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ABSTRACT

With the rapid advances of various high-throughput
technologies, generation of ‘-omics’ data is com-
monplace in almost every biomedical field.
Effective data management and analytical appro-
aches are essential to fully decipher the biological
knowledge contained in the tremendous amount of
experimental data. Meta-analysis, a set of statistical
tools for combining multiple studies of a related hy-
pothesis, has become popular in genomic research.
Here, we perform a systematic search from PubMed
and manual collection to obtain 620 genomic
meta-analysis papers, of which 333 microarray
meta-analysis papers are summarized as the basis
of this paper and the other 249 GWAS meta-analysis
papers are discussed in the next companion paper.
The review in the present paper focuses on various
biological purposes of microarray meta-analysis,
databases and software and related statistical pro-
cedures. Statistical considerations of such an
analysis are further scrutinized and illustrated by a
case study. Finally, several open questions are listed
and discussed.

INTRODUCTION

With the rapid advances in biological high-throughput
technology, generation of various kinds of genomic data
is commonplace in almost every biomedical field. Effective
data management and analytical approaches are essential
to fully decipher the biological knowledge contained in the
tremendous amount of experimental data. In the past
decade, the accumulation of transcriptomic data mainly
from microarray experiments was particularly significant,
and resulted in several large public data depositories (such
as Gene Expression Omnibus and ArrayExpress).
Similarly, genome-wide association studies (GWAS) are

another example: thousands of GWAS have been
performed world-wide and results and/or raw data for
many are publicly available (see companion review
paper for GWAS meta-analysis). It is common that
multiple transcriptomic studies or GWAS are available
for the same or related disease condition and each study
has relatively small sample size with limited statistical
power. Combining information from these studies to
increase sensitivity and validate conclusions is a natural
step. Such genomic information integration is akin to the
classical meta-analysis in statistics where results of
multiple studies of a similar research hypothesis are
combined for a conclusive finding.
A major distinction in the genome-wide setting

compared with the classical one is that we are typically
analyzing data on thousands of genes. We term genomic
information integration in which we combine results from
multiple transcriptomic studies or GWAS as ‘horizontal
genomic meta-analysis’ (Figure 1A). Figure 1B demon-
strates another type of multi-dimensional integrative
analysis that combines multiple sources of -omics infor-
mation on a given cohort of patients. The multi-
dimensional -omics data usually include, but are not
limited to, transcriptome profile, genotypes, DNA copy
number variation, methylation, microRNA, proteome
and phenome. Examples of publicly available databases
that include this type of information include the Cancer
Genome Atlas (TCGA; cancergenome.nih.gov) and
the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET; target.cancer.gov).
Integration of this type of data is called ‘vertical
genomic integrative analysis’. In this article, we will
focus on horizontal genomic meta-analysis through exten-
sive search of PubMed database and manual literature
referencing. Of the 582 papers related to genomic meta-
analysis, we will concentrate on 333 microarray
meta-analysis papers in this article. The other 249
GWAS meta-analysis papers are discussed in the compan-
ion paper. The goal of this article is 3-fold. First, we aim
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to provide a summary of the methodologies used in the
microarray meta-analysis papers. In this light, the art-
icle can be viewed as a ‘meta’–meta-analysis paper. The
second goal of the article is to provide a critique of the
methodologies used in the literature. Finally, we outline
some further issues in the field that need more attention.
The article is structured as follows. ‘Comprehensive

review’ section summarizes details of the comprehen-
sive literature review. In ‘Purposes of Microarray
Meta-Analysis’ and ‘Databases and Software’ sections,
we discuss various purposes of microarray meta-analysis
and related software and database resources. In ‘Meta-
Analysis for DE Gene Detection’ section, we discuss
statistical considerations behind meta-analysis for differ-
entially expressed (DE) gene detection, an analysis
commonly encountered in microarray meta-analysis.
‘Open questions’ section describes a list of open ques-
tions and further discussions. ‘Conclusion and discussion’
section provides final conclusions.

COMPREHENSIVE REVIEW

Papers under review came from two sources: PubMed
search and manual collection. 745 papers were obtained
from searching the PubMed database by keywords on 29
December 2010 (see legend of Figure 2), and 102 papers
were identified from cross-referencing accumulated in our
research activities. After removing duplicates and irrele-
vant papers, a total of 620 distinct papers were formally
reviewed and summarized. Among them, 22 papers belong
to the vertical genomic integrative analysis category and
598 papers were horizontal genomic meta-analysis. Of the
598 papers, 333 papers were related to microarray
meta-analysis, 256 papers were in the GWAS meta-
analysis category and 9 papers were meta-analysis of
other categories (e.g. copy-number variation or genome-
wide linkage scan). The flow diagram is shown in Figure 2.
Figure 3 illustrates a summary of our microarray

meta-analysis review. Detailed information of the paper

list and categorization to generate Figure 3 is available
in the Supplementary Data. Of the 333 microarray
meta-analysis papers, 7 (2%) were descriptive review
without quantitative information integration, 42 (13%)
were meta-analysis on one or several targeted genes (not
at genome-wide scale) and the remaining 284 (85%) rep-
resented genome-wide meta-analysis on a global basis
(Figure 3A). In Figure 3B, the 333 papers were categorized
into review papers (11 papers; 3%), biological applications
(201 papers; 60%), novel methodologies (83 papers; 25%)
and database/software (38 papers; 12%). For different
purposes of meta-analysis shown in Figure 3C, the
majority of papers targeted on DE gene or pathway de-
tection (218 papers; 66%). Other purposes include
‘network or co-expression analysis’ (32 papers; 10%),
‘classification analysis’ (25 papers; 8%), ‘reproducibility
or bias analysis’ (19 papers; 6%) and ‘others’ (34 papers;
10%). We will further survey these various meta-analysis
purposes later in ‘Purposes of microarray meta-analysis’
section. Since two-thirds (218 papers; 66%) of the micro-
array meta-analysis papers were related to DE gene or
pathway detection which conceptually were extensions
from traditional meta-analysis, we scrutinized this
category and summarized four types of statistical
methodologies used (Figure 3D). Of the 191 papers that
could be clearly categorized, 81 papers (42%) used
meta-analysis methods that combine P-values from indi-
vidual studies, while 41 papers (22%) combined effect
sizes, 18 papers (9%) combined ranks and 51 papers
(27%) directly merged data after proper normalization.
‘Types of meta-analysis methods’ section will go over
these four types of statistical methodologies in more
detail.

PURPOSES OF MICROARRAY META-ANALYSIS

When the term ‘microarray meta-analysis’ is used, it
usually means meta-analysis for DE gene (or marker)
detection. Although two-thirds of identified publications

Figure 1. Types of information integration of genomic studies. (A) Horizontal genomic meta-analysis that combines different sample cohorts for the
same molecular event. (B) Vertical genomic integrative analysis that combines different molecular events usually in the same sample cohort.
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(Figure 3C) were of this type, microarray studies have also
been combined for many other biological purposes, as
described below.

DE gene detection (218 papers)

DE gene detection is a commonly used downstream
analysis in microarray that identifies genes differentially
expressed across two or more conditions with statistical
significance and/or biological significance (e.g. fold
change). In the simple case that we are looking at one
gene, this type of analysis is usually performed using a
two-sample t-test or a Wilcoxon rank-sum test.
However, when this analysis is performed genome-wide,
a major issue becomes the fact that there can be many
spurious associations that are expected by chance. To
counteract this problem, some type of multiple compari-
sons adjustment is usually done; a popular one is to use
the q-value (1). The task is usually a first step to identify
gene targets for understanding genetic mechanisms under
a disease or for guiding the search of treatment targets.
From Figure 3C, detection of DE genes covers two-thirds
of papers (218 papers) in the microarray meta-analysis
literature. Most existing methods or applications are for
two-class comparison (e.g. identify DE genes comparing
cases versus controls). Other types of outcome variables
(e.g. multi-class, continuous, censored survival or time
series) have also been considered in microarray meta-
analysis (2). Details of these methods will be further
described in ‘Types of meta-analysis Methods’ section.

Pathway analysis

Pathway analysis (a.k.a. gene set analysis) is a statistical
tool to infer correlation of differential expression evidence
in the data with pathway knowledge from established
databases (3,4). The idea behind pathway analysis is to
determine if there is enrichment in the detected DE
genes based on an a priori defined biological category.
Such a category might come from one or multiple
databases such as Gene Ontology (GO; www
.geneontology.org), the Kyoto Encyclopedia of Genes
and Genomes (KEGG; http://www.genome.jp/kegg/),
Biocarta Pathways (http://www.biocarta.com/) and the
comprehensive Molecular Signatures Database
(MSigDB; http://www.broadinstitute.org/gsea/msigdb/).
For the majority of recent microarray meta-analysis ap-
plications, pathway analysis has been a standard
follow-up to identify pathways associated with detected
DE genes [e.g. (5) and many others]. The result provides
more insightful biological interpretation and it has been
reported that pathway analysis results are usually more
consistent and reproducible across studies than DE gene
detection (6). Shen and Tseng (7) developed a systematic
framework of Meta-Analysis for Pathway Enrichment
(MAPE) by combining information at gene level, at
pathway level and a hybrid of the two.

Network and co-expression analysis (32 papers)

Co-expression analysis and network analysis of micro-
array data are used to investigate potential transcriptional

Figure 2. Flow chart of paper collection and categorization. Papers were collected from PubMed search and manual collection. After removing du-
plicates and irrelevant papers, 620 papers were formally reviewed. Commands used in PubMed search: a(‘‘meta-analysis’’[Title/
Abstract]) AND ((‘‘microarray’’[Title/Abstract]) OR (‘‘expression profiles’’[Title/Abstract]) OR (‘‘expression profile’’[Title/Abstract]) OR
(‘‘gene expression’’[Title/Abstract]) OR (‘‘Affymetrix’’[Title/Abstract]) OR (‘‘Illumina’’[Title/Abstract])); b(‘‘meta-analysis’’[Title/Abstract])
AND (‘‘genome-wide association’’[Title/Abstract]); c(‘‘meta-analysis’’[Title/Abstract]) AND ((‘‘CGH’’[Title/Abstract]) OR (‘‘CNV’’[Title/Abstract])
OR (‘‘copy number’’[Title/Abstract])); d(‘‘meta-analysis’’[Title/Abstract]) AND ((‘‘miRNAs’’[Title/Abstract]) OR (‘‘miRNA’’[Title/
Abstract]) OR (‘‘microRNAs’’[Title/Abstract])).
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co-regulation and gene interactions. Network analyses
typically work with the gene–gene co-expression matrix,
which represents the correlation between each pair of
genes in the study. A crucial assumption is that the mag-
nitude of the co-expression between any pair of genes is
associated with a greater likelihood that the two genes
interact. Thus, networks of interactions between genes
are inferred from the co-expression matrix. Many papers
have extended this analysis to the meta-analysis scenario.
Of the 32 papers identified, some directly merge multiple
studies to construct a network as if from a single study
(8–15). Others combine pairwise gene interaction evidence
across studies by vote counting (16–18) or Fisher’s (19,20)
method, similar to meta-analysis for DE gene detection.
Segal et al. (21) was probably the first large-scale micro-
array meta-analysis for network or co-expression analysis.
They developed a ‘module map’ by combining 1975
arrays in 26 cancer studies to characterize expression
behavior of 2849 modules collected from various sources
(e.g. Gene Ontology, KEGG pathways and gene expres-
sion clusters). Wang et al. (22) formulated a regularized
approach to combine multiple time-course microarray
studies for inferring gene regulatory networks. Zhou
et al. (23) proposed a 2nd-order correlation analysis to
construct network and functional annotation by
combining 39 yeast data sets. Huttenhower et al. (24)
used a scalable Bayesian framework to combine studies
for pairwise meta-correlation and predicted functional re-
lationship. Wang et al. (25) developed a semi-parametric
meta-analysis approach for combining co-expression rela-
tionships from multiple expression profile data sets to

evaluate similarity and dissimilarity of gene network
across species. Steele et al. (26) proposed a weighted
meta-analysis Bayesian network based on combining stat-
istical confidences attached to network edges and a con-
sensus Bayesian network to identify consistent network
features across all studies.

Inter-study prediction analysis (25 papers)

Prediction analysis (a.k.a. classification analysis or
supervised machine learning) is probably the most
commonly applied microarray analysis that leads to
clinical utility. In this type of analysis, the goal is to con-
struct an improved discrimination between two or more
study populations with accuracy beyond existing criteria
in clinical practice (27). There now exists an extensive lit-
erature on classification methods for gene expression data;
we refer the reader to Perez-Diaz et al. (28) for a recent
review. In a single microarray study analysis, cross-
validation has been routinely used by splitting the entire
cohort into training and testing groups, constructing a
prediction rule in the training group and finally validating
in the test group. To demonstrate validity of microarray
signatures or prediction models in other studies, two
major strategies for developing prognostic signatures
have been pursued. The first approach focuses on
validity of biomarkers in external data. The prognostic
signatures (a small number of genes) generated from
training data are usually subsequently developed from a
more traditional platform such as qRT–PCR. Reasons for
failure of external validation in this regard have been
widely surveyed and discussed in the literature (27,29–35).

Figure 3. Summary of microarray meta-analysis review. (A) Types of information integration; (B) Types of paper; (C) Purposes of meta-analysis;
and (D) Types of statistical methods for DE gene detection.
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The second type of external validation focuses on
inter-study prediction (i.e. construct a prediction model
in one study and use the model to make predictions in
another study). Although external validation of a gene
expression-based prediction model has been shown valid
in some publications (36,37), it has been found to be dif-
ficult in general. The failure of direct inter-study predic-
tion is mainly due to discrepancy of probe design and
experimental protocols across array platforms, plus
possible heterogeneous patient cohorts across studies.
Some reports avoided the major cross-platform obstacle
by directly merging studies of the same platform (usually
Affymetrix) to construct a prediction signature (38–42)
and conventional cross-validation can be performed.
Others developed sophisticated normalization techniques
to solve or alleviate such a problem, including cross-
platform normalization (XPN) (43), distance-weighted
discrimination (DWD) (44), ratio-adjusted gene-wise nor-
malization (rGN) (45) and module-based prediction
(MBP) (46). In these approaches, data are normalized
across studies so the prediction model can be applied
across studies (47–50). Rank-based robust approaches
have also been used (41,51).

Reproducibility and bias analysis (19 papers)

Evaluating reproducibility and bias across microarray
studies was an important topic, especially when array
technology and experimental protocols were in an early
developmental stage. Simple Pearson correlation and
Venn diagrams have been widely used (52–55). Other
sophisticated statistical measures have been proposed to
quantify similarity of any two microarray studies, inclu-
ding integrative correlation coefficient (56), similarities of
ordered gene lists (SOGL) (57,58), BayesGen (59) and
co-inertia analysis (CIA) (60).

Others (34 papers)

Additional purposes of microarray meta-analysis include:
(i) discover or validate disease subtypes (61–65); (ii) predict
unknown gene functions (66,67) or transcriptional regula-
tions (13); (iii) dimension reduction (68); (iv) gene cluster-
ing (69). Targeted gene detections other than classical DE
gene analysis have also been pursued. For example,
phase-coupled models (70) or Bayesian approaches (71)
have been used to combine multiple studies to detect
periodic or cell cycle-related genes. Sequence information
and gene expression have been combined for cyclic gene
detection (72). Others have also combined large-scale
microarray studies to identify house-keeping genes
(defined as genes having consistent expression across
various cellular or environmental changes) (73–75) or con-
versely highly variable genes (76,77).

DATABASES AND SOFTWARE

Databases

Many web databases are available for public storage and
meta-analysis of microarray data sets. Gene Expression
Omnibus (GEO) from NCBI and ArrayExpress from

EBI are probably the two largest public repositories. On
3 April 2011, GEO contained 22 170 data series and
546 633 samples. Several other databases are housed in
specific universities or groups, including Stanford
Microarray Database (SMD), caArray at NCI, UPenn
RAD Database, UNC Microarray Database, Yale
Microarray Database, MUSC Database and UPSC-
BASE. These websites are considered primary databases,
where the main purpose is to provide downloadable and
searchable microarray data sets. Other secondary data-
bases import data sets from primary data archives,
preprocess the data, perform in-depth analyses and
deliver it through convenient interfaces for fast query,
data mining and information integration. GEO Profiles
and Gene Expression Atlas (78) are two secondary data-
bases that accompany GEO and ArrayExpress. Other
secondary databases include Genevestigator (79),
ArrayTrack (80), Gemma, NextBio (81), LOLA (82),
L2L (83), A-MADMAN (84), PrognoScan (85), MiMiR
(86), Microarray retriever (87), TranscriptomeBrowser
(88), M2DB (89), MAMA (90) and GeneSigDB (91).
These tools contain various types of gene signature,
regulatory network and differential expression
information available for fast query, retrieval and
evaluation.
In addition to the general-purpose microarray data-

bases listed above, many databases are specialized to par-
ticular disease or species, including aging databases
[AGEMAP (92) and Gene Age Nexus (93)], Pancreatic
Expression database (94), COXPRESdb for gene
networks in mammals (95), CYCLONET for cell cycle
regulation (96), HCNet for heart and calcium functional
network (14), and general cancer databases [Oncomine
(97) and Cancer Genome Workbench (CGWB) (98)]. Of
these, Oncomine has been used and cited widely in cancer
research particularly when only a few targeted genes are
scrutinized. While the statistical methods in these data-
bases are relatively simple, a major advantage of these is
the ease of use for biological scientists who are generating
microarray data sets.

Software

Despite the availability of many web databases and many
microarray meta-analysis methods (to be discussed in
detail in the ‘Types of meta-analysis methods’ section),
there exist surprisingly few user-friendly software
packages for microarray meta-analysis implementation,
in terms of their documentation and workflow.
Compared with popular microarray packages (e.g. SAM,
LIMMA or BRB array tool), existing meta-analysis
packages are relatively primitive and difficult to use. In
the R and Bioconductor environment, GeneMeta
(implements fixed and random effects model; http://www
.bioconductor.org/packages/release/bioc/html/GeneMeta
.html; version 1.24.20), metaMA (implements random ef-
fects model and Stouffer’s method; http://cran.r-project
.org/web/packages/metaMA/; version 2.1), metaArray
(implements meta-analysis of probability of expression,
POE; http://www.bioconductor.org/packages/release/bioc
/html/metaArray.html; version 1.28.20) (99), OrderedList
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(compares ordered gene lists; http://www.bioconductor
.org/packages/release/bioc/html/OrderedList.html; version
1.24.20) (100), SequentialMA (for determining sensitivity
and judge whether more samples are needed to assure firm
conclusion) (101), RankProd (implement rank product
method; http://www.bioconductor.org/packages/release/
bioc/html/RankProd.html; version 2.24.20) (102) and
RankAggreg (implements various rank aggregation
methods; http://cran.r-project.org/web/packages/RankAg
greg/; version 0.4-2) (103) are available. GODiff (104)
(http://fishgenome.org/bioinfo/godiff/index.htm version
1.2) allows investigation of functional differentiation
across studies using Gene Ontology annotation.
Integrative Array Analyzer (105) (http://zhoulab.usc.edu/
iArrayAnalyzer.htm; version 1.1.13) provides data mining
and visualization tools to combine studies for simple
co-expression analysis and differential expression
analysis. For visualization, UCSC Genome Browser
(106) and Genome Graphs provide flexible tools to com-
pare and explore multiple genomic studies. Other commer-
cial packages, including JMP Genomics from SAS (http://
www.jmp.com/software/genomics/index.shtml; version
5.1) and Partek Genomic Suite (http://www.partek.com/
software), also provide similar or more advanced visual-
ization and graphical tools but with less statistical infor-
mation integration capabilities.
In addition to scarcity of software packages in the field,

quality of software packages should be enhanced. The
concept of ‘literate programming’ (107) (e.g. the ‘sweave’
package in R) has been developed for reproducible
research and should be promoted in future software
development. For example, all packages available in
Bioconductor now meet this requirement. Such a pro-
graming practice allows users to easily understand
program design and rationale in the source code and to
reproduce the results by other researchers.

META-ANALYSIS FOR DE GENE DETECTION

Ramasamy et al. (108) outlined a seven-step practical
guidelines for conducting microarray meta-analysis: ‘(1)
Identify suitable microarray studies; (2) Extract the data
from studies; (3) Prepare the individual datasets; (4)
Annotate the individual datasets; (5) Resolve the
many-to-many relationship between probes and genes;
(6) Combine the study-specific estimates; (7) Analyze,
present, and interpret results’. In the section below, we
will focus on steps 6 and 7 for DE gene detection of micro-
array meta-analysis. We will discuss four major types of
statistical meta-analysis methods in the ‘Types of
meta-analysis methods’ section. In the ‘Statistical consid-
erations behind the methods’ and ‘A case study’ sections,
related statistical considerations and a case study are dis-
cussed to illustrate the issue of choosing a suitable
method.

Types of meta-analysis methods

As shown in Figure 3C, microarray meta-analysis for DE
gene detection is a commonly encountered application. In
this sub-section, we will discuss four categories of methods

to combine information for DE gene detection: combine
P-values, combine effect sizes, combine ranks and directly
merge after normalization. In addition to these major
categories, sophisticated latent variable approaches have
also been developed.

Combining P-values (81 papers). Combining P-values
from multiple studies for information integration has a
long history in statistical science. It has two major advan-
tages (e.g. compared with another popular category of
combining effects sizes below), including its simplicity
and extensibility to different kinds of outcome variables.
When the outcome variable is not binary (e.g. multi-class,
continuous or censored survival), effects sizes may not be
well defined, while association P-values can still be
calculated. Below, we briefly introduce five P-value com-
bination methods and use the examples in the ‘A case
study’ section for illustration later. A major advantage
of the P-value-based approaches is that they allow for
standardization of the associations from genomic studies
to a common scale.

Rhodes et al. (109) was among the earliest to demon-
strate use of sophisticated statistical meta-analysis for DE
gene detection. They applied the famous Fisher’s method
that summed up minus log-transformed P-values. For
example, two-sided P-values of the PTTG1 gene were
obtained from differential expression analysis in four
prostate cancer studies separately in Table 1.
The Fisher’s statistics was calculated as
SFisher=�2� [log(1.6� 10�3)+log(4.7� 10�7)+log(1.7�
10�4)+log(4.7� 10�7)]=88.52, where larger Fisher score
reflects stronger aggregated differential expression
evidence. Instead of log-transformation, Stouffer’s
method (110) adopted a different alternative by inverse
normal transformation. In the PTTG1 example,

SStouffer ¼ 1=
ffiffiffi
4
p
� ��1 1� 1:6� 10�3

� �
+��1 1� 4:7� 10�7

� ��

+��1 1� 1:7� 10�4
� �

+��1 1� 4:7� 10�7
� ��

¼ 8:17
[where ��1ðxÞ is the inverse cumulative distribution
function of standard normal distribution]. Similar to
Fisher score, smaller P-values result in larger ��1ð�Þ
values and thus generate larger Stouffer score to reflect
stronger aggregated statistical evidence. For the third
and fourth methods, minimum or maximum P-values
are taken as the test statistics: SminP=min(1.9E-5,
1E-20, 2E-5, 1E-20)=1E-20 and SmaxP=max(1.9E-5,
1E-20, 2E-5, 1E-20)=2E-5. Smaller minP or maxP stat-
istics reflects stronger differential expression evidence.
Conceptually, minP claims a DE gene if any study used
to combine has a small P-value while maxP tends to be
more conservative that detected DE genes should have
small P-values in all studies combined. Differences of
these two methods that correspond to the two hypothesis
settings will be discussed in the ‘Statistical considerations
behind the methods’ section. Recently, Li and Tseng (111)
introduced an adaptively weighted Fisher’s method (AW)
that characterizes effective studies contributing to the
meta-analysis so that the meta-analysis result has better
biological interpretation. Take the ‘TPM2’ gene in Table 1
as an example. AW searched all possible 0-1 weights for
the four studies (a total of 24� 1=15 possibilities) and
identified (1,0,1,1) as the best adaptive weight, meaning
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that combination of the three effective studies (Lapointe,
Varambally and Yu) contributes the best to the DE
evidence in the meta-analysis. For all the five methods,
statistical inference can be performed parametrically
under the assumption that P-values are uniformly
distributed under the null hypothesis or can be done
non-parametrically by permutation-based analysis
(109,112).

Despite availability of powerful statistical tools
described above, many biological applications we
surveyed chose to apply naı̈ve Venn diagram (used in 21
papers in our survey) or vote counting methods (used in 24
papers) for convenience. Venn diagram is a useful visual-
ization tool, when combining few (usually 2–4) studies, to
demonstrate the intersection and union distribution of DE
gene lists detected by each individual study under a fixed
threshold (e.g. FDR=5%). The naı̈ve diagram, however,
does not perform real information integration but only

displays a consistency summary. When many studies are
combined, naı̈ve vote counting is often chosen by biolo-
gists instead. For each gene, the method simply counts the
number of studies with P-values under a given threshold
(e.g. P< 0.05). In the statistical literature, it is well known
that vote counting is statistically inefficient (113,114). On
the other hand, vote counting is useful when raw data and
complete P-value information of all genes are unavailable
while only a list of DE genes under certain P-value thresh-
old is available. This happened frequently in many early
microarray studies, in which DE gene lists were
summarized in supplemental tables of publications but
raw data were not uploaded to public domain. Due to
the significant loss of information and efficiency, the
vote counting method should be avoided whenever
possible in the applications.

Combining effect sizes (41 papers). Many meta-analysis
methods have been based on the assumption that the

Table 1. Results of the case study

PT: primary tumor
Met: metastasis

Types of
hypothesis
setting

Total
number
of detected
DE genes
(FDR=1%)

PTTG1 FOLR3 TPM2 BRAF

Study analysis
Lapointe
(62 PT, 9 Met)

– 364 P=1.6E-3; q=1.5E-2;
FC=2.75

P=0.65; q=0.80;
FC=0.92

P=9.4E-7;
q=9.3E-5;
FC=0.36

P=2.9E-4; q=5E-3;
FC=1.65

Tomlins (30 PT, 19
Met)

– 598 P=4.7E-7; q=3.4E-5;
FC=1.42

P=1E-20; q=0;
FC=0.58

P=0.92; q=0.95;
FC=0.99

P=3.4E-3;
q=1.9E-2;
FC=0.81

Varambally (7 PT, 6
Met)

– 587 P=1.7E-4;
q=3E-3; FC=8.49

P=0.96; q=0.97;
FC=1.02

P=1E-20; q=0;
FC=0.04

P=1.4E-2;
q=4.8E-2;
FC=0.58

Yu (65 PT, 25 Met) – 1073 P=4.7E-7; q=8.1E-6;
FC=3.34

P=0.43; q=0.56;
FC=1.13

P=1E-20; q=0;
FC=0.16

P=8.5E-6; q=9E-5;
FC=2.3

Meta-analysis
Fisher HSB 2287 P=0; q=0 P=0; q=0 P=0; q=0 P=4E-10; q=3E-9
Stouffer HSB 1472 P=0; q=0 P=1.1E-5;

q=4.9E-3
P=0; q=0 P=0.36; q=0.97

minP HSB 1740 P=4E-20 (q=4E-19) P=4E-20
(q=4E-19)

P=4E-20
(q=4E-19)

P=1E-5 (q=9E-5)

AW HSB 2312 P=0 (q=0) (1,1,1,1) P=0 (q=0)
(0,1,0,0)

P=0 (q=0)
(1,0,1,1)

P=0 (q=0)
(1,1,1,1)

RankSum
Up HSB 672 P=0 (q=0) P=0.93 (q=1) P=1 (q=1) P=2E-6 (q=4E�5)
Down HSB 626 P = 1 (q=1) P=0.06 (q=0.23) P=0 (q=0) P=0.99 (q=1)

RankProd
Up HSB 490 P=0 (q=0) P=0.84 (q=1) P=1 (q=1) P=0 (q=0)
Down HSB 462 P=1 (q=1) P=0.02 (q=0.02) P=0 (q=0) P=0.99 (q=1)

Vote counting
S� 3, P=.01 HSA or

HSA�

453 Yes No Yes Yes

S� 3, P=.05 HSA or
HSA�

1021 Yes No Yes Yes

S=4, P=.01 HSA or
HSA�

80 Yes No No Yes

S=4, P=.05 HSA or
HSA�

217 Yes No No Yes

Random effects
model

HSA 350 P=2E-14 (q=1E-11) P=0.33 (q=.56) P=0.002 (q=0.02) P=0.89 (q=0.95)

maxP HSA 549 P=2E-19 (q=2E-16) P=0.79 (q=0.86) P=0.05 (q=0.13) P=2E-8 (q=1E-6)

Results of DE gene detection from individual study analysis and meta-analysis (using nine different methods) are listed. Four representative genes are
scrutinized for the P-value and q-value results.
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standardized effect sizes are combinable across studies.
Fixed and random effects models (FEM & REM) are
the two most popular approaches in this category.
In FEM, the estimated effect size in each study is
assumed to come from an underlying true effect size
plus measurement error (that may come from experimen-
tal or population sampling error). In REM, each study
further contains a random effect that can incorporate
unknown cross-study heterogeneities in the model. Choi
et al. (115) was among the first to apply these models to
microarray meta-analysis. In a given application, a Q-stat-
istic was used to determine the need for a random effects
model and the underlying effect size was estimated under
FEM or REM. Bayesian meta-analysis was also de-
veloped with Markov Chain Monte Carlo (MCMC) simu-
lation to estimate the underlying effect size. Others have
also developed different variations of effect size models
(116–118).

Combining ranks (18 papers). One apparent downside of
methods combining P-values or effect sizes is that the
results can often be dominated by outliers. This can be a
significant problem when thousands of genes are analyzed
simultaneously in the noisy nature of microarray experi-
ments. Methods combining robust rank statistics are used
to alleviate this problem. Instead of P-values or effect
sizes, the ranks of DE evidence are calculated for each
gene in each study. The product, mean (119) or equiva-
lently sum (120) of ranks from all studies is then calculated
as the test statistic. Permutation analysis can be performed
to assess the statistical significance and to control FDR.
Hong et al. (102) proposed a more advanced RankProd
algorithm that calculates the product of the ranks of fold
change in each inter-group pair of samples. In a follow-up
comparative study, they showed its better performance as
compared to Fisher’s method and the random effects
model (121). DeConde (122) applied various ‘rank
aggregation’ methods, which were developed for the
meta-search problem for combining top-k lists in the
computer science literature. The methods effectively ag-
gregate the rankings of, say the top 100 most upregulated
or downregulated genes in each study.

Directly merging the raw data (51 papers). Despite the
concern of heterogeneity across studies, many microarray
meta-analysis applications chose to normalize across
studies and directly merge data sets for DE gene detection.
This approach is often called ‘mega-analysis’, especially in
GWAS meta-analysis. In microarray meta-analysis, such
applications usually restrict selection of studies from the
same or similar array platform, e.g. a single Affymetrix
U133 or multiple Affymetrix platforms (38,123). The col-
lection of only Affymetrix arrays allows pre-processing by
model-based robust multi-array (RMA) normalization
(124) on the CEL files of all samples simultaneously.
Others have developed advanced normalization tech-
niques to eliminate cross-study discrepancy and allow
direct merge of studies [e.g. XPN (43), DWD (44) and
rGN (45)]. Although direct merging can be attractive in
applications for its convenience, cautions have to be taken
that normalizations do not guarantee to remove all

cross-study discrepancies. In fact, Goldstein et al. (125)
demonstrated that RMA does not remove batch effects
even when two studies are from the same lab and same
Affymetrix platform but performed at different time.

Latent variable approaches. There are more sophisticated
approaches in place that attempt to model the pre-
processed microarray data sets using latent variable-based
models and attendant inference using either expectation–
maximization routines or Markov Chain Monte Carlo
algorithms. For example, the probability of expression
(POE) was a latent variable used in several papers that
was not observable in the data but could be inferred
from other observed variables. Papers of this category
include metaArray (99) which employs two types of infer-
ential strategies, frequentist and Bayesian (see the
‘Statistical considerations behind the methods’ section)
for modeling data from multiple platforms, and XDE
(126), which fits a joint parametric Bayesian model for
multi-study meta-analysis. In particular, the latter paper
shows some compelling simulation evidence for a joint
modeling strategy using these latent variable models.
For more specialized settings, Conlon et al. (127) and
Fan et al. (71) have presented Bayesian modeling
approaches for combining data from multiple microarray
studies. While the hierarchical models used in these papers
are statistically more sophisticated than the methods
described in the previous section, they offer the potential
of pooling information across genes to sharpen inferences
about which genes are differentially expressed. However,
due to their complexity, they have not been used much in
practice. One notable exception is Shen et al. (128), which
applied a precursor of the metaArray algorithm to identi-
fication of gene expression signatures for aggressive breast
cancer.

Statistical considerations behind the methods

Null and alternative hypothesis assumptions behind the
methods. Although the concept of combining studies for
meta-analysis is seemingly straightforward, the targeted
biomarker characteristics implicitly reflected by different
statistical hypothesis settings behind the methods can be
varied. Following the convention of Birnbaum (129), Li
and Tseng (111) presented two major hypothesis settings
behind microarray meta-analysis methods described in the
‘Types of meta-analysis methods’ section. Suppose K
studies are combined and �k is the effect size of study k.
The first hypothesis setting (HSA) detects candidate genes
differentially expressed in ‘all’ studies (H0: �1= �k= 0 for
one or more k versus Ha: �k 6¼ 0, 1� k�K) whereas, HSB
identifies markers differentially expressed in ‘partial’ (one
or more) studies (H0: �1= . . .= �k=0 versus Ha: �k 6¼ 0
for one or more k). For example, Fisher’s method takes
sum of log-transformed P-values as the statistics. If, for a
given gene, a study has very significant P-value (e.g.
P=1E-20) but all other studies do not have significant
P-values (e.g. the FOLR3 gene in the ‘A case study’ section),
the Fisher’s method still concludes a large Fisher’s score
and declares this gene as a DE gene. As a result, Fisher’s
method pursues the second hypothesis setting, HSB.
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Similarly, Stouffer, minP, maxP, AW, as well as rank sum
and RankProd, all adopt similar hypothesis setting HSB.
On the other hand, the maxP method takes the maximum
P-value as the statistics. It requires that P-values from all
studies are small and thus it pursues the first hypothesis
setting, HSA. The random effects model has the same hy-
pothesis setting that all studies have the same overall effect
size while each study may contain an additional random
effect component. One might somewhat relax HSA to
detect genes differentially expressed in ‘majority’ of
studies (denoted as HSA�). The vote counting method
follows this relaxed hypothesis setting. The hypothesis
setting of each method is presented in Table 1.

Frequentist versus Bayesian inference. Implicit in the dis-
cussion about inference has been the use of a frequentist
framework. In particular, we assume that there is a test
statistic, larger values which indicate stronger evidence
against the null hypothesis. However, one could also
perform Bayesian hypothesis testing using these
hypotheses. This is done by consideration of
posterior probabilities of the specific hypotheses
(e.g. P(�1= . . .= �k=0jdata) versus P(�k 6¼ 0 8kjdata)).
Computation of these posterior probabilities requires the
use of a likelihood for the parameters of interest along
with prior probabilities of the specific hypotheses being
tested. The prior probabilities are typically selected
based on the relative costs of a type I error (rejecting the
null hypothesis when it is true) versus a type II error (ac-
cepting the null hypothesis when it is false). The larger the
relative cost, the larger the prior probability for the null
hypothesis should be. Bayesian hypothesis testing proced-
ures are amenable with the latent variable models for
meta-analysis described in the ‘Databases and software’
section. In the literature, another advantage of Bayesian
approach is the use of Bayes factor that does not require a
prior probability of the two hypotheses and can work as
an alternative of classical hypothesis testing.

Consistent up or downregulation. Comparing the first three
categories of meta-analysis methods in the ‘Types of
meta-analysis methods’ section, combining effects sizes
(e.g. random or fixed effects model) automatically
identifies genes that have consistent up or downregulation
in all studies. This may not be the case for methods
combining P-values or ranks if the P-values and ranks
are obtained from two-sided hypothesis testing. In this
case, up- and down-regulation are treated as equally
strong evidence and a gene may be detected from the
meta-analysis with strong up-regulation evidence in one
study but strong down-regulation evidence in
another study, which leads to confusing conclusions.
Theoretically, the discordance may reflect underlying
biological truth due to population heterogeneity but
it may as well be a result of technical artifacts such as
gene annotation mistakes or cross-hybridization.
Distinguishing the two is often a difficult, if not impos-
sible, task. A convenient solution to avoid detecting genes
with such discordances is by combining P-values or ranks
from one-sided tests. For example, a modified Stouffer’s
method can apply a z-transformation that automatically

utilizes one-sided tests and splits up- and downregulation
evidences into positive and negative z-scores, respectively.
Owen (130) applied a similar Pearson one-sided test
adjustment for Fisher’s method and the modification can
be extended to minP, maxP and other methods. Note that
the consistent up- or downregulation issue only exists in
two-class comparison in DE gene detection and does not
apply to other types of response variables (e.g. multi-class,
continuous or survival).

A case study

To illustrate some properties of the methods described in
the ‘Types of meta-analysis methods’ section, we per-
formed a simple case study. The motivation of this small
case study was to help understand how the algorithm of
each method works and to explain pros and cons of each
method. The result provides general insight for selecting
an adequate method in applications. This case study is,
however, neither comprehensive nor conclusive enough
as a comparative study to judge performance of the
methods. In this case study, four prostate cancer expres-
sion profiles (Lapointe, Tomlins, Varambally and Yu)
containing metastasis versus primary tumor samples
were combined for meta-analysis. After gene matching
by official gene symbols, pre-processing and filtering,
4260 genes were analyzed in the meta-analysis. We used
the R package ‘siggenes’ to perform DE gene analysis in
each study. ‘siggenes’ allows implementation of the
Significance Analysis of Microarray (SAM) method and
the Empirical Bayes Analyses of Microarrays (EBAM)
method. For simplicity, we applied the popular SAM
method with B=500 permutation. According to
Phipson and Smyth (131), the P-values from permutation
analysis should never be zero but the ‘siggenes’ package
does occasionally generate zero P-values. If P=0 is
obtained for a certain gene in an individual study, we set
it to P=1E-20 to avoid failure of logarithmic or inverse
normal transformation in the Fisher’s and Stouffer’s
methods. After P-values are generated, Benjamini–
Hochberg procedure is applied to calculate q-values and
correct for multiple comparison (‘p.adjust’ function in R is
used). The random effects model was implemented using
the ‘GeneMeta’ package in R. RankSum and RankProd
methods were performed in the R package ‘RankProd’. In
the ‘RankProd’ package, the RankSum and RankProd
methods could only be implemented with up- and
downregulation analysis separately. Theoretically, it is
easy to modify the algorithm to analyze up- and
downregulation simultaneously. For the vote counting
method, the method determines a DE gene if it has
P-values smaller than a threshold P in greater or equal
to S studies among the four studies combined. In
Table 1, we list results for P=0.01 or 0.05 and S=3 or
4. Table 1 shows results of four single-study analyses and
nine meta-analysis methods in four selected genes.
The first example gene, ‘PTTG1’, was up-regulated in

the metastatic group with strong statistical significance in
all four studies (P=1.9E-5, 1E-20, 2E-5 and 1E-20). As
expected, all nine meta-analysis methods concluded very
strong statistical significance even after multiple
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comparison correction. As a comparison, the second
selected gene ‘FOLR3’ was down-regulated with strong
statistical significance in the Tomlins study (P=1E-20;
fold change FC=0.58) but was not statistically significant
in the other three studies (P=0.65, 0.96 and 0.43). Such
sporadic high statistical significance in a subset of studies
might be a result of unknown experimental artifacts (e.g.
non-specific probe design that causes cross-hybridization
in the cDNA array design) but might instead be a bio-
logical truth in the specific cohort. Fisher, minP, AW,
RankSum and RankProd all obtained strong to
moderate statistical significance after meta-analysis for
this gene (see FOLR3 column in Table 1). This reflected
the underlying HSB hypothesis setting of these methods to
detect a DE gene if the gene is differentially expressed in
one or more studies (see ‘Statistical considerations behind
the methods’ section). On the other hand, vote counting,
the random effects model and maxP required a gene to be
differentially expressed in all or ‘majority’ of the studies
(i.e. hypothesis setting HSA) and thus did not generate
significant q-values. The third gene, ‘TPM2’, was differen-
tially expressed in three studies (P=9.4E-7, 1E-20 and
1E-20 in Lapointe, Varambally and Yu) but not differen-
tially expressed in Tomlins (P=0.92). Among the nine
methods, it was detected by seven methods, excepting
only maxP (q=0.13) and vote counting (S=4). This
result shows that methods to detect genes differentially
expressed in ‘all’ studies might be too stringent and
could ignore an important marker gene when many
studies are combined. It was interesting that, in the
random effects model, although it is aimed at HSA, the
random effects assumption provided robustness so that
TPM2 was statistically significant (q=0.02). The fourth
example gene, ‘BRAF’, was differentially expressed in all
four studies but was surprisingly down-regulated in two
studies but up-regulated in the other two studies. Among
the nine methods, Fisher, minP, AW, vote counting and
maxP detected BRAF as a DE gene because the methods
combined two-sided P-values without distinguishing DE
direction. RankSum and RankProd, although considered
DE directions in the algorithm, still determined BRAF as
an upregulated DE gene. Stouffer and random effects
model were two methods that considered DE directions
in the algorithm and generated non-significance q-values.
Whether detecting a discordant gene like BRAF is favor-
able or not depends on the inferential goals of the experi-
ment. It can be the case that BRAF is an important
marker and the discordance is generated from an
unknown meaningful confounding variable (e.g. race;
say, BRAF is up-regulated in black but down-regulated
in white). It is equally possible that the discordance comes
from unknown technical artifacts.
Below, we further scrutinize the biological functions of

the four genes using the NCBI database. PTTG1 has been
related to DNA repair, cell division and mitosis cell cycle
and has been correlated with tumor aggressiveness in
multiple tumors. The strong statistical significance in all
four studies is biologically verified. On the contrary, there
is no direct evidence of cancer association found for
FOLR3. The strong DE statistical significance in the
Tomlins study might indeed be an artifact. For TPM2,

a recent paper has identified a novel splice variant of
TPM2 related to prostate cancer cell lines (132). The
high statistical significance in three out of four studies
might be strong enough evidence for its association with
metastasis. The fourth gene, ‘BRAF’, plays a role in
regulating the MAP kinase/ERKs signaling pathway,
has been associated to multiple cancers and is in the
KEGG prostate cancer pathway (05215). Indeed, the
confusing discordant direction of fold changes might be
the result of unknown confounding factors such as age or
race. Further investigation of demographic or experimen-
tal information for the four studies might help elucidate
the mystery. We also note that interpretation of detected
DE genes also depend on other genes due to gene
dependency.

OPEN QUESTIONS

Despite the popularity of microarray meta-analysis, many
issues remain unresolved that can hamper the effectiveness
of its application. In this section, we discuss a few open
questions and related problems.

Quality assessment and inclusion/exclusion criteria

To date, the decision to include or exclude microarray
studies in a meta-analysis has been mostly ad hoc and
subjective in the literature. Researchers usually apply
arbitrary criteria, such as number of samples or array plat-
forms (e.g. (112,133,134) and many others), to make the
decision. Inclusion of a low quality or outlying study into
the meta-analysis, however, can greatly reduce the statis-
tical power or even result in a false conclusion. As a first
step, keyword searching in primary data repositories can
provide a useful initial screening to identify studies to
combine. Some biological terminology systems (e.g.
Unified Medical Language System, UMLS) may help
provide a refined and unbiased selection for more homo-
geneous studies. Ramaswamy et al. (108) has suggested to
apply the integrative correlation technique by Parmagiani
et al. (56) to select ‘reproducible’ genes for meta-analysis.
This approach potentially can be extended for objective
inclusion/exclusion decisions. In general, a data-driven
quantitative evaluation for inclusion/exclusion criteria is
still an open question in the field. This is tied to the clas-
sical question of between-study variation. In the case of a
single gene, the issue of between-study variation has been
carefully studied; a review of available methods can be
found in (135). How to adapt this to the genomic,
high-dimensional data setting is still an open question.
This issue is also discussed in the companion paper for
GWAS meta-analysis, under the terminology of
‘heterogeneity’.

Practical guidelines from large-scale comparative study
and simulation

Among the papers we have surveyed, only two papers
performed systematic comparative analysis on microarray
meta-analysis methods: Hong et al. (121) and Campain
and Yang (136). Although the two studies provided in-
sightful conclusions, the number of methods compared
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(three and five methods, respectively) and the number of
real examples examined (two and three examples, respect-
ively with each example combining only 2–5 microarray
studies) were very limited. Some key conclusions from the
two papers were even contradictory. A large-scale com-
parative study and simulation study with adequate evalu-
ation measures will help provide insights and practical
guidelines for choosing the ‘best’ meta-analysis
method(s) in practice.

Combining studies with censored information

As mentioned in ‘Types of meta-analysis methods’ section,
vote counting has a natural advantage to combine infor-
mation from studies with censored P-value information
(i.e. raw data are not accessible but only a top ranked
DE gene list under certain P-value threshold is available),
though it suffers greatly from low statistical power.
Although many grant agencies and journals now enforce
data sharing policies, many old studies or new studies
funded by private foundations are still not openly access-
ible. Studies with censored information can be an obstacle
for meta-analysis. Researchers are forced to either drop
studies with censored information or use inefficient vote
counting methods in the meta-analysis. In the literature,
Bushman and Wang (137) have transformed P-values to
pseudo effect sizes to combine vote counting and effect
size combination methods. Extension of other existing
methods, such as Fisher, Stouffer and maxP, to analyze
such censored P-value data in partial studies will provide a
more powerful solution to this practical problem.

Meta-analysis to guide and design future studies

In modern evidence-based medicine, meta-analysis is often
used (or required) to combine existing evidence in the lit-
erature when planning for a new study. Similarly, genomic
meta-analysis should be used more frequently to narrow
down gene targets or scope of study when designing new
studies (e.g. targeted sequencing).

Meta-analysis on a pathway basis

While the work of authors such as Shen et al. (37) and
Shen and Tseng (7) has led the way in the area of
combining information from multiple studies at the
pathway level, there are several issues that remain to be
addressed. Adjusting for inference due to pathway
dependence remains an important open problem, as the
dependence in pathway data might render many of
the statistical methods available for multiple testing
(e.g. q-values/false discovery rate control) invalid.

Development of user-friendly software

In our review, only a few microarray meta-analysis
methods are developed with R packages. When we
tested the packages, most of them either did not have
clear manuals or had functions that were not easy to
apply (especially compared with mature and popular
microarray packages such as SAM, PAM, LIMMA,
BRB Array Tool or GSEA). Convenient R packages or
packages in a programmable environment will allow

researchers to test and compare methods and motivate
further methodological development. Software with
friendly graphical user interfaces (GUI) will further
assist biologists in daily applications.

Adjust for potential confounding variables

Heterogeneities caused by demographic, clinical and tech-
nical variables often exist within and across studies.
Failure to consider these variables in the statistical
models and meta-analysis can result in reduced statistical
power or false positives. In a microarray meta-analysis,
these systematic variabilities should be considered and
incorporated in the analysis whenever possible. Leek and
Storey (138) proposed surrogate variable analysis (SVA)
to further account for unmeasured and unmodeled factors
in a genome-wide expression analysis. The result has
shown improved sensitivity and accuracy. Similar tech-
niques can be extended to microarray meta-analysis.

CONCLUSION AND DISCUSSION

In this article, we performed a comprehensive review of
microarray meta-analysis and discussed the related statis-
tical issues. Although many methods have been proposed
and used in published applications, the detailed
meta-analysis workflow and the hypothesis behind the
analysis needs more attention. Selection of a suitable
method depends on the type of analysis desired (various
purposes described in ‘Purposes of microarray
meta-analysis’ section) and the hypothesis setting behind
each method (‘Statistical considerations behind the
methods’ section). In our review, we noticed that easy to
use software packages are rare in the field. We have also
addressed several important open questions (‘Open ques-
tions’ section), including developing a quantitative inclu-
sion/exclusion evaluation, performing comparative study
for a practical guideline and adjusting for confounding
variables. As many high-throughput experimental
technologies are rapidly developed and widely applied
nowadays, data management and effective integrative
analysis will become more and more essential to fully
utilize the rich information contained in the tremendous
amount of data. The analytical techniques and concepts
may also extend to information integration of other types
of genomic data.
One limitation of this review article is the restricted

scope of literature search by PubMed. We have attempted
to include 102 manually collected references. The inclu-
sion, however, cannot be exhaustive. For example, many
related approaches are termed ‘integrative analysis’ in the
literature and thus cannot be included in the review. This
is especially true in categories other than DE gene analysis
(e.g. pathway analysis, prediction analysis or network ana-
lysis). We attempted to include ‘integrative analysis’ in the
keyword search but failed because it generated thousands
of publications with most of them irrelevant to the
purpose of this article.
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