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Abstract

Nanotechnology and stem cells are one of the most promising strategies for clinical 
medicine applications. The article provides an up-to-date view on advances in the field of 
regenerative and targeted vascular therapies describing a molecular design (propulsion 
mechanism, composition, target identification) and applications of nanorobots. Stem cell 
paragraph presents current clinical application of various cell types involved in vascular 
biology including mesenchymal stem cells, very small embryonic-like stem cells, induced 
pluripotent stem cells, mononuclear stem cells, amniotic fluid-derived stem cells and 
endothelial progenitor cells. A possible bridging between the two fields is also envisioned, 
where bio-inspired, safe, long-lasting nanorobots can fully target the cellular specific cues 
and even drive vascular process in a timely manner.

Nanotechnology and stem cells hold a great clinical 
promise in the field of vascular therapies. Presented 
review provides an up-to-date summary about 
advances and challenges associated with these novel  
treatment strategies.

Nanotechnology systems

The application of nanotechnology in medicine 
(nanomedicine) has spawned a galaxy of tools with 
diagnostic, therapeutic, or ideally theragnostic abilities 
(1). Nanorobotics, in particular, holds a future yet 
promising potential to change the panorama of fields 
like cardiovascular intervention, neurological and cancer 
treatment (2). The devised technologies, relatively to their 
aim and complexity, face several translational challenges 

and attrition (3). Nanoparticles, such as liposomal, 
polymeric, metallic or their specific combinations are 
the most investigated and advanced nanotool (in terms 
of clinical translation). The topic merits an extensive 
separate description, and the reader is referred to detailed 
work on the topic (4). We will refer to nanoparticles in the 
specific contest of load/cargos for nanorobots or specific 
vascular applications.

Appropriate design of nanorobots design can help 
diagnosis or accurately deliver payloads, which can be 
towed or embedded in the structure. Differently from 
nanoparticles, which are mostly produced and modified 
in solution-based systems, nanorobotic fabrication 
also requires the use of technique proper of micro/
nano electromechanical systems. Several definitions are 
possible for a nanorobotics system, both at the scientific 
and legislative level (e.g. the classification into drug 
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agent or medical device by the principle of action). A safe 
definition is an artificial device composed of nanoscale 
components and up to 10 µm in size (5). This description 
is not standard and that might explain the various and 
sometimes misused denomination of nanorobots to 
bionanotechnological devices.

The presently proposed systems can be classified in 
terms of (i) propulsion, mechanism, (ii) composition, (iii) 
target identification, (iv) specific application. Propulsion 
can be autonomous (chemotaxis, bioseparation) or 
external (magnetic, acoustic, laser) (6). Although 
intriguing, autonomous propulsion systems (assimilable 
to molecular motors) are mostly based on the conversion 
of glucose into hydrogen peroxide (7), raising a concern 
about the reactive-oxygen species toxicity of such 
nanotools. The design, safety and motion freedom are 
greatly facilitated in externally driven nanorobots, usually 
referred as nanoswimmers (8). These systems can present 
intrinsic magnetism or embedded magnetic nanoparticles; 
specific geometry/material-driven torque formation when 
exposed to stimuli; and material-mediated hydrolyzing 
properties under UV light (for which the in vivo application 
is debatable) (6). Mixed propulsion systems have also 
been investigated (9). Nanorobots can be constituted of 
purely synthetic materials (10), biomolecules (DNA in the 
form of origami, aptamers) (11), biological entities (e.g. 
magnetotactic bacteria) (1), or hybrid cellular (e.g. loaded 
red blood cells, neutrophils) flagellated nanocomposites 
(12, 13). The target identification employed by these 
systems may rely on precise localization through 
focused external driving forces (and this requires precise 
modeling of the hydrodynamic conditions for different 
vessel) (14) or on sensed environmental properties and 
moieties (changes of temperature, pH, osmosis or specific 
biomarker) (11).

As aforementioned, applications of nanodevices 
in biological systems cover several and very diversified 
environments: we will for the scope of this review focus on 
the application for advancement of vascular intervention. 
In coronary artery disease, nanotechnological systems 
have been investigated for its low invasiveness during 
interventional procedures and drug targeted delivery (15). 
One instance is use of nano-coated stents for endothelial 
healing, reendothelialization and anti-restenosis (e.g. 
with nano-embedded sirolimus, rapamycin, NO-loaded 
polycaprolactone) (16, 17, 18) or nanofibrous scaffolds for 
coronary bypass. The nanofabrication involves mimicking 
moieties (e.g. dimyristoyl phosphatidylcholine for 
cholesterol removal (15)) specific targeting (e.g. with local 
high levels of pravastatins (19) or toward inflammatory 

monocytes (20)) or clearance prolongation of nanosized 
drugs (21). The general aim is to provide a long-lasting 
or permanent implant for resolution of the structural 
damage in combination with reparative and protective 
strategies. So far, nanomedicine for vascular therapies 
is focused mostly on nanoparticles. More specifically 
to nanorobotic entities, DNA origami and aptamers are 
extensively studied as antithrombotics and anticoagulants 
(anti-vWF, factor IX and thrombin) (22).

Another application of nanorobots is the 
individualization and targeting of microvasculature not 
accessible with conventional techniques (5). Notable 
examples include the cerebral vasculature and the 
network of small tumoral masses that escape resection 
or conventional therapies. Nanorobots have been indeed 
proposed to spot brain aneurysm detection (23) and to 
repair small vessel via Von Willebrand factor (vWF) sensing 
(24). These systems would greatly aid the interventions 
on non-navigable or poorly visualizable vasculature. 
Bacterial systems like non-pathogenic Escherichia coli have 
been proven to respond by chemotaxis to concentration 
of VEGF, a well-known angiogenic cytokine (25), pointing 
at the potential applications of natural molecular 
machinery and chemosensors. On the theragnostic 
side, DNA nanorobots targeting nucleolin-expression 
tumoral endothelium has been tested in vivo, aiming 
at the starvation of solid tumors by clotting of feeding 
microvasculature (26). Appropriately designed robots in 
terms of low toxicity (multiple doses) and retainment 
can in principle target or drive small tumors at precise 
checkpoints, making them more sensitive to drugs or 
conventional therapies.

Stem cells

Vascular homeostasis depends on endothelium integrity 
and complex interaction between endothelial cells (ECs), 
vascular smooth muscle cells, and extracellular matrix 
(27). Additionally, vascular stem and progenitor cells have 
been identified in all three layers of the vessel wall (most 
abundantly in the adventitia) (28).

Recent studies described the effects of heterogeneous 
cell populations in vascular systems through several 
mechanisms (paracrine modulation, proliferation, 
transdifferentiation). This paragraph describes various 
types of stem cells focusing on current clinical application.

Currently, mesenchymal stem cells (MSCs) are 
considered as the most promising cell type with a wide 
range of potential therapeutic applications. MCSs are 
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present in multiple organs (29) throughout human body 
including adipose tissue (adipose-derived stromal/stem 
cells, ASCs) and umbilical cord, which provides an easily 
accessible and expandable source of cells for clinical use (30, 
31). Furthermore, MSCs possess particular characteristics: 
(i) strong angiogenic and paracrine potential, (ii) ability to 
differentiate to vascular cells contributing to angio- and 
arteriogenesis (32), (iii) favorable immunogenic profile 
opening potential for allogenic source (33). Laboratory 
findings and animal models (34) were confirmed in 
early phase clinical trials, where autologous ASCs have 
been showed to provide beneficial clinical effects in 
patients with critical limb ischemia (35). Moreover, 
recent myocardial infarction (MI) studies confirmed a 
safety profile of transendocardial (36) and intracoronary 
(37) application of allogenic MSCs, which resulted in 
increased left ventricle ejection fraction (LVEF) and stroke 
volume. Similarly, meta-analysis including 12 studies 
showed MSCs to be safe in patients with ischemic heart 
failure (38).

Other supportive cell candidates can be found 
in selected but more restricted pools. Amniotic fluid 
stem cells (AFCS) showed in preclinical studies the 
possibility of differentiating into vascular cell lineages 
(39). Moreover, an ongoing clinical trial (NCT03899298, 
https://clinicaltrials.gov) evaluates safety and efficacy 
of AFSCs and umbilical cord stem cells for treatment 
of a broad spectrum of diseases including neurologic, 
cardiac and pulmonary conditions. Mononuclear cells 
(MNCs) represent heterogenic population of stem/
progenitor cells including hematopoietic stem cells, 
endothelial progenitor cells (EPCs) and MSCs. Despite 
the wide application of MNCs in clinical trials for 
nonhematopoietic tissue regeneration, the recent meta-
analyses showed that MNCs do not improve outcomes 
in patients with peripheral artery disease (40, 41, 42) and 
acute MI (43). Finally, very small embryonic-like stem 
cells (VSELs) are small-sized cells (≈5–7 μm in humans) 
present in adult tissues with an ability to differentiate 
into three germ lineages in vitro (including endothelial 
progenitor) without manipulation with DNA vectors 
(44, 45). Moreover, mobilization of VSELs was reported 
in humans after MI. Nevertheless, it must be noted that 
VSELs are a rare cell type; thus, sufficient expansion must 
be obtained for clinical application (44).

A separate outlook is due when considering 
differentiation-mediated cell therapy, by using human-
induced pluripotent stem cells (hiPSCs). These hold a great 
promise for regenerative medicine (ability to differentiate 
into ≈200 cell types) (45), but present many challenges 

to overcome prior to clinical step. hiPSCs can be derived 
from patient-specific somatic cells (i.e. fibroblast), and 
they can be differentiated into ECs (46), which express 
angiogenic and reendothelialization potential upon 
exposure to shear stress (46, 47).

Despite promising results in preclinical studies (48), 
the main limitations for human application include 
hiPSCs tumorigenicity (49), further transdifferentiation 
into mature cell type, genomic instability, and risk of 
mitochondrial mutations (45). To circumvent safety 
challenges, the novel approaches are incorporated to 
eliminate the risk of genomic modifications via miRNAs, 
recombinant proteins and small molecules (50, 51). 
Presented strategies have a chance to unlock tremendous 
clinical potential of iPSCs.

A second cell-based approach to vascular therapy 
can be directly related to resident and circulating EPCs, 
which do not require passing through differentiation 
processes. In the light of ongoing scientific debate (52), 
EPCs of hematopoietic origin are most commonly defined 
by CD133+/CD34+/vascular endothelial growth factor 
receptor 2 (VEGFR2+) surface markers (53), while EPCs 
from non-hematopoietic tissues (adipose tissue, placenta) 
express various types of antigens (54). Interestingly, 
endothelial colony-forming cells (ECFCs), a subtype 
of peripheral blood (PB) EPCs, originate from vessel 
wall (55, 56). Supporting endogenous resident ECs in 
replacing damaged endothelium, EPCs might be involved 
in endothelial repair process by paracrine effect (57) or 
contribute to new vessel formation (58) with the presence 
of late-stage endothelial markers (59). Furthermore, 
crosstalk between ECs and EPCs is orchestrated by 
chemoattractant gradient of growth factors, chemokines, 
and cytokines (60). Despite encouraging experimental 
and preclinical therapeutic evidence of EPCs role (61), 
only modest benefits were found at the clinical level for 
treatment of MI (+3.15% LVEF) (62), critical limb ischemia, 
refractory angina, and chronic myocardial ischemia (63). 
Moreover, EPCs expressing bone antigens are found to be 
involved in arterial wall stiffening and calcification (64, 
65).

Conclusions

Drawing a final conclusion about the application of 
nanotechnology and heterologous stem cell pools in 
human vascular diseases (summarized on Fig. 1) is 
currently still challenging due to (i) the large heterogeneity 
of device designs and broad application scopes;  
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(ii) incomplete cell characterization and administration 
protocols. The limited follow-up in preclinical and 
clinical trials leaves open questions common to the two 
fields, most importantly the grade of systemic biological 
effect (i.e. oxidative effects of autonomous nanorobots, 
uncontrolled differentiation cues for stem cells, and organ-
specific retention in presence of comorbidities) coming 
from the exogenous material. Non-invasive assisted 
imaging modalities of nanorobots are fundamental for the 
long-term monitoring of the therapy, on the one hand. A 
failsafe quenching mode (e.g. transient supraphysiological 
temperature degradation) would be also a useful design 
feature to avoid overtreatment, on the other. Nevertheless, 
the promised benefits for the two approaches justify 
further investigation, with a possible envisioned bridging 

between them. It is not far-fetched, looking at the state 
of the art, to imagine highly selective piloted DNA-
synthetic nanorobots specifically engineered to recognize 
paracrine stem/progenitor cells exosome. This could allow 
precise imaging of the interested area and topical deliver 
therapeutic cargo (e.g. drugs or differentiative cytokines), 
possibly in a way that will disable the nanorobot and 
allow its wasting. A tandem work between nanorobotics 
design and fate/role of vascular stem cells could boost 
the efficacy and translation of regenerative and targeted 
vascular therapies.
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Figure 1
The scope of nanotechnology and stem cell applications in human vascular diseases.
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