+AUCY,,
dA Imax : AUCga//
— =Ry ([ 1— | — kot - A(D) @)
d ( AUC},+AUCY,, | ™

kout is the first-order rate constant for the biomarker degra-
dation, expressed as ko,=1/MRT, where MRT is the
biomarker mean residence time in plasma. R, is the
zero-order rate constant for biomarker production, calcu-
lated as Ri,=kou - Base with Base being the baseline bio-
marker concentration. y is the Hill coefficient and AUCs, the
AUC sz, leading to half /... No axitinib drug effect was
identified on sKIT and the data were best described by a
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linear and constant change over time (Supplementary
Material). The sKIT model was therefore not included in
the joint biomarker model, nor were sKIT-related predictors
tested on SLD or OS.

When VEGF, sVEGFR-1, -2, and -3 were modeled jointly,
large correlations (80-99%) were identified between individ-
ual AUCs, for sVEGFR-1, -2, and -3 and the IIV magni-
tudes were similar; hence, a common IV term was used.
Moreover, the AUCs5, could be shared for sVEGFR-2 and -
3 without worsening the model fit. Parameter estimates and
their uncertainty are reported in Table 2. AUCs, values
were in the range of observed AUCg,;, (31.95-1,861 ug-h/
L), with VEGF being most sensitive to axitinib (AUCso of
354 vs. 717-1,380 ug-h/L for the other biomarkers). VEGF
and sVEGFR-1 typically displayed fast turnover (MRT of
0.722 and 0.624 days, respectively) compared to sVEGFR-
2 and -3 (MRT of 19.7 and 5.76 days, respectively). A com-
mon additive RUV term for all four biomarkers was applied
to account for that the biomarkers were sampled at the
same time. All model parameters were estimated with rea-
sonable uncertainty (<34% RSE), except for MRT of
sVEGFR-1 (69% RSE), for which the 95% CI obtained from
sampling importance resampling was 0.0444—1.58 days.*’
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Table 2 Parameter estimates and their uncertainty for the final joint biomarker model

VEGF SVEGFR-1 SVEGFR-2 SVEGFR-3

Typical value IV %CV Typical value IV %CV Typical value IV %CV Typical value IV %CV

(RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%) (RSE%)

Base (pg/mL) 65.0 (7.8) 43 (12) 83.5 (2.9) 17 (12) 8,850 (2.8) 15 (12) 19,500 (6.5) 49 (15)
MRT (days) 0.722 (25) — 0.624 (69)° — 19.7 (17) 75 (22) 5.76 (12) —
Imax 1 FIX — 1 FIX — 1 FIX — 1 FIX —

AUCs (ug-h/L) 354 (13) 39 (34) 1,380 (13) 45° (17) 717° (8.6) 45° (17) 717° (8.6) 45° (17)
y 1 FIX — 1 FIX — 0.733 (16) — 1 FIX —
o (year™ ) 0.650 (28) 87 (22) — — — — — —
RUV¢ 0.376 (5.9) — 0.193 (5.3) — 0.162 (14) — 0.263 (6.5) —

Common RUV® 0.0593 (26)° —

0.0593 (26)°

0.0593 (26)° —

0.0593 (26)°

VEGF, vascular endothelial growth factor; sSVEGFR-1, 2, 3, soluble vascular endothelial growth factor receptor 1, 2, 3; RSE, relative standard error; IV, inter-
individual variability; CV, coefficient of variation; Base, baseline biomarker concentration; MRT, mean residence time; Iax, maximal inhibitory effect; AUCs,, axi-
tinib area under the concentration-time curve giving half of the maximal effect; y, Hill coefficient; «, slope of the disease progression; RUV, residual unexplained

variability.

2The 95% confidence interval obtained from sampling importance resampling was 0.0444—1.58 day.
®The IIV in AUCs, for VEGFR-1, 2, and 3 was quantified using a common variability term.

°Common AUCs, parameter for sVEGFR-2 and 3.
9Expressed as standard deviation on log-scale.
°Common RUV for all four biomarkers.
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Figure 2 Prediction-corrected visual predictive checks of the final biomarker models based on 500 simulations. Median (solid line), 5th,
and 95th percentiles (dashed lines) of the observed data (solid circles) are compared to the 95% confidence intervals (shaded areas)
for the median, 5th, and 95th percentiles of the simulated data. VEGF, vascular endothelial growth factor; sVEGFR-1, -2, -3, soluble
VEGF receptor 1, 2, 3.
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pcVPCs show a good predictive ability of the joint bio-
marker model (Figure 2).

Tumor size model

A tumor size model with an underlying first-order growth pro-
cess with rate constant Kg best described SLD data (Eq. 3,
Figure 1).°2 The individual model-predicted relative change
from baseline over time in sSVEGFR-1 (sVEGFR1 (), OFV =
—339.99) and sSVEGFR-3 (sVEGFR3(t), OFV = —339.01)
were better drivers of SLD response than all other investi-
gated predictors, including AUCgy, (OFV = —327.06) and
SsVEGFR-2 (sVEGFR2,(1), OFV=-326.38). Despite
SVEGFR-1,¢(t) had a one unit lower OFV, sVEGFR-3,(t)
was chosen to drive the SLD response in the final model,
given the large uncertainty in MRT in the sVEGFR-1 model
and for consistency with the published modeling framework
in sunitinib-treated GIST.2' When sVEGFR3,(t) was
included in the model, none of the other predictors further
improved the model fit.

LD )
dST :KG . SLD(I)—kSVEGF% . SVEGFHSre/(t) . e‘” . SLD(f) (3)

ksvearFrs is the tumor size reduction rate constant related to
sVEGFR-3 response and / the tumor resistance/regrowth
appearance rate constant. The observed baseline tumor size
(SLD(0)) was included as a covariate (i.e., not as a depen-
dent variable), acknowledging the same RUV as for postba-
seline observations (B2 method®®). The SLD data contained
little information on Kg, and therefore its value and uncer-
tainty (3.74-107% week ', 6.64% RSE) obtained from a sim-
plified tumor growth inhibition model developed using data
from several clinical studies in RCC®* were used as informa-
tive prior for Kg using the NONMEM $PRIOR subroutine.

The probability of dropping out was estimated to increase
with the occurrence of PD (0pp = 1.22), higher SLD at the
time of evaluation (fg.p = 0.00282 mm™ "), increasing time
since start of study (07ime = 0.00371 day™ ') and decreas-
ing AUCgaiy (0auc = —0.00529 L-h~'-ug™") (Equations in
Supplementary Material). The final SLD and dropout
model parameters and their uncertainty are reported in
Table 3. The VPCs of the final SLD model accounting for
dropout (Figure 3) demonstrate a good predictive perfor-
mance of the model.

Diastolic BP model

An IDR model with a stimulatory effect of axitinib on response
production (Rj,qsp) With an AUCy-driven Emax model,
parameterized as a maximal effect E.xqsp and a slope
parameter (Sp.qsp=Emax.dsp/AUCs0.48p),>> best described
dBP data (Eq. 4, Table 3, Figure 1). Eqax agp Was estimated
t0 0.197 and Sy g to 0.00127 L-h~'.ug ™", corresponding to
an AUCsq ggp Of 155 pg-h/L. A Box-Cox transformation with
an estimated shape parameter of —5.42 was applied to base-
line dBP (dBP,) IV to account for the skewed random effects
distribution.

ddBP Emax.asp - So,a8p - AUCqaiy
—g . (14 Enancer - So. Koot osp - dBP(t
dt n.dP ( Enax.asp + So,a8p - AUCqaiy out. 98P ®
@)

CPT: Pharmacometrics & Systems Pharmacology

Table 3 Parameter estimates and their uncertainty for the final tumor size,
dropout, diastolic blood pressure, and overall survival models

Parameter Estimate (RSE%) IV %CV (RSE%)

Tumor size model

K (week ) 0.00361 (1.8) 160 (20)
Ksvearr-a (Week ") —0.174 (15) —

/. (week ™) 0.101 (18) 72 (16)
RUV (%) 10.5 (8.2) 35 (21)
Dropout model

0o —6.11 (7.4) —
Opp 1.22 (22) —
OsLo (Mm™") 0.00282 (31) —
Oauc (Lh™ug™ —0.00529 (18) —
Otime (day ™) 0.00371 (45) —
Diastolic blood pressure model

dBP, (mmHg) 78.9 (1.4) 6.7 (12)
Shapegspo —5.42 (42) —
MRT4gp (days) 4.92 (19) —
Emax,dsp 0.197 (14) —
So.asp (Lh™ug™") 0.00127 (50)? —
RUV (mmHg) 6.13 (7.0) —
Overall survival model

Bo 7.09 (3.2) —

y 0.298 (22) —
Bso (Mm™1) 0.0115 (17) —

Kg, tumor growth rate constant; kevegrr-3, tumor size reduction rate con-
stant related to soluble vascular endothelial growth factor receptor 3
(sVEGFR-3) response, which is negative since sVEGFR-3,¢(t) is negative
(reduction from baseline); A, tumor resistance/regrowth appearance rate
constant; RUV, residual unexplained variability; 6o, intercept of the logistic
regression model; Opp, coefficient for the effect of occurrence of progressive
disease; Og.p, coefficient for the effect of sum of longest diameters (SLD) at
the time of evaluation; Oauc, coefficient for the effect of axitinib daily area
under the curve (AUCgaiy); Orime, coefficient for the effect of time since start
of study; dBP,, baseline diastolic blood pressure; Shapegspo, Shape param-
eter in the Box-Cox transformation of dBP, random effects; MRT4gp mean
residence time of dBP response; Emaxasp Maximum axitinib effect on dia-
stolic blood pressure; Sy 4gp slope of the Eqnax model; fo, scale parameter
of the log-logistic baseline hazard model; 7, shape parameter of the log-
logistic baseline hazard model; fs.p, coefficient for the effect of longitudinal
SLD on the hazard.

aThe 95% confidence interval obtained from sampling importance resam-
pling was 0.609-3.14 pg-h/L.

The rate constant for the loss of response is defined
as kout.gsp=1/MRT4sp, where MRT,gp is the mean turn-
over time (4.92 days) associated with dBP response, and
Rin,d8p=Kout.agp - dBPy. AUCqyy, predicted dBP response
better than Dosey,, (dOFV =7.86). No IIV was identified
on drug effect parameters (Epaxasp and Spqsp). An addi-
tive model best described the RUV. The pcVPC (Figure 3)
shows that the model well predicted the overall increase in
dBP and the variability during the first month of treatment.

Overall survival model

OS baseline hazard was best described by a log-logistic
distribution with a shape parameter y and scale parame-
ter fo. In the univariate analysis, the best predictor was
SLD timecourse (SLD(t), dOFV = —26.9), followed by SLD
baseline (dOFV = —13.3). Absolute change in SLD over
time, the derivative of SLD predicted timecourse, SLD
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percentiles of the simulated data. Prediction-correction was used for dBP.

For the SLD model, dropout was taken into account in the simulations.

relative change from baseline at week 8 (i.e., corresponding
to tumor size ratio week 8), biomarker-related predictors
(VEGFR-2(t), VEGF(t), absolute change in sVEGFR-1(t)
and relative change in VEGF from baseline at week 4) and
dBP relative change at week 2 also resulted in statistically
significant OFV drops; however, these drops were all driven
by single individuals. Using both baseline SLD and absolute
change in SLD(t) resulted in an OFV drop similar to SLD(t)
(dOFV = —27.5) but required one extra parameter. When
SLD(t) was included in the model, none of the other predic-
tors further improved model fit. The final OS model is
described by Egs. 5 and 6, and parameter estimates and
their uncertainty are reported in Table 3.

h(t)= . @Psio-SLD(1) (5)

Whop
v (14 0))

Y=g fo (6)

7 was estimated to 0.298, meaning that the hazard, in the
absence of changes in SLD(t), initially rises with time
before decreasing monotonically (y < 1). figp is the coeffi-
cient for SLD(t) effect on the hazard, estimated to 0.0115
reflecting a 12% increase in hazard for a 10 mm increase
in SLD. A competing log-logistic function described the
hazard of being censored. Kaplan—Meier VPCs for OS
(Figure 4) and censoring (Supplementary Material) show
adequate predictive properties of the OS model.

DISCUSSION
In this pharmacometric framework (Figure 1) we investi-

gated the relationships between drug exposure, soluble
biomarkers, tumor size, hypertension, and OS following

axitinib treatment in cytokine-refractory mRCC. Model-
predicted sVEGFR-3 dynamics predicted tumor size better
than axitinib exposure. The SLD timecourse was the best
predictor of OS, with an estimated hazard ratio (HR) of
1.12 (95% ClI of 1.08-1.17) for every 10 mm SLD increase.

The biomarker timecourses were successfully character-
ized by IDR models where axitinib inhibited VEGF
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Figure 4 Kaplan—-Meier visual predictive checks for the final
overall survival model driven by the sum of longest diameters
timecourse. The observed Kaplan—Meier curve (black line) is
compared to the 95% CI (shaded area) derived from model sim-
ulations (200 samples). Vertical black lines represent censored
observations.
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degradation and sVEGFR-1, -2, and -3 production. These
model structures are consistent with previously published
models in sunitinib-treated healthy volunteers,®® GIST,?!
hepatocellular carcinoma (HCC),®” and metastatic colon
cancer (MCC).%® The mechanisms behind these biomarker
modulations following VEGFR inhibitor administration have
not been fully elucidated. The hypothesis that the VEGF
increase observed following VEGFR-2 inhibition may arise
from a reduction in VEGF blood clearance® is supported
by our model. sVEGFR-2 decrease may result from a
ligand-induced downregulation of VEGFR-2 from the cell
surface, as shown in vitro.*° No axitinib effect was identified
on sKIT, confirming previous findings that axitinib has negli-
gible effect on the stem cell factor receptor KIT and acts as
a selective VEGFR inhibitor.'>*"*? These results differ
from those of the study in GIST patients (mostly Cauca-
sian) treated with sunitinib,2' which markedly increases
sKIT levels and is less specific to VEGFRs. Results from
the joint biomarker model show that in this patient popula-
tion axitinib more potently inhibited sVEGFR-2 and -3
(AUCso of 717 ug-h/L) than sVEGFR-1 (AUCso of 1,380
ug-h/L). Consistent with the in vitro findings,*® sVEGFR-2
and -3 AUCs5, values were lower than for sunitinib in GIST.
The estimated typical VEGF and sVEGFR-2 baseline val-
ues were similar to those in healthy volunteers,*® GIST,*'
and mCC®8, whereas sVEGFR-3 baseline was about 3-fold
lower than in GIST (63,900 pg/mL) but similar to mCC
(21,900 pg/mL). The typical sVEGFR-3 MRT was shorter in
mRCC (5.76 days) than in GIST (16.7 days), denoting a
faster turnover rate in mRCC but resulting in similar pro-
duction rate constant (Rj).

The SLD reduction, seen in most patients after the start of
therapy, was described by a tumor model allowing for
axitinib-induced tumor shrinkage. Tumor resistance was esti-
mated to develop at a faster rate in axitinib-treated mRCC
than in sunitinib-treated GIST (0.101 vs. 0.0217 week ).
The larger the sVEGFR-3 decrease, the more profound was
the predicted tumor shrinkage. In sunitinib-treated GIST,
sVEGFR-3 and sKIT reduction, as well as larger sunitinib
AUC, were predictive of SLD decreases.?! In sunitinib-
treated HCC, sVEGFR-2 absolute change from baseline was
used as a driver for SLD response in a tumor growth inhibi-
tion model.®” It should be noted that sSVEGFR-3 was not
evaluated in that study. Our results add evidence to the fact
that changes in PD biomarkers, which can easily be mea-
sured in plasma, can help to better understand and forecast
tumor response in several cancer types treated with VEGFR
inhibitors.

BP increases in most patients treated with angiogenesis
inhibitors targeting the VEGF pathway, but the underlying
pathophysiological mechanisms are not fully understood.
Proposed mechanisms include reduction in nitric oxide pro-
duction, increased prohypertensive agents expression,
renin-angiotensin system activation, microvascular rarefac-
tion, oxidative stress, pressure-natriuresis system, and arte-
rial stiffness.** Whereas a BP increase is generally
promptly managed by antihypertensive therapies or TKI
dose reduction, early dBP elevation after treatment initiation
could be an easy-to-measure biomarker reflecting effective
VEGF inhibition."® The empirical IDR dBP model presented
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here identified a nonlinear exposure—response relationship.
Chen et al. characterized ambulatory dBP data in mRCC
patients monitored over a 24-h period predosing and 4 and
15 days after axitinib treatment initiation, using an IDR
model where two cosine functions described dBP diurnal
changes.*® In our dataset, the dBP measurements were
performed weekly and diurnal variations could not be
accounted for. The Ep,,, estimate in the present analysis
was similar to their findings (19.7% vs. 20.8%). The turn-
over rate (kou= 1/MRT) differed, however, with an estimate
of 0.203 day~ ' in our model vs. 0.254 h™" in the ambula-
tory setting. The previous analysis*® implies a time to dBP
steady-state of 14 h that would not explain the current
data, where dBP reaches steady-state after 1-2 weeks.
This discrepancy may be explained by differences in study
design (e.g., observation frequency).

The pharmacometric framework developed in sunitinib-
treated GIST identified baseline SLD and sVEGFR-3
dynamics as the best predictors for OS, while here the SLD
timecourse was the best predictor. These differences may
be due to a discrepancy in tumor dynamics in the two
patient populations: more axitinib-treated mRCC patients
achieve complete or partial tumor response compared to
sunitinib-treated GIST, for which stable disease is more fre-
quent. In an alternative model in GIST, absolute neutrophil
count (ANC) reduction combined with dBP increase and
baseline SLD were predictive of longer 0S.'? No strong
association between dBP and OS was identified here,
which contrasts with previous findings for axitinib-treated
mRCC, where a higher maximum dBP during the first
8 weeks of treatment was related to longer 0S."® The lack
of information on antihypertensive therapy in later cycles
prohibited a more thorough analysis of dBP-OS relation-
ships. However, since steady-state was reached within the
first cycle, later changes are primarily expected to be
related to changes in dose. Since axitinib rarely induces
neutropenia, ANC was not included in our analysis.?24®

In the statistical analysis of long-term OS data in axitinib-
treated Japanese mRCC patients, a baseline ECOG of 0
and a greater sVEGFR-2 reduction were associated with
longer 0S."® In our analysis, ECOG or sVEGFR-2 could
not predict OS data, which may be explained by the shorter
follow-up period for OS (maximum 112 vs. ~285 weeks)
used in our analysis to avoid confounding effects of subse-
quent therapies after axitinib discontinuation. In a popula-
tion analysis in first-line or refractory RCC patients treated
with temsirolimus, sunitinib, or axitinib, time-to-tumor-growth
(TTG) could predict 0S.3* However, TTG can suffer from
time-dependent bias.*” Moreover, a large variety of tumor
profiles may lead to the same TTG, and TTG ignores the
extent of tumor shrinkage.17 For these reasons, TTG was
not tested on OS here. Instead, the tumor timecourse was
identified to be the best predictor for OS, as previously
suggested.*8-5°

A potential limitation of our analysis is that it exclusively
included data from Japanese patients; validation in a non-
Japanese population may be required. Although no PK differ-
ences are expected between Japanese and non-Japanese
patients, ethnic/racial differences in axitinib efficacy and
safety may exist.”’



In summary, the sVEGFR-3 relative decrease over time
was identified as a driver of tumor dynamics, which in turn
was predictive of OS in axitinib-treated mRCC patients.
Together with previous findings in sunitinib-treated GIST,?’
our results support the use of sSVEGFR data to better antici-
pate tumor response in patients treated with VEGF pathway
inhibitors. In contrast to sunitinib-treated GIST, BP and bio-
markers dynamics were not as good predictors of OS as
SLD timecourse. Using the tumor timecourse is indeed
more attractive from a theoretical stand point than summary
variables, such as tumor size ratio at a specific day or
TTG. This type of overarching pharmacometric framework
allows for leveraging clinical trial data and improved under-
standing of the relationships between drug exposure,
potential plasma biomarkers, tumor size, frequently
observed adverse effects, and long-term outcome, and can
serve as platforms for identifying safe and efficacious dos-
ing regimens through simulations.
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