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Why are two mistakes not worse than one? A
proposal for controlling the expected
number of false claims
Thomas Jaki* and Alice Parry

Multiplicity is common in clinical studies and the current standard is to use the familywise error rate to ensure that the errors
are kept at a prespecified level. In this paper, we will show that, in certain situations, familywise error rate control does not
account for all errors made. To counteract this problem, we propose the use of the expected number of false claims (EFC). We
will show that a (weighted) Bonferroni approach can be used to control the EFC, discuss how a study that uses the EFC can be
powered for co-primary, exchangeable, and hierarchical endpoints, and show how the weight for the weighted Bonferroni test
can be determined in this manner. ©2016 The Authors. Pharmaceutical Statistics Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

Multiplicity arises frequently in clinical trials, for example, when
testing sequentially, considering multiple treatment arms or mul-
tiple endpoints. In the context of confirmatory clinical trials, the
guidelines on multiplicity from the European Medicines Agency
[1], clearly advocate controlling the familywise error rate (FWER)
in the strong sense [2]. Let the number of hypotheses of interest
be m and m0 be the (unknown) number of true null hypotheses.
Table I defines the standard notation for a multiple hypotheses
testing problem [e.g., 2].

Table I. Standard notation in multiple hypothe-
ses testing.

Hypotheses Rejected Not rejected Total

True V U m0

False S T m�m0

Total W R m

The FWER is then given by P.V > 0/. In this article, we will argue
that controlling the FWER, although essential in many cases, can
be insufficient protection against error inflation and propose that
the expected number of rejections, E.V/, is more appropriate in
some settings. To illustrate the point, consider a diabetes study
that investigates if a treatment has an effect on the hemoglobin
A1c (HbA1c) level and/or quality of life. The corresponding null
hypotheses can be written as follows:

HH :�H 6 0

HQ :�Q 6 0

where �i is the effect (for example difference in change from base-
line) for endpoint i (H corresponding to HbA1c and Q to quality of

life). Table II shows the proportion of times 0, 1, or 2 mistakes is
observed under the set of hypothesis discussed earlier assuming
that our endpoints are independent and using a one-sided level
of 0.05 for each endpoint.

The probability of incorrectly rejecting both hypotheses is
small in this case, and the consequences of making both mis-
takes can, however, be drastic. Consider, for example, a trial that
investigates a treatment for two different indications. Making two
mistakes in this context means that the treatment could become
available to (and taken by) two different patient populations and
hence potentially expose a much larger number of patients to an
ineffective, possibly even harmful, treatment.

From these results, one can see that the FWER is 1 � 0.9025 D
0.0975 because no attempt was made to control the FWER at
a specific level. An alternative metric of interest is the expected
number of false rejections, E.V/. Denoting fIi D 1g as the event
that hypothesis Hi is wrongly rejected and fIi D 0g that either Hi

is not rejected or that Hi is not true then, E.V/ D E.I1C ...C Im/ D

E.I1/C ...CE.Im/ D P.I1 D 1/C ...CP.Im D 1/. Consequently, the
expected number of rejections is at 2 � 0.05 D 0.10 slightly larger
than the FWER. By rewriting, we find that

E.V/ D P .incorrectly reject HH and retain HQ/

C P .retain HH and incorrectly reject HQ/

C 2 � P .incorrectly reject HH and HQ/

D FWERC P .incorrectly reject HH and HQ/ ,
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Table II. Proportion of times different number
of incorrect rejections occur.

Number of rejections 0 1 2

Proportion 0.9025 0.095 0.0025

Figure 1. Comparing the familywise error rate (FWER) and expected number of
wrong rejections for different correlation between endpoints. Calculations are
based on the joint multivariate normal distribution obtained using the R package
mvtnorm [3].

and hence, it becomes apparent that designing our hypothetical
study to control the FWER treats incorrectly concluding an effect
on HbA1c equal to incorrectly concluding an effect on quality of
life equal to incorrectly concluding an effect on HbA1c and quality
of life. This immediately begs the question: Why is making two
mistakes not worse than making one?

At this point, one could argue that one can live with the very
small probability of making two mistakes and hence not consider
the problem any further. Looking at the FWER and the expected
number of wrong rejections for the set of hypotheses earlier
under the normal model for varying correlation in Figure 1, how-
ever, clearly shows that the expected number of wrong rejections
becomes substantial as correlation increases. In particular for cor-
relations close to one, the expected number of wrong rejections
is almost twice the FWER.

After motivating the potential shortcoming of using the FWER,
we will formalize our proposal, the expected number of false
claims (EFC), in the next section. We then continue to show a sim-
ple way to control the EFC and discuss powering studies based on
it (Section 3). We illustrate the methods for different structures of
hypotheses and finish with a brief discussion.

2. THE EXPECTED NUMBER OF FALSE CLAIMS

In the motivating example, we have assumed that each wrong
rejection has unwanted consequences. In many multiple testing
situations, however, making an additional mistake is of no further
consequence and hence the distinction between one or more
mistakes irrelevant. For example, in a dose finding setting where it

is desired to determine the minimum effective dose (MED), incor-
rectly rejecting the hypothesis that a particular dose is ineffective
is of no further consequence if a dose later has already incorrectly
been declared effective. In some sense, the crucial mistake �� a
wrong dose being determined as the MED��happens as soon as
you make one wrong rejection. Additional wrong rejections have
no further impact on this wrong decision. This observation was
also utilized in [4] to control the FWER when estimating the MED.
For our purposes, it is therefore essential to firstly introduce the
notion of a claim, a single hypothesis, or set of hypotheses, whose
rejection will result in a consequential decision. As the name sug-
gests, we are thinking here of rejections that are necessary to add
a label claim to a product, although the applications of this notion
go beyond this specific application (Section 4).

Let li be the number of hypotheses that need to be rejected
to make claim i and define the event ‘making claim i’ as fCig D

freject li or more H 2 Kig for some set of relevant null hypothe-
ses, Ki . Most commonly rejection of all relevant hypotheses
would be required to make a claim, and hence, we are focus-
ing on these cases in the remainder of the manuscript. Note
also that in the situation of each claim being based on a single
hypothesis and assuming that the null hypothesis is true implies
fCig D fIi D 1g.

For the previous example, we define K1 D fHHg and K2 D

fHQg so that fC1g D freject HHg and fC2g D freject HQg. A differ-
ent, possibly more realistic, example could investigate the same
two endpoints, but only be interested in the quality of life end-
point if an effect on HbA1c has been established. In that case,
we would have K1 D fHHg and K2 D fHH , HQg so that fC1g D

freject HHg and fC2g D freject HH and HQg.
With this definitions in mind and supposing that M claims are

possible, we can now define the EFC as follows:

EFC D
MX

iD1

max
���0m2‚‚‚0m

P.fCmgj���0m/

where ‚‚‚0m denotes all possible parameter configurations relat-
ing to the hypotheses in Km that are consistent with the respec-
tive null hypotheses for the mth claim.

Going back to the first example where both individual hypoth-
esis themselves result in a claim, we can easily find the EFC as
0.1. In the second example where Claim 2 can only be made if
both hypothesis are rejected, the EFC under the assumption of
independence is smaller at 0.05 C 0.0025 D 0.0525 because the
second claim is much harder to achieve.

2.1. Related error rates

Now that we have introduced our proposal, it is worth pointing
out some relationships between other proposals in the literature.
The first point to make in this respect is that no method exists that
explicitly considers claims. The per family error rate (PFER) dis-

cussed in [5] defined there as number of erroneous rejections
number of families or more

formally described as E.V/ is a special case of our proposal. The
fundamental difference between the PFER and the EFC is that
for the former, any wrongly rejected hypothesis is counted while
the EFC only considers cases where at least li hypotheses in Ki

are rejected. To clarify this difference further, consider the second
example given where K2 D fHH, HQg. In this setting, incorrect
rejection of HH and HQ is necessary for it to contribute to the EFC
while either one of them would be counted in the PFER.
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If we focus on the situation where only a single hypothesis is
required for making a claim (i.e., fCig D fIi D 1g and consequently
EFC D E.V/), then we have already shown in Section 1 that for two
hypothesis, the EFC is related to the FWER in the following manner
EFC D E.V/ D FWERC P .incorrectly reject H1 and H2/ with simi-
lar results easily obtainable for more hypotheses. Another related
error rate in this case is the false discovery rate (FDR) [6] defined

as E
�

V
R

�
. From this definition, it is apparent that the FDR is bound

between 0 and 1, which could be viewed as an advantage while
computationally, it is slightly more complex as the case of R D 0
needs to be considered.

2.2. Controlling the expected number of false claims

In [7], it is noted that ‘. . . [in a clinical study] the claim-wise error
rate is probably the most important attribute to control. . . ’ and
one way to achieve this is by controlling the EFC at a certain level,
say �. This is, in fact, quite easily achieved by simply splitting the
overall level, �, equally between the individual probabilities, that
is, applying a Bonferroni adjustment to each claim probability.
More specifically, it is easy to see that ensuring

max
���0m2‚‚‚0m

P.fCmgj���0m/ 6
�

M
m D 1, : : : , M

will guarantee the overall level �.
Although this is a very simple approach, it may not be very

practical as rarely all claims will be equally important. A more real-
istic way to control the EFC therefore uses a weighted Bonferroni
adjustment [8] that allows more weight to be assigned to more
important claims. More specifically, ensuring that

max
���0m2‚‚‚0m

P.fCmgj���0m/ 6 wm� m D 1, : : : , M

with wm > 0 such that
PM

mD1 wm D 1 will clearly also control
the EFC.

2.3. Examples

The general concept of the EFC as well as methods to control it
is fairly straightforward. In many practical situations, the nature of
the individual claims does, however, require particular care when
controlling the EFC. In this section, we will provide three illus-
trative examples to show how EFC control can be achieved. For
all illustrations, we assume normally distributed endpoints and
use the mvtnorm package [3] for the computations. We will use
� D 0.05 and one-sided hypotheses for superiority. Results for
two-sided hypotheses follow the same patterns except that they
are symmetric around a correlation of zero.

2.3.1. Co-primary endpoints. The first case we want to discuss,
although only for completeness, is the situation where multiple
primary variables are required to describe a clinical benefit. The
CHMP guidance for Alzheimer’s disease [9], for example, stipulates
that a treatment must show an effect on a cognitive endpoint
and a functional endpoint. Consequently, even though there are
two hypotheses to be tested, only a single claim is investigated.
In order to control the EFC, it is therefore sufficient to ensure that
the probability of making this claim (i.e., rejecting both hypothe-
sis) is controlled at �. Current practice in this situation is to require
each hypothesis to be rejected at level � so that the EFC is clearly
below the desired level in this case.

Figure 2. Probability of making claims when the claims are exchangeable across
different correlations. A weight of w1 D 0.75 is used.

2.3.2. Exchangeable claims. In some situations, multiple indepen-
dent claims are possible for one treatment. We term this case
exchangeable claims because we are envisaging the case where
claims are not dependent on each other, and hence, making
either claim would be considered a success. For this illustration,
we return to the motivating example, which considered showing
an effect on HbA1c or quality of life (or both) a success. Despite
considering both claims a success in this setting, let us assume
that making a claim on HbA1c is more important. Consequently,
we can construct a testing strategy that controls the EFC at level
� by testing HH at level w1� and HQ at .1 � w1/�.

Figure 2 shows the probability of making only Claim 1, only
Claim 2, and both for w1 D 0.75 as the correlation changes.
Notable is that the probability of making both claims is negligible
for negative correlations but becomes substantial for strong pos-
itive correlations. The EFC, which is simply the sum of the proba-
bilities of making exactly one claim plus twice the probability of
making both claims, is exactly 0.05 as desired.

Although the situation described where either a reduction in
HbA1c levels or quality of life is of primary interest (i.e., indiffer-
ence about which of the two is improved) is probably not very
frequently encountered, there are many related settings where
exchangeable claims occur. For example, in the context of regula-
tory approval, conditional approval of the treatment (Claim 1) and
full approval (Claim 2) would fall into this framework. Licensing
a treatment for different indications or decisions about (disjoint)
subgroups can also be framed as exchangeable claims.

2.4. Hierarchical endpoints

The final case we want to discuss concerns the frequently used
hierarchical testing strategies. In the context of malaria clinical
trials, for example, cure is the most important (and primary) end-
point. Most treatments for malaria are, however, effective so that
other measures to distinguish treatments are frequently of inter-
est. Consider, for example, prevention of new infections as a
secondary endpoint. In such a case, one would usually employ
a hierarchical testing strategy that only tests the secondary end-3
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point if the primary has been rejected. Note that it is possible
to distinguish different infections in malaria [10] so that it is not
necessary to actually cure a patient to establish if a new infec-
tion has occured. Putting this situation into the context of claims
and using subscripts C for the cure endpoint and P for the pre-
vention endpoint, we have fC1g D freject HCg and fC2g D

freject HC and HPg.
Consider first the expected number of false claims when the

following fixed sequence test procedure [11] is used: The preven-
tion hypothesis is only tested at full level if the primary hypothesis
has been rejected at full level. In Figure 3, it is easy to see the false
sense of security using FWER control can give. In this example, the
FWER is controlled at the desired level of 0.05, and the EFC, how-
ever, is up to twice as large. In the context of our example, this

Figure 3. Familywise error rate (FWER) and expected number of false claims (EFC)
for two hierarchical endpoints using a fixed sequence test for FWER control.

Figure 4. Expected number of false claims (EFC ) with w1 D 0.8 and w2 D 0.2 using
a Bonferroni adjustment for EFC control. FWER, familywise error rate.

means that in addition to allowing an error rate of 0.05 for the
primary cure hypothesis, we also allow an up to 0.05 chance of
concluding a preventative effect when there is none.

To control the EFC at level �, we can, however, once more use
the weighted Bonferroni test. Because claiming cure is clearly
more important than claiming a preventative effect, we will use a
weight of w1 D 0.8 here. This means that we can test fC1g at level
w1�, which implies that we can test HC at the same level as well
as it is the only hypothesis relevant for this claim. To achieve EFC
control, we then also need to test fC2g at level .1 � w1/�, which
more precisely means that we need to ensure that under the null
P.reject HC and HP/ 6 .1�w1/�. It is clear that there are different
ways to achieve this. One approach that will ensure that this prob-
ability is controlled for any correlation � is to recognize that it is
maximized for � D 1. Consequently, testing HP at level .1 � w1/�

will ensure that P.reject HC and HP/ 6 .1 � w1/� holds. Figure 4
shows the realized EFC and FWER for w1 D 0.8 when using this
method. As previously, the EFC and FWER are essentially identical
for negative correlations while the difference is increasing as the
correlation increases. The EFC is below the desired nominal level
of 0.05 and only exhausts the full level for perfect positive correla-
tions because of the use of the worst case configuration and the
dependence between claims. Alternative approaches that ensure
P.reject HC and HP/ 6 .1 � w1/� that incorporate the correlation
could be used instead to ensure exhaustion of the error level.

3. POWER

Having established our proposal, we now consider powering
studies that are designed to control the expected number of false
claims and show how setting power constraints can be used to
determine the weight of the weighted Bonferroni test. As before,
we will differentiate between the three different types of end-
points/claims as power has different implications for these differ-
ent settings. Throughout, however, we will use 1 � ˇi to describe
the power we wish to have to make claim i and denote the vector
of parameters in Km with a particular effect of interest as ���1m.

3.1. Co-primary endpoints

Co-primary endpoints, as discussed earlier, occur in the situa-
tion where multiple primary variables are required to describe
a clinical benefit. Consequently, only a single claim � which is
established based on several endpoints � is of interest. A natu-
ral way to power such a study is to ensure that the probability of
rejecting all hypotheses necessary for making the claim of inter-
est is sufficiently large for worthwhile effects. In particular, one
would power such a study to ensure that P.reject li or more H 2
K1j���11/ D P.fC1gj���11/ > 1 � ˇ1.

3.2. Exchangeable claims

Looking at the situation where each claim separately can be
viewed as a success, the initial thought is to ensure adequate
power for making at least one claim. Previously, however, we have
argued that even for exchangeable claims, there does exist a dif-
ference in how important it is to make a claim. In the context of
provisional versus full approval, for example, it is clearly superior
to obtain full approval. To account for this situation, we have pre-
viously allowed the claims to carry different weights� how these
weights are arrived at, however, was left open. Our proposal now
is to power the study to implicitly determine the weights given to
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Table III. Sample size required per arm (n) and
optimal weight (w1) for two exchangeable claims
and standardized effects of .0.5, 0.4/ for expected
number of false claims of 0.05 and a correlation of
0.5 between endpoints. .

1 � ˇ1 1 � ˇ2 w1 n

At least one claim 0.9 NA 0.82 68

Separate power

0.9 0.9 0.14 113
0.9 0.8 0.35 92
0.9 0.7 0.55 82
0.8 0.9 0.05 109
0.8 0.8 0.17 84
0.8 0.7 0.33 71

The first line powers the study to have power of
90% to make at least one claim. The lower part of
the table uses one power constraint for each claim
for a variety of power constraints.

each claim. In particular, for a situation of M exchangeable claims,
we propose to determine the sample size of the study, n, and the
weights w1, : : : , wM�1 simultaneously through solving the system

P.fC1gj���11/ > 1 � ˇ1

P.fC2gj���12/ > 1 � ˇ2

...
...

P.fCMgj���1M/ > 1 � ˇM.

(1)

To give an example, consider a situation with two exchange-
able claims each composed of a single hypothesis (e.g., the pre-
vious example of HbA1c and quality of life). Suppose further that
the standardized effect of interest for the first and second hypoth-
esis is 0.5 and 0.4, respectively. Table III shows the required sample
size for the two different ways to power the study using an EFC of
0.05 and assuming a correlation of 0.5 between endpoints.

Unsurprisingly, the sample size required when looking to make
at least one claim is (substantially) lower, then when requiring a
certain power for each claim. More weight is given to the first
claim in this situation because of the larger desired effect on the
first claim. When using separate powers, the weight associated
with each claim does adjust with the required power and also the
anticipated effect (not shown) as expected. It is notable that the
weight on the first claim when requiring equal power for each
claim is below 0.5 (in contrast to being above 0.5 for making either
claim) to counteract the smaller effect in the second endpoint by
giving the second claim more weight.

3.3. Hierarchical endpoints

A natural way to power a study using a hierarchical structure is
to associate a certain power with each claim in the structure as
before. This setting yields the same system of equations as given
in (1). The fundamental difference between them is how the dif-
ferent claims, fCig are defined and hence which hypotheses need
to be rejected to make each claim. Note that a special case of this
proposal is to use ˇi D 1, i D 2, : : : , M in which case, the study
is powered only for the first claim � a solution often employed
when using FWER control.

Table IV. Sample size required per arm (n)
and optimal weight (w1) for two hierarchical
claims with standardized effects of .0.5, 0.4/ for
expected number of false claims of 0.05 and a
correlation of 0.5 between endpoints.

1 � ˇ1 1 � ˇ2 w1 n 1 � Ǒ1 1 � Ǒ2

0.9 0 0.98 69 0.900 0.226
0.9 0.9 0.21 130 0.957 0.900
0.9 0.8 0.24 101 0.902 0.800
0.9 0.7 0.48 85 0.900 0.706
0.8 0 0.98 50 0.801 0.133
0.8 0.9 0.21 130 0.963 0.900
0.8 0.8 0.24 101 0.902 0.800
0.8 0.7 0.24 83 0.832 0.700

The realized powers are given in the columns
1 � Ǒi .

To illustrate powering for hierarchical claims, we will use a simi-
lar setting to the one described in the previous section. Consider a
situation with two hierarchically ordered claims, each composed
of a single hypothesis (e.g., the primary claim is on a reduction
HbA1c level while a secondary claim is on quality of life). Suppose
further that the standardized effect of interest for the first end-
point is 0.5 and 0.4 for the second. Table IV shows the required
sample size using an EFC of 0.05 and assuming a correlation of 0.5
between endpoints for a variety of power constraints.

The sample size required when only powering for the first claim
is identical to a standard two-sample z-test. In this situation, it is,
however, notable that not all weight is given to the first claim. This
is due to requiring the sample size to be an integer. In fact, for
n D 138, any weight between 0.98 and 1 will satisfy the power
requirement. Similarly, multiple choices for w1 are often also avail-
able for other situations considered. We have simply used the
smallest value of w1 satisfying the power constraint in all of our
evaluations. Notice also that for the hierarchical structure, it is not
always possible to satisfy the power constraint exactly. Depend-
ing on the effect size and required powers, one of the powers
may be larger than the desired value because of the correlation
between the claims. To see this, consider a case where two claims
in a hierarchical procedure are required to have 90% power. In
order to achieve 90% power for the second claim, the power for
the first claim must be larger than 90% as there is a chance of
making Claim 1 but not Claim 2 as long as the two are not per-
fectly correlated. The realized powers for each claim are provided
in the additional columns labeled 1 � Ǒi in the table. Compared
with the results for exchangeable endpoints, the sample size is
increased for the hierarchical setting as soon as we do require
some power for the second claim as expected. For the considered
setting, the realized power for the first claim tends to be larger
than the desired minimum which is, in part, due to the second
claim requiring making Claim 1.

4. DISCUSSION

In this paper, we have introduced the EFC, which is designed to
ensure that all relevant mistakes are properly accounted for. We
have also shown that a weighted Bonferroni adjustment can be
used to control the EFC at the desired level and illustrated how
powering studies based on the EFC can be used to determine3
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the weights of the weighted Bonferroni adjustment. Although we
have focused throughout this work on cases where the EFC is
different from the familywise error rate, both concepts are equiv-
alent when only one claim is sought or when claims are mutually
exclusive. At the same time, the aim of this work is not to claim
that the EFC is superior to the FWER but rather show that in some
situations, such as hierarchically structured questions, it might be
more appropriate. A generalized FWER has also been suggested
[12,13]. This generalized FWER is designed to account for the will-
ingness to tolerate more than one false rejections because of the
high volume of hypotheses to be tested, for example, in genomic
trials as long as the number of is controlled, that is, pre-defined.
The EFC approaches the issue of more errors from the other side.
Rather than allowing more mistakes, the EFC focuses on prop-
erly accounting for all errors made. As an immediate consequence
the conventional levels of significants used (i.e., 0.05) may be to
stringent for situations with many claims.

Throughout most of the paper, we have focused on the case
where two endpoints are of interest. The concept of the EFC is,
however, applicable in many more settings. For example, in the
context of regulatory approval, obtaining conditional approval
versus full approval of a treatment naturally falls into the frame-
work discussed. Similarly, we believe that the concept of EFC
is quite natural for the development of a treatment for several
indications or multiple populations.
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