
Genome analysis

SV-Bay: structural variant detection in cancer

genomes using a Bayesian approach with

correction for GC-content and read mappability

Daria Iakovishina1, Isabelle Janoueix-Lerosey2,3,

Emmanuel Barillot2,4,5,6, Mireille Regnier1 and Valentina Boeva2,4,5,6*

1INRIA Projet AMIB, Ecole Polytechnique, Palaiseau, France, 2Institut Curie, Centre De Recherche, Paris, 3Inserm,

U830, Department Genetics and Biology of Cancers, Paris, France, 4Inserm, Department of Bioinformatics,

Biostatistics, Epidemiology and Computational Systems Biology of Cancer, U900, Paris, France, 5Mines ParisTech,

Centre for Computational Biology, Fontainebleau, France and 6PSL Research University, Paris, France

*To whom correspondence should be addressed.

Associate Editor: Benjamin Raphael

Received on 19 March 2015; revised on 10 November 2015; accepted on 20 December 2016

Abstract

Motivation: Whole genome sequencing of paired-end reads can be applied to characterize the

landscape of large somatic rearrangements of cancer genomes. Several methods for detecting

structural variants with whole genome sequencing data have been developed. So far, none of

these methods has combined information about abnormally mapped read pairs connecting rear-

ranged regions and associated global copy number changes automatically inferred from the same

sequencing data file. Our aim was to create a computational method that could use both types of

information, i.e. normal and abnormal reads, and demonstrate that by doing so we can highly

improve both sensitivity and specificity rates of structural variant prediction.

Results: We developed a computational method, SV-Bay, to detect structural variants from whole gen-

ome sequencing mate-pair or paired-end data using a probabilistic Bayesian approach. This approach

takes into account depth of coverage by normal reads and abnormalities in read pair mappings. To esti-

mate the model likelihood, SV-Bay considers GC-content and read mappability of the genome, thus

making important corrections to the expected read count. For the detection of somatic variants, SV-Bay

makes use of a matched normal sample when it is available. We validated SV-Bay on simulated data-

sets and an experimental mate-pair dataset for the CLB-GA neuroblastoma cell line. The comparison of

SV-Bay with several other methods for structural variant detection demonstrated that SV-Bay has bet-

ter prediction accuracy both in terms of sensitivity and false-positive detection rate.

Availability and implementation: https://github.com/InstitutCurie/SV-Bay

Contact: valentina.boeva@inserm.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole genome sequencing (WGS) has become routine for detection

of both small and large somatic mutations, i.e. point mutations,

small indels and structural variants (SVs) in cancer genomes. Paired-

end sequencing of mate-pair libraries is often employed when the

aim of the study is the detection of large SVs, i.e. variants of greater

length than the read length (Boeva et al., 2013; Pleasance et al.,

2010; Stephens et al., 2009, 2011). A long insert size of mate-pair

libraries (usually 3–4 kb) allows for high physical coverage of SV

junctions.
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Each type of large SVs (translocation, duplication, deletion, in-

version, etc.) corresponds to a particular paired-end mapping signa-

ture (PEM signature) (Zeitouni et al., 2010). As such, deletions are

characterized by a larger than expected distance between mapped

paired reads (insert size), while insertions have an insert size shorter

than expected (Supplementary Fig. S1). Additionally, SVs often re-

sult in a change of copy number status around the breakpoint junc-

tion, which is reflected in changes in read depth of coverage (DOC).

For instance, deleted regions have a relatively low DOC, whereas

duplicated regions are characterized by high DOC (Boeva et al.,

2011). Thus, differences in DOC and abnormal positioning of

mapped reads often indicate the same genomic abnormality (e.g., a

deletion or a tandem duplication). However, there has been no effort

made to combine these two types of information into one unified

computational approach.

Most of the current SV detection approaches can be classified

into three categories: methods based on (i) PEM signatures,

(ii) DOC and (iii) split read mappings (Medvedev et al., 2009). Each

of these approaches has its limits in terms of the type and size of SVs

that it is able to detect.

PEM-based algorithms can be grouped into two categories:

those based on read clustering, and those based on fragment

length distribution. The former identify discordant PEMs as PEMs

with unexpected orientation or insert size, cluster them and apply

statistical tests to validate candidate clusters (Hormozdiari et al.,

2009, 2010; Korbel et al., 2009; Sindi et al., 2009; Zeitouni et al.,

2010), whereas the latter compare the observed insert-size distri-

bution of all read pairs in a given window versus the expected dis-

tribution. Windows with a significant proportion of read pairs

having unexpected insert-sizes are annotated as containing SVs

(Lee et al., 2009). In some cases, the same package, e.g.

BreakDancer (Chen et al., 2009), provides two complementary

methods for SV detection: clustering-based (BreakDancerMax)

and distribution-based (BreakDancerMini) to detect large and

small size SVs, respectively.

DOC-based methods detect regions of gain and loss in the gen-

ome using DOC normalized for GC-content bias (Boeva et al.,

2011, 2012; Yoon et al., 2009). A deviation from the expected DOC

suggests putative gain or loss of genomic material. DOC-based

methods do not provide information about the adjacency of DNA

regions involved in copy number changes. Thus, such methods are

not able to indicate the type of SV (e.g. tandem duplication, frag-

ment reinsertion, translocation) causing genomic loss or gain.

Additionally, the resolution of such methods rather is low for low

DOC datasets: a 30� coverage dataset allows approximately a reso-

lution of 1 kb for rearrangement breakpoints.

Split-read-based methods use partial read alignments for SV de-

tection (Schröder et al., 2014; Trappe et al., 2014; Wang et al.,

2011). Although such methods may be efficient for data with high

read coverage, they may fail to identify SVs with breakpoints

located in repetitive elements of the genome. Ideally, these types of

approach should be combined with paired-end signatures; this idea

was implemented in SVMerge (Wong et al., 2010), PRISM (Jiang

et al., 2012), Meerkat (Yang et al., 2013), SMUFIN (Moncunill

et al., 2014) and DELLY (Rausch et al., 2012).

Combining information about discordant PEMs with changes in

DOC is a promising solution for the SV detection problem.

Probabilistic models integrating both the DOC signal and PEM sig-

natures provide higher specificity at equal or greater sensitivity than

tools that simply use paired-end signatures (Escaramı́s et al., 2013;

Handsaker et al., 2011; Layer et al., 2014; Oesper et al., 2012; Qi

and Zhao, 2011; Sindi et al., 2012). However, most of these meth-

ods do not take into account certain important parameters that

affect read count for both normal and abnormal mappings:

GC-content and read mappability. Another general drawback of the

majority of these methods is their lack of ability to detect all possible

types of SV that can be present in cancer data including co-amplifi-

cations, tandem duplications with inversions, linking insertions, etc.

Here, we propose a Bayesian framework for SV detection using

paired-end or mate-pair libraries, implemented as the software

SV-Bay. In this framework, we combine both PEM signatures and in-

formation about changes in DOC in regions flanking each candidate

rearrangement. Our method takes into account GC-content and

mappability. The use of a Bayesian framework based on both PEM

and DOC information allows us to significantly decrease the level of

false positive predictions while retaining high sensitivity.

Additionally, SV-Bay infers 15 different types of structural variant

from the detected novel genomic adjacencies (Supplementary Fig. S1).

2 Methods

SV-Bay uses a Bayesian formulation to assess the likelihood of an

SV. To this end, SV-Bay combines information about abnormal

PEM signature and DOC. SV-Bay separately analyzes whether each

cluster of abnormally mapped paired reads is a part of a true re-

arrangement (novel genomic adjacency) and then combines closely

located genomic adjacencies into complex SVs. The method includes

several pre-processing and post-processing steps (Fig. 1). The

Bayesian model is applied at the level of detection of novel genomic

adjacencies (explained in detail in Section 2.5). Sections 2.1–2.4 pro-

vide elements necessary to the understanding of the constructed

Bayesian model. The procedure for selecting the likeliest breakpoint

Fig. 1. Outline of SV-Bay. SV-Bay evaluates the insert size distribution and

identifies the default orientation of reads in pairs. It applies this distribution to

annotate read pairs as normal and abnormal. The latter may correspond to

novel SVs in the genome. By calculating the density of normal reads along

the genome (in copy neutral regions), SV-Bay evaluates the GC-content de-

pendency bias that will be used in the Bayesian model
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position without performing a local read assembly, the order in

which candidate genomic adjacencies are tested for being false posi-

tives, and the way we use a normal control sample are explained in

Supplementary Methods. Section 2.6 describes how complex re-

arrangements are inferred using closely located novel genomic

adjacencies.

2.1 Definition of normal insert size of paired reads and

annotation of normal and abnormal read pairs
We define normal paired reads as reads with the expected orienta-

tion and insert size. The expected orientation is defined by the

technology used to generate and sequence the DNA fragment li-

brary: inwards for paired-end libraries, outwards for Illumina

mate-pair libraries; this orientation is automatically detected by

SV-Bay. To get the shape of the fragment length distribution, we

analyze insert size (the distance between the leftmost position of

the left read and the rightmost position of the right read) of read

pairs with expected read orientation. By default, SV-Bay annotates

as ‘normal pairs’ read pairs with both reads mapped to the same

chromosome with insert size within the 99% of insert size distribu-

tion with the expected read orientation. The remaining read pairs

are annotated as ‘abnormal’. We also define l (the median insert

size) and r (standard deviation of insert size). We denote the min-

imal and maximal insert sizes of a normal read pair as lmin and

lmax, respectively. We also discard PCR duplicates as read

pairs with identical up to k bp start and end positions (k specified

by the user).

2.2 Estimation of the expected number of read pairs per

position and genomic region
For calculation of likelihood probabilities used in the Bayesian

model, we need to estimate the expected number of reads per region

given the GC-content and mappability. SV-Bay accepts read align-

ment BAM files generated by BWA option ‘aln’ (Li and Durbin,

2009). For each read pair, BWA provides information about the

mapping quality for a pair and the uniqueness of mapping of each

read within the pair.

2.2.1. Calculation of the expected number of read pairs per position

and region for normal reads

For normal reads, we assign a mappability of 1 to a given position i

(Mi ¼ 1) if the k-mer starting at position i in the reference genome is

unique up to m mismatches in the reference genome (m defined by

the user, default value m ¼ 2). Otherwise, we assign mappability of

0 (Mi ¼ 0). The number of mapped reads per position and per re-

gion may highly depend on GC-content (Benjamini and Speed,

2012). Taking this into account, we can define the expected number

of reads per genomic region [a, b] (E½a;b�) as follows (see

Supplementary Methods):

E ½a;b �; a ¼
Xb

i¼a
Mi � a � kðGCðiÞÞ; (1)

where a is the number of copies of region ½a; b� ( a ¼ 2 for auto-

somal positions in diploid genomes), GC ið Þ the GC-content for pos-

ition i of the reference genome (i.e. the fraction of C and G

nucleotides in a window of size l starting at i) and kðxÞ the average

number of read pairs starting per mappable position with a given

GC-content x in a region present in one copy. The GC-content of a

given position is evaluated in a window of length l following the ob-

servation of Benjamini and Speed (2012) that the best window size

for GC-content bias correction corresponds to the average fragment

length.

Parameters kðxÞ can be empirically evaluated as follows:

k̂ðXÞ ¼
PL

i¼1 Mi �Oi=ai � I GCðiÞ ¼ xf gPL
i¼1 Mi � I GCðiÞ ¼ xf g

; (2)

where L is the genome length, ai the number of genomic copies for

position i, Oi the observed number of normal read pairs mapped to

position i and IfGC ið Þ ¼ xg the indicator that GC-content at pos-

ition i is equal to x. In practice, to evaluate kðxÞ, we do not consider

all genomic positions. Instead, we use a large enough random subset

so that we can evaluate kðxÞ up to the third decimal place

(Supplementary Methods). For the tumor genome, we select pos-

itions coming from copy neutral regions, i.e. regions with copy num-

ber ai equal to the main ploidy of the tumor genome. The selection

of these regions is based on the output of Control-FREEC (Boeva

et al., 2011, 2012), included in the SV-Bay pipeline.

To account for possibly mismapped reads in homozygous dele-

tion regions, we modify formula (1) for a ¼ 0:

E a;b½ �;a¼0 ¼ ðb� aÞ �Nabnormal=L; (3)

where L is the genome length, and Nabnormal the total number of ab-

normal read pairs, which approximates the number of incorrectly

mapped read pairs in a given experiment.

2.2.2. Calculation of the expected number of read pairs per position

and breakpoint for abnormal reads

To calculate the expected number of read pairs per position for ab-

normal reads, we make some adjustments to formula (1). Here, we

consider only read pairs with unique mapping of both reads. The

mappability value per position is now defined as

Mi ¼Mi �
Xiþlþc

i¼iþl�c
Mi

� �
= 2cð Þ; (4)

where ½l� c;lþ c� is the region in which we expect to map the

right-most mate of the left-most read in a pair; c is defined as

c ¼
ffiffiffi
3
p

r (Supplementary Fig. S2 and Supplementary Methods).

Using the redefined mappability Mi, we reevaluate the expected

number of read pairs per position k xð Þ:

^
k xð Þ ¼

PL
i¼1 Mi �Oi=ai � I GC ið Þ ¼ xf g
PL

i¼1 Mi � I GC ið Þ ¼ xf g
; (5)

where Oi is the observed number of read pairs mapped to position i

with the left-most read such that both reads in the pair are uniquely

mappable.

For a breakpoint junction connecting chromosomes A and B, we

can now evaluate the expected number of abnormal fragments span-

ning breakpoints xbreak
A and xbreak

B on chromosomes A and B, respect-

ively. Without loss of generality, we assume that the junction

connects a region upstream to xbreak
A to a region downstream of

xbreak
B . Then, the expected number of abnormal fragments spanning

the breakpoints E xbreak;�
A ;xbreak;þ

B

� �
can be calculated as:

E
xbreak;�

A
;xbreak;þ

B
;c>0
¼
Xxbreak

A
�r

i¼xbreak
A
�lmaxþr

Miðxbreak;�
A ; xbreak;þ

B Þ � c�

�kðGCði;xbreak;�
A ; xbreak;þ

B ÞÞ � pðInsert Size � xbreak
A � i þ rÞ;

(6)

where Miðxbreak;�
A ;xbreak;þ

B Þ is calculated similarly to Mi and

GCði;xbreak;�
A ; xbreak;þ

B Þ similarly to GC ið Þ with the exception that in-

stead of the continuous genomic region starting at i, we use stitched
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regions upstream xbreak
A and downstream xbreak

B . Here, c is the num-

ber of alleles involved in the SV, and r the read length.

Similarly to (3), we approximate the expected number of read

pairs located at a distance less than lmax to a breakpoint due to mis-

alignment or artefacts in library preparation as E
xbreak;�

A
;xbreak;þ

B
;c¼0

:

E
xbreak;�

A
; xbreak;þ

B
;c¼0
¼ lmax �Nabnormal=L: (7)

2.3 Clustering of abnormal reads to detect candidate

novel genomic adjacencies
In order to detect candidate SVs, we group abnormal read pairs in

clusters potentially corresponding to simple SVs or novel genomic

adjacencies. Read pairs corresponding to the same novel genomic

adjacency have similar insert size and identical orientation. Clusters

of such read pairs are called links. We cluster read pairs in a way

that all read pairs corresponding to a genomic adjacency of any type

(inversion, deletion, inverted duplication, etc.) are clustered together

in one link. The clustering is based on two parameters: the difference

in insert sizes, I, and the difference in the read coordinates D, where

read coordinates are characterized with respect to the midpoint be-

tween read starts. Details of the clustering procedure are provided in

Supplementary Methods.

2.4 Definition of flanking regions
Each unbalanced SV will change the copy number (and DOC) in re-

gions flanking the SV breakpoints. To include the DOC in these re-

gions in the Bayesian model, we formally define four flanking

regions for each link.

Any novel genomic adjacency has two breakpoints in the reference

genome, with the exception of small insertions and mirror duplica-

tions (Supplementary Fig. S1). Without loss of generality, we further

assume that there are two breakpoints per link. We define two flank-

ing regions for each breakpoint: one upstream and one downstream

of the breakpoint. We denote these (A1, A2) and (B1, B2) for the left-

most and rightmost breakpoints, respectively (Supplementary

Fig. S3). Each flanking region should not overlap any SV that could

affect the number of normal read pairs within this region and should

not include the interval around the breakpoint itself, where we expect

to observe a gap in normal DOC (Sindi et al., 2012). We call these

small regions around the two breakpoints ‘safety intervals’: Sx and Sy

(see Supplementary Methods for formal definitions).

The flanking regions A1 and B1 are defined as the largest regions

upstream of the safety intervals Sx and Sy that do not contain any

safety regions of other links. Similarly, the flanking regions A2 and

B2 are defined as the largest regions downstream of the safety inter-

vals Sx and Sy that do not contain any other safety intervals.

Closely located links may have overlapping safety intervals. In

this case, we keep the corresponding flanking regions empty. Also,

we do not allow flanking regions to span centromeric regions and

long unassembled poly-N regions.

2.5 Bayesian model
We aim to determine the likelihood of a given link to be a part of a

real SV and estimate the number of alleles (c) involved in the given

genomic adjacency. To this end, for each link representing a candi-

date genomic adjacency, we calculate the probability of a model

Ma1 ;a2 ;b1 ;b2 ;c, where a1; a2;b1; b2 are copy numbers in flanking re-

gions A1, A2, B1, B2. The parameters of the model have to satisfy to

the following constraints:

a1 ¼ a26c; b1 ¼ b26c; (8)

where the sign before c depends on the orientation of reads in the

corresponding link. In cases where some flanking regions are empty

or A2 and B1 coincide (e.g. in case of short deletions), the number of

parameters in the model is reduced.

The aim of our Bayesian approach is to match observations, i.e.

the number of abnormal read pairs in the link and the number of

normal pairs in the flanking regions, with a model Ma1 ;a2 ;b1 ;b2 ;c.

According to Bayes’ rule the probability of model M0 given observed

data D is:

P M0jDð Þ ¼ P DjM0ð ÞP M0ð ÞP
MP DjMð ÞP Mð Þ : (9)

Observations D are formalized as D ¼ fnA1
; nA2

; nB1
; nB2

;nCg,
where nA1

; nA2
;nB1

;nB2
are the number of mapped read pairs in

flanking regions A1, A2, B1, B2, respectively, and nC the number of

abnormal read pairs in the link. In the current version of the algo-

rithm, we assume probabilities PðMc>0Þ of every model M where

c > 0 to be identical. We expect P Mc>0
� �

to be much lower than

P Mc¼0
� �

, as we suppose that there are much less links corresponding

to real SVs than to read mismappings and artefacts in library prepar-

ation. To include this intuition, we introduce a user-defined param-

eter for the expected number of true SVs in the dataset (ESV, default

value 1000). Then, the probabilities PðMc>0Þ and P Mc¼0
� �

are

assigned as follows: P Mc>0
� �

¼ minðESV=Nlinks;1Þ and

P Mc¼0
� �

¼ 1� P Mc>0
� �

, where Nlinks is the total number of links.

In the general case (A1, A2, B1, B2 are not empty and do not

overlap), the conditional probability P DjMð Þ can be factorized:

P DjMa1;a2;b1 ;b2 ;c
� �

¼ P nA1
ja1ð Þ � P nA2

ja2ð Þ � P nB1
jb1ð Þ � P nB2

jb2ð Þ � P nCjcð Þ:
(10)

To calculate these probabilities, we assume that the read count

follows a Poisson distribution with the mean equal to the expected

number of reads per region, calculated by formulas (1) and (3) for

normal read pairs in flanking regions A1, A2, B1, B2, and formulas

(6) and (7) for abnormal read pairs in the link:

P nA1
ja1ð Þ ¼ PoisðEA1 ;a1

; nA1
Þ;P nA2

ja2ð Þ ¼ PoisðEA2 ;a2
; nA2
Þ; (11)

P nB1
jb1ð Þ ¼ PoisðEB1 ;b1

; nB1
Þ;P nB2

jb2ð Þ ¼ Pois EB2 ;b2
; nB2

� �
; (12)

and P nCjcð Þ ¼ PoisðExbreak
A

;xbreak
B

;c; nCÞ; (13)

where Poisðk; kÞ ¼ kke�k=k! is the probability density function for

the Poisson distribution with mean k. In (13), we assume that we

know the exact breakpoint position. In practice, we check several

sets of breakpoints and keep the one providing the highest likelihood

(Supplementary Methods). Since the total number of possible mod-

els to test is infinite, we limit ourselves to a set of the most plausible

models (Supplementary Methods).

At the end of this step, for each link, SV-Bay will detect the most

likely model to explain the observed read counts. When the eval-

uated number of alleles involved in the candidate adjacency is zero,

we remove the link as a false positive candidate.

2.6 Combination of novel genomic adjacencies into

complex SVs
When we have a list of novel genomic adjacencies validated by the

Bayesian approach, we combine them into simple and complex SVs

(Supplementary Fig. S1). For each link i, we define regions CA
i and

CB
i around breakpoints xbreak;i

A and xbreak;i
B : CA

i ¼ ½x
break;i
A � 2lmax;

xbreak;i
A þ 2lmax� and CB

i ¼ ½x
break;i
B � 2lmax; x

break;i
B þ 2lmax�. If CA

i and
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CB
i do not contain breakpoints of others links, we annotate link i as

a simple SV: deletion, insertion, tandem duplication, inverted dupli-

cation, unbalanced translocation (Supplementary Fig. S1A).

Otherwise, we add all links with breakpoints occurring in CA
i or CB

i

to the set of links Xi. Then, we search for other links with break-

points located within 2lmax distance from any breakpoint of any link

in Xi. When we cannot add more links to Xi, we annotate Xi as a

complex structural variant (Supplementary Fig. S1B): inversion,

fragment re-insertion, balanced translocation, etc. The biological

relevance of many of the SV types that we have included in SV-Bay

has been demonstrated by several cancer studies (inverted duplica-

tions (Boeva et al., 2013), amplifications and co-amplifications

(Vogelstein and Kinzler, 2002), re-insertions and complex deletions

(Yang et al., 2013).

Amplifications of oncogenes (MYC, MYCN, ERBB2, KRAS,

etc.) is a common phenomenon in cancer (Vogelstein and Kinzler,

2002). Such SVs result in the creation of dozens of copies of a given

genomic region (Supplementary Fig. S1B). In SV-Bay, we define the

default value for the minimal number of copies per amplification (or

co-amplification) as 10. SV-Bay separately infers genomic amplifica-

tions and other SVs. In this way, closely located amplifications and

other SVs cannot be mistakenly grouped together.

3 Results

We applied SV-Bay to simulated and experimental datasets and

were able to demonstrate that it had a higher prediction accuracy

than four other published methods: GASVPro (Sindi et al., 2012),

Lumpy (Layer et al., 2014) and the two most popular methods for

SV detection, BreakDancer (BreakDancerMax) (Chen et al., 2009)

and DELLY (Rausch et al., 2012). We have selected GASVPro and

Lumpy, since like SV-Bay, these tools take into consideration infor-

mation about DOC changes in the proximity of candidate break-

points. However, unlike SV-Bay, they consider only short proximity

of breakpoints while SV-Bay calculates read counts in maximally

large regions around the breakpoint, which increases the statistical

power of its probabilistic approach. In addition, GASVPro, Lumpy

and DELLY integrate split-reads into the analysis.

The version of each software and parameters used are summar-

ized in Supplementary Table S1. Lumpy was applied to paired-end

data only as it does not provide an option to run on mate-pair

datasets.

In the analysis below, we assumed that an SV calling method

correctly detected a given SV when (i) predicted breakpoints laid

within a certain distance d from the correct breakpoints, and

(ii) there was a match in read orientation. Distance d corresponded

to the maximal fragment length, i.e. 5179 bp for simulated mate-

pair data, 446 bp for simulated paired-end data, and 3542 bp for the

experimental mate-pair data.

3.1 SV-bay performance on simulated paired-end and

mate-pair datasets
To simulate tumor datasets, we used a combination of TGSim, soft-

ware we developed to simulate a tumor genome (https://github.com/

InstitutCurie/TGSim), and read simulation software PIRS (Hu et al.,

2012) (code.google.com/p/pirs/). To create a nucleotide sequence

corresponding to a normal control diploid genome, we modified the

reference human genome GRCh38/hg38 by adding 3 million hetero-

zygous SNPs, 315 000 small indels and 972 small inversions. To

simulate a matched tumor genome, we applied a sequence of gen-

omic rearrangements to the nucleotide sequence of the diploid

normal genome using TGSim. TGSim inserted into the normal gen-

ome ‘standard’ SVs (deletions, tandem duplications, insertions of

random sequences, inversions, translocations) but also “complex”

SVs, which are usually missed or incorrectly assembled by SV calling

tools (co-amplifications, tandem duplications with an inversion

of the duplicated unit, linking insertions and linking re-insertions,

Fig. 2). We created two simulated tumor genomes: a near-diploid

genome (T2) and a near-tetraploid genome (T4); the latter contained

approximatively 4 copies of each chromosome but had less genomic

rearrangements than the near-diploid genome (44 versus 114 SVs

corresponding to 62 and 147 novel genomic adjacencies, respect-

ively, Supplementary Tables S2 and S3). For each simulated tumor

genome, we performed two read simulation experiments: paired-end

(PE) and mate-pair (MP) read simulations denoted T2_PE, T2_MP,

T4_PE and T4_MP (Supplementary Table S4). The read simulation

Fig. 2. Visualization of several complex types of SV that can be recognized by

SV-Bay: mirror duplication, tandem duplication with inversion, linking insert-

ing, linking insertion with inversion, linking re-insertion, and linking re-inser-

tion with inversion. In addition to the represented SVs, SV-Bay is able to

recognize balanced and unbalanced translocations (with and without inver-

sion), amplifications and co-amplifications, simple inversions, direct tandem

duplications, and so on. (Supplementary Fig. S1)
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algorithm allowed us to take into account GC-content bias and ex-

perimental read error profile along the reads (Hu et al., 2012). The

corresponding parameters were taken from experimental neuro-

blastoma WGS datasets (Boeva et al., 2013). We also generated

matched normal datasets (Supplementary Table S4).

In the simulations, we expected that the average number of ab-

normal read pairs required to confirm each novel genomic adjacency

(physical coverage) would be higher for mate-pair than for paired-

end data (Supplementary Table S4). Thus, despite the fact that the

mate-pair library contained from 5 to 10 times less reads than the

paired-end one, we observed that in all cases but one all methods

tested were able to identify more correct SVs in the mate-pair data-

set (Fig. 3, Supplementary Tables S2 and S3). This observation sup-

ports the common choice of mate-pairs for annotation of structural

variants in tumor genomes, even though creating a mate-pair library

requires a more elaborate protocol.

SV-Bay achieved maximal recall on all the four simulated data-

sets and detected 125/147, 129/147, 34/62 and 59/62 correct novel

genomic adjacencies for T2_PE, T2_MP, T4_PE and T4_ME, re-

spectively (Fig. 3, Supplementary Tables S2 and S3). Of note, to con-

struct precision/recall curves, we run each method only once with

the most relaxed parameters; then, we used a threshold on the qual-

ity of predicted SVs provided by each tool. We confirm that the

choice of user-defined value for the expected number of true SVs in

the dataset (ESV ) plays a limited role in the prediction accuracy by

SV-Bay (Supplementary Fig. S4). However, the user should consider

to change the value of this parameter to higher values in case of

interest in germline events or when analyzing chromothripsis cases.

In many cases, the recall provided by BreakDancer and DELLY

on simulated datasets was almost as high as the recall provided by

SV-Bay (Supplementary Tables S2 and S3). However, both

BreakDancer and DELLY gave a large number of false-positive pre-

dictions (Fig. 3). Overall, on simulated data SV-Bay demonstrated

better prediction accuracy than other tools both in terms of detec-

tion precision and recall.

SB-Bay can recognize and infer from novel genomic adjacencies

more types of complex SVs than other methods (Fig. 2). For in-

stance, using mate-pair data for the T4 genome all tools we tested

were able to identify novel genomic adjacencies corresponding to a

co-amplification (50 times) of several regions on chromosome 13.

However, only our method was able to group four different read

clusters related to this co-amplification into one complex SV.

SV-Bay was also the only method to group together clusters corres-

ponding to linking insertions and re-insertions we added to the

simulated tumor genome.

3.2 SV-Bay performance on a neuroblastoma mate-pair

dataset
To investigate the performance of SV-Bay on an experimental data-

set, we selected a mate-pair dataset from a neuroblastoma diploid

cell line CLB-GA recently sequenced using a mate-pair protocol to-

gether with a corresponding normal control (Boeva et al., 2013).

For this dataset, we recently performed SNP6 array experiment to

characterize genotype and copy number alterations independently

from WGS data. Also, for this cancer cell line, we had a set of 11

SVs validated by PCR and Sanger sequencing (Supplementary

Table S5). Most of the 11 validated SVs correspond each to two

breakpoints in the SNP array copy number profile. The following

SVs correspond to only one breakpoint: (i) the SV between the ALK

gene (chromosome 2p, 29 Mb) and a repetitive peri-telomeric se-

quence; the exact position of the latter could not be defined; (ii) the

SV between chromosomes 12q and 20q, as it corresponds to a more

complex SV on chromosome 12q (Fig. 4), and (iii) the inverted du-

plication at chromosome 5q. Both validated SVs and 27 breakpoints

obtained by the analysis of Affymetrix SNP6.0 datasets were further

used to check the performance of SV-Bay and compare it with

BreakDancer, DELLY and GASVPro. We excluded Lumpy from this

test as it is not able to analyze mate-pair data.

The total number of SVs predicted on this dataset by DELLY,

GASVPro and BreakDancer was significantly higher than the num-

ber of SVs predicted by SV-Bay (62822, 1648 and 5543 versus 765).

Fig. 3. Prediction accuracy on simulated data for BreakDancer, GASVPro,

Lumpy, DELLY and SV-Bay. Precision/recall curves for simulated paired-end

(PE) data, near-diploid genome T2 (A); mate-pair (MP) data, genome T2 (B);

PE data, near-tetraploid genome T4 (C); MP data, genome T4 (D). The results

for Lumpy are shown only for PE data. For all tools, we kept only SVs with

average insert size larger than 100 bp and 500 bp for PE and MP data respect-

ively. The total number of true genomic adjacencies: 147 for T2 and 62 for T4.

The total number of predictions: BreakDancer 1177 (T2_PE), 1711 (T2_MP),

197 (T4_PE) and 1787 (T4_MP); GASVPro 49069 (T2_PE), 6268 (T2_MP), 153

(T4_PE) and 56 (T4_MP), Lumpy 272 (T2_PE) and 171 (T4_PE), DELLY 636

(T2_PE), 6289 (T2_MP), 479 (T4_PE) and 16675 (T4_MP), and SV-Bay 204

(T2_PE), 231 (T2_MP), 66 (T4_PE) and 85 (T4_MP). See Supplementary Tables

S2 and S3 for more detail

Fig. 4. Prediction sensitivity on experimental data (neuroblastoma cell line

CLB-GA mate-pair dataset). The structure of SVs identified by SVBay (red

links) explains well the change points detected in the Affymetrix SNP6.0 copy

number profile (black profile, short vertical bars indicate centromeres); abso-

lute copy numbers identified by GAP (Popova et al., 2009) are shown in blue.

Change points in the copy number profile are shown with long vertical bars

(explained with SVs predicted by SV-Bay: red, unexplained: grey). Green

question marks indicate copy number changes unexplained by each tool

tested. Purple question marks correspond to the cases where detected SVs

are likely to correspond to false positive predictions
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Only 88 SVs were predicted by all the methods (Supplementary

Fig. S5). First, we correlated these SVs with breakpoints in the copy

number profile calculated using an Affymetrix SNP6.0 array for

CLB-GA using the genotyping software GAP (Popova et al., 2009).

GAP identified 27 breakpoints in the genome of this neuroblastoma

cell line. Among them, 21 were explained by SVs predicted by SV-

Bay (Fig. 4, Supplementary Table S6). The same 21 breakpoints

were also explained by SVs discovered by BreakDancer and DELLY.

Among the 62 thousand DELLY’s predictions, there was also a

translocation explaining the breakpoints on chromosomes 3 and 10

missed by other tools; it was tagged ‘LowQual’ and included 2 read

pairs. In addition, DELLY predicted two SVs that could potentially

explain the presence of breakpoints on chromosomes 5 and 17; these

SVs were not detected by other tools. However, unless validated by

PCR these SVs do not seem to be accurate: they are confirmed only

by 2 read pairs, have a ‘LowQual’ tag in the output and their type is

unbalanced translocation where the second ends are located in

chromosomes 17q25 (79 Mb) and 18q12 (27 Mb). Both these re-

gions do not show any copy number change point according to the

SNP array analysis. Thus, the corresponding breakpoints are

marked by purple question marks (possible false positives) for

DELLY in Figure 4. GASVPro was able to identify SVs correspond-

ing to only eight breakpoints in the SNP array copy number profile

(Fig. 4, Supplementary Table S6).

Among the 11 experimentally validated SVs, 10 were success-

fully detected by SV-Bay, DELLY and BreakDancer (Supplementary

Table S5). These three methods missed only one translocation be-

tween the ALK gene and a repetitive region in a telomere as the in-

put data contained only one read-pair uniquely mapped to the

corresponding peri-telomeric repetitive region. In the future, we

plan to improve our approach by taking into account non-uniquely

mapped reads. This is expected to improve the sensitivity of predic-

tions. The GASVPro method was able to identify only five out of 11

validated SVs.

Although BreakDancer, DELLY and SV-Bay had equally good

sensitivity on this experimental data, SV-Bay has a much better posi-

tive predictive value (or precision): the total number of predictions

in the SV-Bay output was 8 times less than in the output of

BreakDancer and 85 times less than in the output of DELLY. This is

explained by the use of the Bayesian probabilistic model in SV-Bay

in addition to the clustering of the abnormal reads employed in both

methods. Among SV-Bay SV calls, 173 were not detected by any

other method. The majority of them, 93%, corresponds to small size

events (up to 5 kb), may represent false-positive discoveries and can

be filtered out using a threshold on the SV size.

Even without using split reads, SV-Bay significantly outper-

formed BreakDancer in the identification of the exact breakpoint

position (Supplementary Table S5): the average distance between

validated and predicted breakpoints was 654 bp versus 1906 bp for

SV-Bay and BreakDancer, respectively (Wilcoxon Rank Sum two-

sided P-value < 0.01). However, GASVPro and DELLY were able

to provide a better breakpoint resolution by taking into account split

reads (average distance between validated and predicted breakpoints

314 and 373 bp, P-value for comparison with SV-Bay 0.2 and 0.01).

3.3 Basic features of SV-bay and execution time
The comparison of SV-Bay with other SV calling methods demon-

strated clear advantages of SV-Bay: SV-Bay outputs more true SVs

with lower false positive rate and is able to group links into more

complex SVs such as fragment insertions or amplifications. The major

differences between SV-Bay, BreakDancer, GASVPro, Lumpy and

DELLY are summarized in Table 1. Unlike Lumpy, SV-Bay accepts

both paired-end and mate-pair data. SV-Bay is the only method that

corrects expected number of read pairs per link for GC-content and

mappability, which are factors highly affecting read depth at a given

region (Boeva et al., 2011). Also, similarly to Lumpy and

BreakDancer, SV-Bay can use BAM files generated from constitutive

DNA in order to filter out read alignment artefacts and germline SVs.

SV-Bay is written in Python with the possibility to parallelize the

analysis for different chromosomes. However, even without parallel-

ization, SV-Bay demonstrated a very reasonable execution time

(Table 2). BreakDancer and DELLY were the fastest tools among

the five. For both paired-end and mate-pair simulated datasets, SV-

Bay showed the third best execution time: less than 2–4 h for mate-

pair and paired-end data, respectively. GASVPro took more than 12

days to analyze the mate-pair dataset. The reason for this may be

the long insert size of mate-pair data (more than 4 kb in our case)

and thus the range of all possible breakpoint positions per SV was

extremely large and required a significant amount of time to be ana-

lyzed. SV-Bay also attempts to predict the most likely breakpoint

position based on the data for each SV. However, in the case of large

intervals in which the breakpoint can be possibly located, SV-Bay

limits its analysis to only 10 equally spaced positions within the

interval. Although this limits the breakpoint detection accuracy, it

significantly speeds up the execution time for mate-pair libraries.

4 Discussion

We have proposed a new method SV-Bay for the detection of large

SVs in cancer genomes. SV-Bay is based on a Bayesian probabilistic

model. This allows it to be both sensitive and selective, discarding

Table 1. Outline of features of SV-Bay and other SV calling

methods

SV-Bay BreakDancer GASVPro Lumpy DELLY

Uses DOC information þ � þ 6a �
Uses split reads � � þ þ þ
Uses read mappability þ � 6b � �
Uses GC-content þ � � � �
Detects complex SVsc þ � � � �
Uses normal controls þ þ � þ þ
Processes PE libraries þ þ þ þ þ
Processes MP libraries þ þ þ � þ

Abbreviations: paired-ends (PE); mate-pairs (MP).
aLumpy removes regions with extremely high read coverage.
bGASVPro uses read mappability information only to estimate the number

of abnormal read pairs spanning the breakpoint position, it does not use it to

correct DOC in flanking regions.
cComplex SVs include co-amplifications, linking insertions, tandem dupli-

cations with inversion, etc.

Table 2. Execution time on simulated datasets

SV-Bay BreakDancer GASVPro Lumpy DELLY

Mate-pair library 1 h 55 m 32 m 298 h 47 ma N/A 45m

Paired-end library 3 h 58 m 19 m 4 h 39 m 4h02 1h44

aThe extremely long execution time of GASVPro on mate-pair data is ex-

plained by the use of split reads to refine the breakpoint position. In mate-pair

data, the range where the breakpoint can be located according to abnormal

read mappings can be extremely large; testing all possibilities requires many

hours.
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many artefact clusters of mismapped read pairs. Indeed, in compari-

son with other methods, SV-Bay demonstrated a noticeably better

SV detection accuracy both for simulated and experimental datasets.

SV-Bay not only detects novel genomic adjacencies but also, where

possible, groups them into more complex SVs such as co-amplifica-

tions, linking insertions, tandem duplications with inversion, etc.

Overall, SV-Bay allows the user to skip such data post-processing

steps like filtering out links with low number of fragments that do

not correspond to copy number changes, filtering out events present

both in the tumor and the matched normal control (artefacts and

germline SVs), and performing manual inference of complex SV

from the detected genomic adjacencies.

SV-Bay does not use split reads to improve the resolution of pre-

dicted breakpoints. There are two main reasons for this. First, the

read coverage on breakpoints can be sufficiently high only

for paired-end libraries, whereas we intended our method to also be

applicable to mate-pair data. Second, structural variants in cancer

often occur in low mappability repetitive regions or regions that

have partial homology; additionally, there can be insertions of one

of several genomic shards between two regions connected by a SV

(Boeva et al., 2013). These incidents reduce the capacity of read

mappers to align correctly reads coming from SV junctions.

Like other methods, SV-Bay is tolerant to a certain degree to

contamination of the tumor sample by normal cells. In the future,

we intend to extend our model to handle both high normal cell con-

tamination levels and be able to detect sub-clonal SVs when values

of tumour purity and sub-clonal cellularity are provided.

The current version of SV-Bay is able to analyze only one tumor/

normal pair at once. One of the interesting possible extensions to

our method would be to add the ability to analyze several tumour

datasets extracted from the same patient in order to increase the sen-

sitivity of SV detection.

5 Conclusion

We have presented SV-Bay, a computational method and software

to detect structural variants in cancer using whole genome sequenc-

ing data with or without matched normal control sample. SV-Bay

does not only use information about abnormal read mappings but

also assesses changes in the copy number profile and tries to associ-

ate these changes with candidate SVs. The likelihood of each novel

genomic adjacency is evaluated using a Bayesian model. In its final

step, SV-Bay annotates genomic adjacencies according to their type

and, where possible, groups detected genomic adjacencies into com-

plex SVs as balanced translocations, co-amplifications, and so on. A

comparison of SV-Bay with BreakDancer, Lumpy, DELLY and

GASVPro demonstrated its superior performance on both simulated

and experimental datasets.
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