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Abstract

Motivation: During lead compound optimization, it is crucial to identify pathways where a drug-like compound is
metabolized. Recently, machine learning-based methods have achieved inspiring progress to predict potential meta-
bolic pathways for drug-like compounds. However, they neglect the knowledge that metabolic pathways are de-
pendent on each other. Moreover, they are inadequate to elucidate why compounds participate in specific
pathways.

Results: To address these issues, we propose a novel Multi-Label Graph Learning framework of Metabolic Pathway
prediction boosted by pathway interdependence, called MLGL-MP, which contains a compound encoder, a pathway
encoder and a multi-label predictor. The compound encoder learns compound embedding representations by graph
neural networks. After constructing a pathway dependence graph by re-trained word embeddings and pathway co-
occurrences, the pathway encoder learns pathway embeddings by graph convolutional networks. Moreover, after
adapting the compound embedding space into the pathway embedding space, the multi-label predictor measures
the proximity of two spaces to discriminate which pathways a compound participates in. The comparison with state-
of-the-art methods on KEGG pathways demonstrates the superiority of our MLGL-MP. Also, the ablation studies re-
veal how its three components contribute to the model, including the pathway dependence, the adapter between
compound embeddings and pathway embeddings, as well as the pre-training strategy. Furthermore, a case study
illustrates the interpretability of MLGL-MP by indicating crucial substructures in a compound, which are significantly
associated with the attending metabolic pathways. It is anticipated that this work can boost metabolic pathway
predictions in drug discovery.

Availability and implementation: The code and data underlying this article are freely available at https://github.com/
dubingxue/MLGL-MP.

Contact: jianyushi@nwpu.edu.cn or huiyu@nwpu.edu.cn

1 Introduction

Enzymes catalyze drug or drug-like compounds into their metabo-
lites, which differ significantly from these compounds themselves
(Zhang and Tang, 2018). As a complex biotransformation, a com-
pound metabolic pathway contains a set of interlocking enzymatic
reactions (Jia et al., 2020a). In drug discovery, it matters to identify
what metabolic pathways a compound attends in the stage of lead
compound optimization (Baranwal et al., 2020; Cho et al., 2010;
Sankar et al., 2017). More importantly, there is a crucial need in
drug design to understand why compounds attend specific metabolic
pathways. However, since a compound (e.g. beta-Alanine) would at-
tend one or more pathways (Fig. 1), biological assays are always
costly and time-consuming to identify pathways among a vast set
of pathway combinations. In recent years, computational methods,

especially machine learning-based methods, are promising to
predict possible metabolic pathways rapidly for given compounds
(Baranwal et al., 2020; Zhu et al., 2021).

Former machine learning-based methods can be roughly catego-
rized into network-based and classification-based. Network-based
methods generally construct certain interaction networks and lever-
age network propagation algorithms to infer potential pathways for
compounds. For example, Hu et al. (2011) constructed a network of
chemical–chemical interactions (CCIs) to predict the association of a
query compound to 11 kinds of metabolic pathways. As its exten-
sion, Gao et al. (2012) integrated three networks, involving CCIs,
protein–protein interactions (PPIs) and chemical–protein interac-
tions (CPIs) to predict metabolic pathways. Very recently, Zhu et al.
(2021) proposed a heterogeneous network involving chemicals,
enzymes, CCI, CPI and PPI information, where nodes are chemicals
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or enzymes, and edges are interactions between nodes. However, the
major limitation of network-based methods cannot process the com-
pounds which are isolated in the network.

Classification-based methods leverage the technique of multi-
label learning to infer potential metabolic pathways. Usually, there
are three kinds of multi-label learning strategies. The first technique
converts a multi-label classification into one or more binary classifi-
cations. For example, taking SVMs the binary classifier, Fang and
Chen (2017) set compound-pathway pairs as samples where positive
samples are validated pairs and negative samples are unknown pairs.
Guo et al. (2018) first construct seven compound association net-
works from KEGG and STITCH. Then, they apply Random Walk
with Restart to generate network embeddings, which further were
fused as the final compound features. Last, they train a set of
pathway-specific binary SVMs. As an extension of Guo et al.
(2018), Jia et al. (2020) recently use random forest (RF) as basic
classifiers for accommodating more sub-types of pathways.
However, these methods ignore the relationship between labels and
aggregate the imbalance between positive and negative samples by
generating many negative samples.

The second sort uses a random k-label sets (RAKEL)
(Tsoumakas et al., 2007) to treat each kind of label combinations as
a new label. Thus, it turns the multi-label classification into a multi-
class classification. Compared to the previous binary classification,
it provides the co-occurrence of multiple labels. For example, iMPT-
FRAKEL (Jia et al., 2020) encodes compounds by fingerprints and
leverages a random k-label sets algorithm to tackle the multi-label
classification by SVMs and RF. However, these methods also face
the imbalance issue where new combined labels usually account for
few samples.

The last one directly performs a direct multi-label classification
by deep learning. For example, Baranwal et al. (2020) and Yang
et al. (2020) utilized graph neural networks (GNNs) [i.e. graph con-
volutional network (GCN) and GATs, respectively] to extract com-
pound features based on 2D compound graphs and concatenated
them with additional features derived from fingerprints (e.g.
MACCS) and molecular properties (e.g. the number of aromatic
rings, molecular weight and log P) as the final features. However,
these methods ignore the dependence between pathways.

In summary, although existing methods have achieved inspiring
performance in metabolic pathway prediction, they neglect the de-
pendence between pathways (i.e. pathway crosstalk in terms of biol-
ogy). For example, both Lipid Metabolism (LM) and Carbohydrate
Metabolism (CM) are affected by Metabolism of Cofactors and
Vitamins (CVM). Deficiencies of vitamin B1, folic acid and vitamins
B6 and B12 (in CVM) lead to a significant increment of lipid

deposits in the aorta (in LM) (Kalyesubula et al., 2021; McNeil
et al., 2012). In addition, The B group vitamins help convert carbo-
hydrates into energy in CM (Calderón-Ospina and Nava-Mesa,
2020). Moreover, such a pathway interdependence is asymmetric
due to upstream/downstream relationships between pathways (Yan
et al., 2020). Therefore, the characterization of asymmetric interde-
pendences among pathways would enhance the prediction task in
the context that a compound participates in uncertain numbers of
metabolic pathways.

Furthermore, existing computational methods are inadequate to
interpret why a compound attends a specific metabolic pathway
(Baranwal et al., 2020; Yang et al., 2020). In fact, metabolic path-
ways are usually related to the presence of certain chemical sub-
structures. For example, amino and carboxylic substructures play an
important role in binding to enzymes in Amino Acid Metabolism
(Lopez and Mohiuddin, 2021). Therefore, the capture of crucial
substructures (possibly revealing functional groups), will help reveal
the mechanism of a compound metabolized by enzymes.

To address the above issues (pathway interdependence and inter-
pretability), we develop a Multi-Label Graph Learning framework
enhanced by pathway interdependence for Metabolic Pathway pre-
diction (MLGL-MP). This end-to-end framework contains a com-
pound encoder, a pathway encoder and a multi-label predictor. The
compound encoder learns compound embedding representations
based on molecular graphs, while the pathway encoder learns path-
way interdependence embeddings. The multi-label prediction dis-
criminates which pathways a compound attends based on two kinds
of embeddings. Overall, the main contributions of our MLGL-MP
are as follows.

1. It provides an interpretable manner to indicate crucial com-

pound substructures which are significantly associated with

metabolic pathways.

2. By capturing the pathway interdependence, it significantly

improves the characterization of the relevance between com-

pounds and their metabolic pathways.

3. It proposes a direct multi-pathway prediction approach by meas-

uring the proximity between compounds and metabolic path-

ways in a common embedding space.

2 Materials and methods

2.1 Problem formulation and model construction
Given m compounds M ¼ ci; i ¼ 1; . . . ;mf g and a list of metabolic
pathways T ¼ tc; c ¼ 1; . . . ;Cf g. Suppose that a compound ci is
assigned with a set of attending pathways Ti � T. The task is to pre-
dict the pathway set Tn of a newly coming compound cn, where
Tn � T. The prediction can be modeled as a problem of multi-label
learning, which learns a function mapping F : M! 2P. For this
task, we design a multi-label graph learning framework, which con-
tains a compound encoder, a pathway encoder and a multi-label pre-
dictor (shown in Fig. 2).

2.2 Compound encoder
The compound encoder, adopting a two-layer GNN architecture,
learns compound embedding representations by utilizing molecule
graphs. Its first layer is a GAT (Veli�ckovi�c et al., 2017), which cap-
ture the importance of chemical bonds to pathways. The second
layer is a GCN (Kipf and Welling, 2017), which further extracts
atom features by aggregating neighboring atom features and is fol-
lowed by a global pooling layer (Nguyen et al., 2021) to generate
compound embeddings.

According to chemical structure, each compound c is represented
as a molecule graph G ¼ ðV;EÞ, where V is the set of N atoms and
E is a set of chemical bonds. Let A 2 R

N�N (N¼jVj) be its adjacency
matrix, in which aij¼1 indicates the occurring bond between atom i
and atom j, and aij¼0 indicates no bond. Here, each node vi (atom)
is initially represented by a q-dimensional binary feature vector
hi 2 R

q. As suggested in Nguyen et al. (2021), the initial node

Fig. 1. Illustration of compounds and their metabolic pathways. Labels l0�l10 repre-

sent different types of metabolic pathways. For example, beta-Alanine is metabo-

lized by five pathways, labeled as l0, l3, l5, l7 and l9. Among them, pathway l7 is

shared by Pentulose-5-phosphate and beta-Alanine while pathway l5 is shared by

Phosphoenolpyruvate acid and beta-Alanine. Especially, pathway l0 is commonly

shared by beta-Alanine, Pentulose-5-phosphate and Phosphoenolpyruvate acid. The

list of metabolic pathway names can be found in Table 1
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features typically include the atom symbol, the number of adjacent
atoms, the number of adjacent hydrogens, the implicit value of the
atom and the atom occurrence in an aromatic structure.

First of all, for each atom vi in the molecular graph G of com-
pound c, the GAT layer updates its features by aggregating the fea-
tures of its neighboring atoms. The aggregation is implemented by a
shared self-attention operation a: R

s � R
s ! R, which defines the

importance of its neighboring atom vj to atom vi as follows:

eij ¼ a Whi;Whj

� �
: (1)

Here, the learnable weight matrix W 2 R
s�q accounts for a linear

transformation from input features into higher-level features, where
s is the dimension of updated atom features. Then, the updated fea-
tures h

0

i of atom vi can be defined by

h
0

i ¼ r
X
j2N i

aijWhj

� �
; (2)

where aij ¼ softmaxj (eijÞ is the normalized attention coefficient and
rð�Þ is a non-linear activation function (i.e. ReLU). The normaliza-
tion of attention coefficients makes themselves comparable among
different nodes.

Furthermore, a multihead attention is adopted to enhance the ex-
pression of the attention layer. Specifically, K independent attention
mechanisms are performed in parallel and their features are con-
catenated as the updated features h

A
i of atom vi as follows:

hA
i ¼

K
k

k ¼ 1
r
X
j2N i

ak
ijW

khj

� �
; (3)

where hA
i 2 R

Ks; Ks is the dimension of updated atom features, K
is the number of attention heads, and k is the concatenation oper-
ation of vectors. It is remarkable that the average of fak

ijg accounts

for the importance of the chemical bond between atom vi and

atom vj.
After that, the GCN layer following the GAT layer further

updates atom features by emphasizing the topology of molecule
graph. According to the propagation rules of GCN, the updated fea-
tures fhC

i 2 R
G; i ¼ 1; . . . ;Ng of atoms of compound c is determined

by the following matrix form:

Hc ¼ r ~D
�1

2 ~A ~D
�1

2HAWA

� �
; (4)

where HA 2 R
N�Ks is the GAT-based feature matrix stacked by

fhA
i 2 R

Ks; i ¼ 1; . . . ;Ng, Hc 2 R
t is the GCN-updating feature ma-

trix stacked by the updated atom feature vector h
c
i 2 R

t,

WA2 R
Ks�G is the weight matrix in the GCN layer, ~A ¼ Aþ IN, IN

is the identity matrix, D 2 R
N�N is the degree matrix, in which diag-

onal elements are the degrees of each vertex and ~Dii ¼
P

j
~Aij .

Once the atom embedding vectors fhc
i g of compound c are

obtained, a readout operation finally turns them into the embedding

vector of the compound. In the readout, both a global Max-
pooling and a global Mean-pooling are performed in parallel. Their

resulting embeddings, Zmax jð Þ ¼ argmaxi fh
c
i ðjÞg and Zmean jð Þ ¼

meanifhc
i ðjÞg, are concatenated as the final embedding Z 2 R

2t of
compound c.

2.3 Pathway encoder
The metabolic pathway encoder, containing a two-layer GCN archi-

tecture, learns pathway embedding representations by constructing
a pathway dependence graph, which characterizes asymmetric path-
way interdependence. In such a graph, nodes are pathways T ¼
tc; c ¼ 1; . . . ;Cf g and directed edges are their asymmetric dependen-

ces. A compound ci is assigned with a set of attending pathways

Ti � T.

Fig. 2. The overall framework of MLGL-MP for multi-label metabolic pathway prediction. It is an end-to-end learning model, which contains a compound encoder, a pathway

encoder and a multi-label predictor. The compound encoder generates compound embeddings based on molecular graphs by the composite of a GAT and a GCN. The pathway

encoder generates pathway embeddings by two-layer GCNs on a pathway dependence graph, where nodes are pathways, node features are obtained by a pre-training strategy

and edges are asymmetric pathway dependences. The multi-label predictor directly discriminates the metabolic pathways of given compounds by the proximity of pathway

embeddings and compound embeddings
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Inspired by Chen et al. (2019), the construction of the graph
includes two phases, node initialization and edge building. The node
initialization assigns initial node features. However, they cannot be
directly learned in an end-to-end manner due to the small number of
pathways (i.e. 11 pathways in the benchmark dataset). To address
this issue, a pre-training strategy is adopted to obtain initial pathway
embeddings. Considering that pathway names are semantic, we
apply GloVe, a word representation tool, to implement the pre-
training (Pennington et al., 2014). For the pathway set, GloVe gen-
erates initial pathway embeddings fq 2 R

rg by learning word
embeddings of semantic pathway names based on the Common
Crawl dataset (https://nlp.stanford.edu/projects/glove/).

The edge building contains three steps to capture the pathway
interdependence. First, the pathway co-occurrence is calculated
based on the dataset in hand. Define the co-occurrence matrix as
U 2 R

C�C, where ui,j is the pairwise co-occurrence counts between
pathway ti and tj, ui,j ¼ uj,i and C denotes the number of metabolic
pathway types.

Then, a probability matrix P is calculated by the co-occurrence
matrix U. Define pij¼p (tjjti) as the probability of tj occurring when
given ti occurring, and Ni as the total occurrence count of ti. The
probability matrix pij can be calculated by ¼ ui,j/Ni . Note that Pij is
usually not equal to Pji.

As Chen et al. (2019) suggested, a binarization of P is performed
to address the possible long-tail distribution of co-occurrence
patterns, where a few fPijgare significantly greater than
others. Formally, the conditional probability matrix P is turned to a
binary matrix M ¼ fmij; i; j ¼ 1; . . . ;Cg 2 R

C�C by a hard thresh-
old s as:

mij ¼
0; if pij < s
1; if pij � s

:

�
(5)

This binarization removes trivial edges, which could be noise.
Last, to enhance the node distinguishability during the aggrega-

tion of neighboring nodes, an extra re-weighting scheme is utilized
(Li et al., 2018) as follows:

mw
ij ¼

mij

ð1�MÞj
; (6)

where 1 2 R
1�C and Mw is the re-weighted dependence matrix.

Once the pathway interdependence graph is constructed, two
layers of GCNs are used to learn pathway embeddings. Denote
qc 2 R

ras the initial feature vector of a given pathway tc and Q 2
R

C�r as the initial pathway feature matrix stacked by
fqc; c ¼ 1;2; . . . ;Cg. Passing through a GCN layer, Q is updated by
the following propagation rule:

Hðlþ1Þ
x ¼ r D�1

x MxHðlÞx WðlÞ
x

� �
; l ¼ 0; 1; (7)

where Mx ¼ a�Mw þ IC, Dx 2 R
C�C is its degree matrix where

dii ¼
P

j Mxði; jÞ, HðlÞx 2 R
C�r is the embedding matrix in the

lth layer, a 2 ½0; 1	 is a trade-off coefficient, which determines how
neighboring nodes are emphasized in the convolutional aggregation.

In addition, IC is the identity matrix, rð�Þ denotes an LeakyReLU
activation function and WðlÞ

x is a transformation weight matrix to be
learned. Specifically, the input pathway feature matrix Hð0Þx ¼ Q,
while the output of the second layer Hð2Þx is just the pathway embed-
ding feature matrix, denoted as O 2 R

C�B, where B is the dimension
of pathway embedding features. The dimension can be same as that
of compound embedding features for the further purpose of measur-
ing the proximity between pathways and compounds.

2.4 Multi-label predictor
After obtaining compound embeddings and pathway embeddings,
we can directly perform discriminate the pathway set, in which a
compound could attend. Inspired by Chen et al. (2019), we measure
the proximities between a given compound and a list of pathways as
follows:

Ŷ ¼ Oz; (8)

where z 2 R
B�1 is the embedding vector of a compound c and O 2

R
C�B is the pathway embedding feature matrix, of which each row

denotes the embedding of pathway j. The proximity ŷi is the predict-
ing score of the given compound attending in the i-th pathway
among the pathway list T.

However, such a direct proximity measure would be senseless
since the compound embedding space and the pathway embedding
space are of different vector spaces. To address this issue, we design
an adapter to map the compound embedding space into the pathway
embedding space. The adapter can be implemented by a dense neur-
al network (DNN) containing an input layer, a hidden layer, and an
output layer. Thus, the final compound representation feature is
defined as z ¼ DNNðzÞ 2 R

B.
Last, the multi-label classification loss (He et al., 2021) is used

when training MLGL-MP. It is defined as follows:

Loss ¼ � 1

C
�
Xc

i¼1
yi�log ð1þ exp ð�ŷiÞÞ

�1
� �

þ 1� yið Þ�log
exp ð�ŷiÞ

ð1þ exp ð�ŷiÞÞ

� �
; (9)

where yi 2 f0; 1g are a true label indicating whether or not the
compound participates in pathway i, and ŷi is the corresponding
confidence score output by MLGL-MP.

2.5 Evaluation metrics
To evaluate the performance of multi-label learning models, we fol-
low the conventional settings in Baranwal et al. (2020) and Yang
et al. (2020), which use Accuracy, Precision, Recall and F1_score as
the performance metrics. The greater value these metrics are, the
better performance the model achieves.

Furthermore, we use four additional indicators designated for
multi-label learning (Paniri et al., 2020; Zhang et al., 2019), includ-
ing Hamming Loss (HL), Ranking Loss (RL), Coverage and One
Error (OE). HL provides an assessment how many times a pair of
sample label is misclassified. RL provides an assessment about the
fraction of reversely ordered label pairs. Coverage provides an as-
sessment how far the list of ranked labels goes down to cover all the
truth labels of samples on average. OE provides an assessment about
the fraction of samples whose top-ranked label is not in the set of
proper labels. For HL, RL, Coverage and OE, the smaller the values,
the better the performance.

3 Experiments

3.1 Dataset
The experimental dataset was taken from Baranwal et al. (2020),
which includes 6669 compounds and their metabolic pathway
entries. The dataset was originally collected from KEGG Pathway
(https://www.genome.jp/kegg/pathway.html), which contains 11
types of metabolic pathways, including (i) Carbohydrate metabol-
ism; (ii) Energy metabolism; (iii) Lipid metabolism; (iv)
Nucleotide metabolism; (v) Amino acid metabolism;
(vi) Metabolism of other amino acids; (vii) Glycan biosynthesis
and metabolism; (viii) Metabolism of cofactors and vitamins; (ix)
Metabolism of terpenoids and polyketides; (x) Biosynthesis of
other secondary metabolites; and (xi) Xenobiotics biodegradation
and metabolism.

As the compound encoder of our MLGL-MP requires, we
removed 21 compounds that cannot be converted to molecular
graphs. We finally constructed a dataset containing 6648 com-
pounds and their 11435 metabolic pathway entries. Among them,
4898 compounds attend only one metabolic pathway while the
remaining 1750 compounds attend multiple metabolic pathways.
Specifically, 38 out of 1750 compounds attend all the 11 metabolic
pathways. The metabolic pathway dataset is summarized in Table 1
and in Fig. 3. More details can be found at https://github.com/
dubingxue/MLGL-MP.
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3.2 Parameter setting
In the compound encoder, each node of input compound graph was
initially represented by a 78-dimensional (78-d) binary atom feature
vector, as suggested in Nguyen et al. (2021). In brief, the initial rep-
resentation of a compound contains five groups of atom indicators,
including the atom symbol (44-d), the number of adjacent atoms
(11-d), the number of adjacent hydrogens (11-d), the implicit value
of the atom (11-d) and the atom occurrence in an aromatic structure
(1-d). More details can be found in DeepChem (Ramsundar, 2018).
Moreover, its GAT layer adopted 10 heads of attention layers, of
which the outputting atom dimension was also set as 78 to capture
the importance of chemical bonds. Similarly, its GCN layer kept the
same dimension (780) of outputting atom features as that in the
GAT layer. Finally, through the Global Max-pooling and the Global
Mean-pooling on atoms, each compound was represented a 1560-
dimensional embedding vector.

For the pathway encoder, the pre-training of 11 metabolic path-
ways was implemented by the GloVe algorithm (Pennington et al.,
2014), which represent their names in 300-dimensional embedding
vectors based on the Common Crawl dataset containing 840 billion
tokens and 2.2 million vocab. Both the two layers of GCNs in the
pathway encoder were represented 1024-dimensional node embed-
dings. Finally, each pathway was represented as a 1024-dimensional
vector.

In the multi-label predictor, the adapter was implemented by a
DNN, of which the input layer, the hidden layer and the output
layer contain 1560, 1500 and 1024 neurons, respectively.

After setting up the architecture of MLGL-MP, we investigated
how its hyperparameters, including the threshold s in Equation (5)
and the coefficient a in Equation (7) influence the metabolic path-
way prediction. For the pathway dependence matrix, we tuned the
value of s for the list of f0.1, 0.2, 0.3. . .,0.9g. We discarded two

non-convergence cases where s ¼ 0 indicates no edge removed and
s ¼ 1 generates a zero-dependence matrix. Furthermore, we set a in
a set of f0.1, 0.2, 0.3. . .,0.9, 1.0g. Similarly, we discarded the case
of a ¼ 0, which makes the dependence matrix as an identity matrix.
The Accuracy metric was adopted to evaluate the investigation gen-
erated by the grid research on s and a. The results show that the pair
of s ¼ 0.5 and a ¼0.3 accounts for the best performance of MLGL-
MP (Fig. 4). Also, we tuned the learning rate from the list f0.1,
0.01, 0.001, 0.0005, 0.0001g, where 0.0005 accounts for the best
performance.

In addition to these fine-tuned hyper-parameters, we empirically
set the number of epochs as 200, set the batch size as 256 and
selected Adam as the optimizer. Similarly, ReLU and LeakyReLU
with default parameters were used as the activation functions in the
compound encoder and the pathway encoder, respectively.

All the remaining experiments were run under the optimal values
of these parameters.

3.3 Comparisons with baselines
We assessed the performance of MLGL-MP by the comparison with
two state-of-the-art shallow learning methods, (i.e. RF and
XGBoost), as well as two state-of-the-art deep learning methods,
including a GCN-based method (Baranwal et al., 2020) and a GAT-
based method (Yang et al., 2020). They are briefly summarized as
follows.

• RF-based model: Since RF was originally designed for multi-class

classification but not multi-label classification, we implemented

RF in the exact same way as that in Baranwal et al. (2020).

Eleven RF classifiers were trained separately to recognize each

pathway type with the parameter setting where the maximum

depth of the tree is 60 and the number of decision trees is 300.
• XGBoost-based model: The implementation of XGBoost is simi-

lar to that of RF. Eleven XGBoost classifiers were trained separ-

ately with a parameter setting where the maximum depth of the

tree is 30 and the number of decision trees is 300.
• The GCN-based model (Baranwal et al., 2020): it proposes a

compound subgraph representation learning based on GCNs and

combined the learned subgraph embeddings as local features

with global features (diverse molecular properties, MACCS fin-

gerprints, adjacency matrix, etc.) to a feedforward neural

Table 1. Statistics of metabolic pathway dataset

Type Metabolic pathway types Involving compounds

l0 Carbohydrate metabolism 1126

l1 Energy metabolism 750

l2 Lipid metabolism 1066

l3 Nucleotide metabolism 342

l4 Amino acid metabolism 1440

l5 Metabolism of other amino acids 597

l6 Glycan biosynthesis and metabolism 325

l7 Metabolism of cofactors and vitamins 948

l8 Metabolism of terpenoids and polyketides 1483

l9 Biosynthesis of other secondary metabolites 1906

l10 Xenobiotics biodegradation and metabolism 1452

Fig. 3. Compound distribution on multiple metabolic pathways

Fig. 4. Grid search expanded by s and a in terms of accuracy

Multi-label metabolic pathway prediction enhancing by pathway dependence i329



network. We used the same parameters as those in the original

paper.
• The GAT-based model (Yang et al., 2020): it adopts GATs to ob-

tain compound subgraph representation as local features and

used the same global features same to the GCN-based model

(Baranwal et al., 2020). We used the default values of parameters

as those in the original paper.
For a fair comparison, we utilized 10-fold cross-validation (10-

CV) for all the methods and measured their performance by two
groups of metrics (Table 2). The first group contains the average
Accuracy, Precision, Recall and F1_score. The greater, the better.
The second group contains HL, Coverage, OE and RL, which are
designated metrics for multi-label learning. The smaller, the better.
The results show that the deep learning-based methods (the GCN-
based, the GAT-based and our MLGL-MP) outperform the shallow
learning-based methods (the RF-based and the XGBoost-based) over-
all. Moreover, it reveals that MLGL-MP achieves the best perform-
ance with significant improvements over all the metrics, compared
with the GCN-based model and the GAT-based model. Therefore,
the comparison demonstrates the superiority of our MLGL-MP.

3.4 Ablation studies
In this section, we investigated why MLGL-MP can achieve inspir-
ing prediction by ablation studies. We made three variants of
MLGL-MP, of which the first removes the pathway encoder
(denoted as w/o PE), the second one lacks the adapter in the multi-
label predictor (denoted as w/o AP), the third (denoted as MLGL-
MP-r) alters the pre-trained node feature vectors in the pathway de-
pendence graph to randomly initialized Gaussian vectors (Fig. 5).

MLGL-MP significantly outperforms w/o PE over all the evalu-
ation metrics. In detail, compared with w/o PE, MLGL-MP
improves the Accuracy by 2.70%, the Precision by 5.88%, the
Recall by 15.86% and the F1-score by 11.27% due to its pathway
encoder. Meanwhile, MLGL-MP reduces the HL by 0.027, the
Coverage by 0.212, the OE by 0.076 and the RL by over 0.018. The
result indicates that the designated pathway embeddings improve
metabolic pathway prediction greatly because it captures the path-
way interdependence.

Moreover, the comparison with w/o AP shows a similar im-
provement over all the metrics. In detail, MLGL-MP improves the
accuracy by 1.01%, the precision by 4.43%, the recall by 3.16%
and the F1-score by 3.84%. Again, it shows a better performance of
multi-label learning with reducing the HL by 0.009, the Coverage
by 0.046, the OE by 0.019 and the RL by 0.003. This result shows
that the adapter in the predictor improves the prediction significant-
ly by aligning compound embeddings with pathway embeddings.

In addition, the comparison shows that the version with pathway
pre-training (MLGL-MP) is better than that with pathway random
initialization (MLGL-MP-r) over all the evaluation metrics. Thus,
the pre-training strategy can improve the prediction.

In general, the pathway encoder, the adapter and the pre-
training strategy play indispensable roles in predicting multi-label
metabolic pathways.

3.5 Case study: interpretability of MLGL-MP
Although deep learning is known as a black-box model, it is essen-
tial to understand how the model makes a prediction and whether
the model can guide lead compound optimization in drug discovery.
MLGL-MP leverages the GAT layer in its compound encoder to ac-
cess why a compound participates in a specific pathway. Since the
attention weights learned in the GAT layer can reflect the import-
ance of chemical bonds in compounds, we can reveal the association
between compounds’ substructures and their metabolic pathway.

For example, Energy Metabolism and Amino Acid Metabolism
are two important pathways in organisms (Rui, 2014; Vettore et al.,
2020). The former maintains the regular activity of metabolic
enzymes (Foo et al., 2020; Motohashi and Akaike, 2019) while the
latter are an essential process in cells (Lopez and Mohiuddin, 2021).
Thus, we selected them as examples to illustrate the interpretability
of MLGL-MP (Fig. 6).

Overall, the visualized attention weights show that most carbon
(C)-based chemical bonds constructing compound backbones usual-
ly have small attention values. More importantly, the visualization
reveals that crucial substructures having high attentions are
pathway-specific. We went deeper into the case of Energy
Metabolism (Fig. 6A), where Sulfur (S) and Phosphorus (P)-based

Table 2. Performance evaluation on the KEGG dataset of multi-label metabolic pathway prediction

Method Accuracy (%) Precision (%) Recall (%) F1_score (%) HL Coverage OE RL

RF 97.59 6 0.19 83.58 6 0.84 83.54 6 0.79 83.56 6 0.81 0.024 6 0.002 1.809 6 0.069 0.156 6 0.008 0.167 6 0.008

XGBoost 98.04 6 0.18 89.66 6 0.58 90.49 6 0.85 90.07 6 0.64 0.020 6 0.002 1.447 6 0.087 0.099 6 0.005 0.100 6 0.008

GCN-based 97.53 6 0.41 91.37 6 1.20 93.22 6 1.60 92.28 6 1.30 0.025 6 0.004 1.033 6 1.140 0.100 6 0.153 0.040 6 0.082

GAT-based 97.57 6 0.18 92.71 6 0.64 92.04 6 0.87 92.53 6 0.39 0.024 6 0.002 0.830 6 0.318 0.064 6 0.082 0.024 6 0.028

MLGL-MP 98.64 6 0.47 95.26 6 2.25 94.21 6 1.94 94.73 6 1.89 0.014 6 0.005 0.559 6 0.113 0.050 6 0.019 0.011 6 0.003

Fig. 5. Ablation comparison. Compared with MLGL-MP, w/o PE removes the pathway encoder, w/o AP lacks the adapter in the multi-label predictor, MLGL-MP-r denotes

alters the pre-trained node feature vectors in the pathway dependence graph to randomly initialized Gaussian vectors. The left panel indicates the performance by Accuracy,

Precision, Recall and F1-score. The middle one indicates the performance with regard to Coverage. The right panel indicates the comparison in terms of Hamming Loss (HL),

One Error (OE) and Ranking Loss (RL)
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chemical bonds in Energy Metabolism have higher attention values
and are highlighted in red. The result is consistent with the early
knowledge that Sulfur metabolism and Oxidative phosphorylation
occur in the pathway of Energy Metabolism (Gibson and Skett,
2013). Meanwhile, recent works also provided more pieces of evi-
dence (Foo et al., 2020; Motohashi and Akaike, 2019). For example,
the unique role of sulfur in organisms is mainly related to redox
reactions and its functions include cell protection and energy metab-
olism (Motohashi and Akaike, 2019). Oxidative phosphorylation
has garnered increasing interest in energy metabolism as a new tar-
get space (e.g. the mycobacterial druggable target) (Foo et al.,
2020). Moreover, the case of Amino Acid Metabolism (Fig. 6B)
shows that the substructures of amino and carboxylic have greater
attention weights. The result is validated by the work (Lopez and
Mohiuddin, 2021), which indicates both amino (�NH2) and car-
boxylic acid (�COOH) functional groups play an important role in
Amino Acid Metabolism.

In summary, MLGL-MP is an interpretable model, which can in-
dicate compound substructures significantly associated with meta-
bolic pathways. It would help reveal why a compound participates
in a specific pathway.

4 Conclusion

In this paper, we have proposed an MLGL-MP, which contains a
compound encoder, a pathway encoder and a multi-label predictor.
This end-to-end framework can address two existing issues, includ-
ing inadequate characterization of pathway dependences and inter-
pretable prediction.

The comparison with popular shallow learning models and deep
learning models demonstrates the superiority of MLGL-MP.
Moreover, the ablation studies as well as the case study validate its
contributions. First, it provides an interpretable manner to indicate
crucial compound substructures which are significantly associated
with metabolic pathways by molecular graph attention embedding.
Secondly, by capturing the pathway interdependence, it significantly
improves the characterization of the relevance between compounds
and their metabolic pathways. Thirdly, by measuring the proximity
between compounds and metabolic pathways in a common embed-
ding space, it proposes a direct multipathway prediction approach
without extra label strategy. In summary, we believe that our study
provides new insights into label dependence representation learning
for other multi-label classification problems (e.g. drug toxicity pre-
diction) in drug discovery.

Moreover, though the GAT can interpret the importance of drug
substructures to metabolic pathways in some sense, other parts (i.e.
the pathway encoder and the adapter) in the model are of the black
box. In the coming future, it is anticipated that interpretable techni-
ques derived from image processing (e.g. visualization of hidden
layers, nearest neighbors and GAN) can be utilized to achieve better
interpretability in predicting metabolic pathways for compounds.
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