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The chemical composition and antioxidant activity of extracts (POE) of

Penicillium oxalate isolated from Ligusticum chuanxiong Hort have been

investigated. However, the biological activity of POE is limited, and its

antioxidant, stress resistance and DNA protection effects in vivo are unclear.

The current study aims to explore the beneficial effects of POE on DNA damage

protection in pBR322 plasmid and lymphocytes and stress resistance in

Caenorhabditis elegans. The results showed that POE increased the survival

rate of C. elegans under 35°C, UV and H2O2 stress, attenuated ROS and MDA

accumulation, and enhanced the activity of some important enzymes (SOD,

CTA, andGSH-PX). In addition, the POE-mediated stress resistance involved the

upregulation of the expression of the sod-3, sod-5, gst-4, ctl-1, ctl-2, daf-16,

hsp-16.1, hsp-16.2, and hsf-1 genes and acted dependently on daf-16 and hsf-1

rather than skn-1. Moreover, POE also reduced lipofuscin levels, but did not

prolong the lifespan or damage the growth, reproduction and locomotion of C.

elegans. Furthermore, POE showed a protective effect against DNA scission in

the pBR322 plasmid and lymphocytes. These results suggested that P. oxalate

extracts have significant anti-stress and DNA protection potential and could be
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potential drug candidates in the pharmaceutical field, thus greatly broadening

the understanding of the biological effects of the endophytic fungus P. oxalate.

KEYWORDS

endophytic fungi, Penicillium oxalicum, antioxidant, oxidative stress resistant,
Caenorhabditis elegans, DNA damage protection

1 Introduction

There is increasing evidence that reactive oxygen species

(ROS, e. g., O2− and OH) and free radical-meditated reactions

damage DNA, lipids and proteins (Dubois et al., 2018),

eventually leading to various diseases. For example, DNA

damage affects normal physiological metabolism and blocks

some metabolic pathways, leading to ageing, cancer,

atherosclerosis, coronary heart ailment, diabetes, Alzheimer’s

disease and other neurodegenerative disorders (Xu et al., 2005).

Currently, antioxidants have various degrees of anti-

inflammatory, antiatherosclerotic, antitumor, antimutagenic,

anticarcinogenic, antibacterial or antiviral effects (Aruoma,

1998) and are considered highly effective in treating ROS-

mediated pathologies. Many synthetic antioxidant

compounds, such as butylated hydroxyanisole and butyl

hydroxytoluene, are useful, but they are cytotoxic and are

suspected to be potential causes of health damage (Conning

and Phillips, 1986). Accordingly, finding efficient and safe

antioxidants from natural resources to prevent and reduce

the occurrence of related diseases is urgently warranted

(Denis et al., 2013).

Currently, endophytic fungi isolated from medicinal plants

have received greater attention due to their great potential to

produce bioactive compounds with a variety of biological

properties (Strobel, 2003; Strobel et al., 2004). Previous studies

have suggested that endophytic fungus extracts contain bioactive

substances with antibacterial, antioxidant and other bioactivities

(da Silva et al., 2020), such as Lasiodiplodia venezuelensis isolated

from Syzygium samarangense L (Budiono et al., 2019) and

Cercospora sp. PM018 was isolated from Lal-bisalyakarani

(Mookherjee et al., 2020), and could be a potential antioxidant

resource for the treatment of related diseases. Moreover, in vitro

fermentation culture of endophytic fungi has the advantages of

high yield, a short fermentation period, high production efficiency,

and sustainable production of target bioactive ingredients

(Ludwig-Müller, 2015). Hence, the efficacy and potential

usefulness of endophytic fungus extracts have led to a number

of studies with the aim of detecting their antioxidant activity.

However, there have been few studies on the oxidative stress

resistance of endophytic fungus extracts in vivo models (Tiwari

et al., 2014) and most studies have only confirmed the antioxidant

activity of endophytic fungal extracts in vitro (Huang et al., 2007; Li

et al., 2015). Fortunately, C. elegans, a powerful tool, is commonly

used to test various physiological processes, the mechanisms of

some diseases and the biological activity of natural products due to

its advantages of small body size, ease of handling and many

mutant strains (Wang et al., 2014). For instance, previous studies

frequently used C. elegans as a model to explore the antioxidant,

anti-stress and anti-ageing capacities of different plant extracts

(Duangjan et al., 2021). In addition, as far as we know, DNA

damage is associated with ROS imbalance, and excess free radicals

can damage DNA strands leading to the occurrence of various

diseases (Thanan et al., 2014). Nevertheless, an extensive survey of

the literature revealed very few reports corroborating the protective

potential against DNA damage of endophytic fungus extracts

(Kaur et al., 2020).

In previous studies by our group, an extract of Penicillium

oxalate (POE) isolated Ligusticum chuanxiongHort was reported to

have antioxidant capacity (Tang et al., 2021), but its antioxidant and

oxidative stress resistance properties in animal models and DNA

damage protection effects are lacking. Therefore, the purpose of this

study was to enrich the biological effects of the endophytic fungus

Penicillium oxalicum, such as anti-stress and DNA damage

protection properties. Our present findings could accelerate the

utilization of POE in the field of therapeutics by virtue of its DNA

damage protection, antioxidant activity and increased stress

resistance potential in C. elegans.

2 Materials and methods

2.1 Materials

The endophytic fungus P. oxalate was isolated from the roots

of L. chuanxiong Hort and stored in the “Fermentation

Engineering Laboratory” (College of Life Sciences, Sichuan

Agricultural University, Ya’an, China).

The activated endophytic fungus p. oxalate was inoculated in

PDAmedium and cultured on a shaker for approximately 1 week

at 28°C. Subsequently, vacuum-filtered fermentation broth was

extracted with ethyl acetate and concentrated with a rotary

evaporator to obtain the P. oxalate extract (POE).

2.2 Caenorhabditis elegans strains and
culture conditions

The strains N2 (wild type), CF1038 [daf-16 (mu86)I]

(WBStrain00004840), EU1 [skn-1 (zu67) IV/nT1 (IV; V)]

(WBStrain00007249), PS3551 [hsf-1 (sy441)I]

(WBStrain00030901) and Escherichia coli OP50 (E. coli OP50)
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were obtained from the Caenorhabditis Genetics Center

United States. Worms were cultured at 20°C in solid

nematode growth medium (NGM) and seeded with

inactivated E. coli OP50 as a food source. The worms were

age synchronized based on the bleaching method as follows:

eggs were obtained by bleaching adults using lysis solution 3.5 ml

ofM9 buffer, 0.5 ml of NaClO (5%) and 1 ml of NaOH (5 mol/L).

Unless otherwise stated, all eggs were incubated on NGM plates

containing E. coli OP50 and different concentrations of POE.

2.3 Acute toxicity assay

Toxicity tests in liquid medium were performed according to a

previous method with modifications (Moliner et al., 2018). In brief,

synchronized L4 worms were placed in M9 buffer in a 96-well

microplate with different concentrations (1–100 μg/ml) of POE at

20°C for 24 h. At least 100 worms per condition were evaluated per

treatment and M9 was used as a negative control. Subsequently, the

survival rate (%) was calculated after 24 h.

Survival rate% � (Number of alive worms× 100)/Total number of worms.

2.4 Stress resistance assay

Before exposure to the corresponding stressors, the age-

synchronized L1 larvae worms were treated or not treated

with POE (25, 50, 75 µg/ml) for 3 days at 20°C. Subsequently,

the late L4 larvae or young adult were washed twice with sterile

water and exposed to various stresses until all individuals died.

The worms were considered dead when they did not respond to

platinum wire stimulus. All trials were repeated three times.

Resveratrol (Res, 22.5 µg/ml) was used as a positive control

(Zhuang et al., 2016).

2.4.1 Ultraviolet-B stress assay
To evaluate resistance to UV irradiation, the POE-treated

worms were exposed to UV irradiation (120 mJ cm−2) for 4 h.

The number of surviving worms was counted every 24 h (Wang

et al., 2018).

2.4.2 H2O2-induced oxidative stress assay
This assay was performed as described previously (Saul et al.,

2008). Briefly, the POE-treated worms were transferred to fresh

NGM containing 2 mMH2O2 to determine the effects of POE on

oxidative stress. The survival rate of the worms was observed

every 30 min.

2.4.3 Heat shock assay
The heat shock assay using C. elegans was performed according

to Lin et al. (2019). The POE-treated worms were moved from a

comfortable cultivation environment (20°C) to a 35°C mediated

stress environment. Subsequently, the number of surviving worms

was monitored every hour to determine their heat stress resistance.

2.5 Intracellular malondialdehyde content,
and superoxide dismutase, catalase, and
glutathione peroxidase activities

The POE (25, 50, 75 µg/ml)-treated worms (L4 stage) were

treated with and without H2O2 (2 mM) for 1 h. Next, worm bodies

were lysed by ultrasound equipment and supernatant was obtained

after centrifugation. TheMDAand protein content, SOD, CAT, and

GSH-Px activity were determined according to the commercial

assay kits (Nanjing Jiancheng Biotechnology Institute, China). Final

results were normalized to protein levels (Xiao et al., 2014).

2.6 Reactive oxygen species accumulation
assay

Estimation of endogenous ROS levels was based on the method

described by Prasanth et al. (2019). Briefly, the worms were treated

with different concentrations of POE (25.50 and 75 μg/ml) for 3 days

and exposed to oxidative stress (2 mM H2O2) for 1 h. Then, the

worms were washed thoroughly with M9 buffer and incubated with

5 μg/ml 2′,7′-dichloro-fluorescein diacetate (DCFH-DA) for 20 min,

followed by another wash to remove the excess DCFH-DA.

Furthermore, the worms were transferred with a drop of sodium

azide (0.5%) onto a glass slide. Fluorescent imaging was performed

on 10 worms using an Olympus FV1200 confocal microscope

(Tianjin Leike Optical Instruments Co., Ltd.). The relative

fluorescence was measured and calculated using ImageJ software.

2.7 Lipofuscin accumulation and body
length assay

The lipofuscin level was measured after 5 days of POE

treatment. Then the worms were randomly selected and

washed with M9 buffer three times and then anesthetized

with 0.5% NaN3 as described in previous study (Onken and

Driscoll, 2010). At least 10 worms were selected for imaging using

a fluorescence microscope (CX23, Olympus, Tokyo, Japan) at

wavelength with excitation/emission (360/420 nm) filters. The

fluorescence intensity and the body size of the worms were

measured using ImageJ software.

2.8 Longevity assay

The N2 worms were used for lifespan analysis under normal

conditions as described in previous study (Duangjan et al.,
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2019a). In brief, synchronized L4 larval worms were placed on

NGM plates with POE. Then, live worms were counted and

transferred to fresh NGM plates containing POE every day until

all individuals died. The L4 worms were defined as a starting time

point (d 0) for lifespan assay. The assay was performed with

approximately 100 worms in each group and the results are

expressed as the survival rate%.

2.9 Fertility assay

The fertility assay was performed as described in a previous

study (Lin et al., 2020). In brief, reproductive capacity was

evaluated by three indexes: brood size, progeny number and

hatchability (the ratio of progeny number to brood size

number). The parents of the worms were transferred daily to

fresh NGM containing 50 μg/ml POE during the progeny

production period. Then, the eggs on the old NGM were

counted daily. Moreover, the old NGM was kept at 20°C for

24 h to detect viable eggs. The experiment was performed with

at least 10 worms per group.

2.10 Movement assays

The body movement assay was performed as described

previously (Herndon et al., 2002). The age-synchronized

L1 larvae worms were treated and the motility of worms was

evaluated on Days 3, 7, and 10. Then, worms were transferred to

fresh plates for 1-min of free movement. Subsequently, the

motility behaviour of worms was observed using a

stereomicroscope and was classified into classes A, B, and C:

the highly mobile worms, which we designated class A, moved

spontaneously and smoothly; members of class B did not move

unless prodded, and they left tracks that were nonsinusoidal; and

class C worms did not move forward or backwards, but oscillated

their nose or tails in response to touch.

2.11 Expression levels of gene assays

The worms were treated with or without 50 µg/ml POE for

72 h from eggs and then incubated with 2 mM H2O2 for 1 h.

Total RNA was extracted using the TRIzol Total RNA Extraction

Kit (Tiangen, Beijing, China) and synthesized into cDNA using

the FastKing RT Kit (TSINGKE Biotech Co., Ltd., Beijing,

China). Subsequently, quantitative reverse transcription

polymerase chain reaction (qRT‒PCR) was performed using

SuperReal PreMix Plus (SYBR Green) and a real-time PCR

detection system (Bio-Rad, Laboratories, Hercules, CA,

United States). The expression of mRNA was analysed using

the comparative 2−ΔΔCt method and act-1 was the internal control

gene. The primers used for qRT‒PCR in this study are listed in

Supplementary Table S1.

2.12 Determination of DNA damage
protective activity

2.12.1 DNA nicking assay for hydroxyl radical
scavenging activity

The potential of POE to protect the supercoiled

pBR322 plasmid from the destructive effect of free radicals

caused by the Fenton reagent was estimated using the DNA

nicking assay as described by Jeong et al.(2009). Five

microlitres of PBS (10 mM), 2 µl of plasmid DNA (0.5 µg),

POE (5 µl, 25, 50, and 75 μg/ml), 2 µl of FeSO4(1 mM) and

2 µl of H2O2(1 mM) were mixed. The reaction mixture was

incubated for 30 min at 37°C. After incubation, 2 µl of loading

buffer were added to stop the reaction and the DNA was

analysed with 1% agarose gel electrophoresis for 30 min

under 120 V. Subsequently, the different forms of DNA,

i.e., Supercoiled (SC) and open circular (OC) DNA were

visualized and semi-quantitative analysis to calculate the

double helix percentage under the gel documentation

system (Gel Doc XR, Bio-Rad, United States). The positive

control was 500 µM vitamin E (VE) (Liu et al., 2022).

Double helix rate (%) � A0/(A0 + A1) × 100%

where A0 is the grey value of the double helix conformation, and

A1 is the grey value of the open-loop conformation.

2.12.2 Cytochalasin blocked micronucleus assay
in lymphocytes

In this assay, lymphocytes were cultured by adding 500 µl

of whole blood with 9 ml of RPM11640, 10% foetal bovine

serum, penicillin (100 units/ml), streptomycin (100 µg/ml)

and phytohemagglutinin (5 µg/ml). Then, the cells were

exposed to H2O2 (250 µM) to induce DNA damage.

Simultaneously, POE at different concentrations (25

50 and 75 μg/ml) was added to the cultures for 72 h in 5%

CO2 at 37°C. At 44 h, cytochalasin-B (3 µg/ml) was added to

the cultures to block cytokinesis. At 72 h, the cultures were

collected and treated (Carvalho-Silva et al., 2016). Coded

slides were stained for 30 min with Giemsa and observed

under a microscope. MN and other nuclear abnormalities

were scored in 500 well spread cells of each culture (Fenech

et al., 1999).

2.13 Statistical analysis

Survival curves were drawn to determine significant

differences using log-rank (Mantel-Cox) tests (GraphPad
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Software, CA, United States) (*p < 0.05, **p < 0.01, and ***p <
0.001). Other statistical calculations used one-way ANOVA

followed by LSD and Duncan tests (SPSS software, version

20). All data are expressed as the mean ± SD (n = 3), and

different letters in columns indicate that the values are

significantly different (r < 0.05).

3 Results

3.1 Effect of P. oxalate extract on acute
toxicity in C. elegans

The acute toxicity of POE was initially assessed by

studying the effect of POE on the viability of C. elegans.

The results showed that, compared with the control group,

the viability of the worms was not affected after 24 h of POE

treatment at concentrations ranging from 10 to 100 µg/ml

(Table 1). Worms exposed to maximum dose extracts also

maintained a survival rate of 93% ± 4%, while the viability

rates of the control group were 92% ± 1% (Table 1). Thus,

POE did not produce acute toxicity to the model organism at

the tested concentrations.

3.2 Effect of P. oxalate extract on stress in
C. elegans

To comprehensively evaluate the stress resistance of POE, we

measured the lifespan of worms under conditions of ultraviolet

radiation, H2O2 and 35°C.

First, we found that the treatment in the presence of POE

(50 μg/ml) promoted right shift in the worm survival curve

under UV radiation when compared with the controls

(Figure 1A), and the mean lifespan of worms treated with

UV radiation was increased by 6.4%, 14.0%, and 6.9% in the

25, 50, and 75 μg/ml treatment groups, respectively,

compared with the control group (Supplementary Table

S2), although the difference was only significant in the

group treated with 50 µg/ml POE (Supplementary Table

S2; p < 0.05). Furthermore, there was no significant

difference in the maximum lifespan between the treatment

group (50 μg/ml) and the control group, but the mean and

median lifespans were increased significantly

(Supplementary Table S2; p < 0.05). Second, in the H2O2-

TABLE 1 Effects of POE on the viability of C. elegans: The results are
presented as mean of viability ± SEM%.

Concentration (µg/ml) Survival rate (%) p-value

Control 92 ± 1

100 93 ± 4 >0.05
80 94 ± 5 >0.05
60 95 ± 3 >0.05
40 93 ± 3 >0.05
20 91 ± 4 >0.05
10 93 ± 5 >0.05

Not significance differences between treatment and control groups found (p > 0.05).

FIGURE 1
The effect of POE on stress resistance inC. elegans. (A) Survival curve of worms under UV irradiation-induced stress. (B) Survival curve of worms
under H2O2-induced stress. (C) Survival curve of worms under 35°C-induced stress. Three independent biological replicates were performed.
Differences compared to control group were considered significant at p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).
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induced oxidative stress assay, a similar protective effect was

observed in the 50 μg/ml POE treatment groups and was

comparable to that with resveratrol (Figure 1B). There was no

statistically significant difference in survival rate between the

treatment groups (25 and 75 μg/ml) and the control group

(Figure 1B). However, pretreatment with 50 μg/ml POE

significantly improved the mean lifespan, median lifespan

and maximum lifespan of worms under H2O2-induced

oxidative stress (Supplementary Table S2; p < 0.05). Last, a

similar result was also observed: the survival rate of POE

(50 μg/ml) pretreated worms was higher than that of the

control group under thermal stress conditions, although

the effect was not as good as that in the resveratrol

treatment group (Figure 1C; Supplementary Table S2). As

expected, the 50 μg/ml POE treatment group exhibited the

highest mean and maximum survival times, which were

11.2 ± 0.41 h and 20.50 ± 2.65 h, respectively

(Supplementary Table S2; p < 0.05).

FIGURE 2
The effect of POE on the antioxidant defense system in C. elegans under normal and H2O2-induced oxidative stress conditions. (A) The MDA
content. (B) The SOD activity. (C) The GSH-Px activity. (D) The CAT activity. Bars with no letters in common are significantly different (p < 0.05).
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These results indicated that supplementation with

POE has the potential to resist UV- and H2O2-mediated

oxidative stress and 35°C-mediated heat stress in the C.

elegans model.

3.3 Effect of P. oxalate extract on
malondialdehyde content and antioxidant
enzyme activity in C. elegans

To elucidate the antioxidant and oxidative resistance

properties of the POE in vivo, the MDA content and SOD

and GSH-Px activities of POE-treated C. elegans were

determined in H2O2-treated C. elegans, and the

corresponding indexes were also determined under normal

conditions. As shown in Figure 2A, the MDA content was

decreased under both conditions compared to the control,

indicating that POE was able to alleviate lipid peroxidation in

C. elegans under normal and pressure conditions.

Furthermore, since SOD and GSH-Px are the main ROS

scavenging enzymes in the antioxidant defence system of C.

elegans, we further measured the activities of antioxidant

enzymes. As expected, compared with the control group,

the SOD activity of C. elegans treated with POE was

significantly increased under H2O2-induced oxidative stress

conditions (Figure 2B; p < 0.05). A similar result was also

observed in the absence of stress (Figure 2B). For GSH-Px and

CAT activity, the enzyme activity in the POE treated group

was significantly increased with and without pressure,

compared with the control group (Figures 2C,D; p < 0.05).

It was obvious that POE showed an excellent in vivo

antioxidant capacity to activate the antioxidant defence

system of C. elegans.

3.4 Effect of P. oxalate extract on Reactive
oxygen species accumulation inC. elegans

To further delve into the antioxidant potential of POE,

the ROS levels of C. elegans were assessed under normal or

stressful conditions. As shown in Figures 3A,B, higher ROS

levels were found in worms with or without POE treatment

under oxidative stress than in the absence of oxidative stress,

indicating that H2O2 caused the accumulation of ROS in

worms. Furthermore, POE treatment resulted in a decrease in

ROS levels compared to the controls regardless of the

conditions (Figure 3), which was directly proportional to

the reduction in fluorescence. The ROS levels were

significantly decreased in the 50 and 75 μg/ml POE-treated

groups under oxidative stress and in the 50 μg/ml POE-

treated group under normal conditions compared to

controls (Figures 3A,B; p < 0.05). It was obvious that POE

showed a significant antioxidant capacity and could scavenge

intracellular ROS to a certain extent, which was consistent

with reducing MDA and enhancing the activities of SOD and

GSH-PX.

FIGURE 3
The effect of POE on intracellular levels of ROS inC. elegans. (A) Accumulation of ROS inC. elegans under normal conditions. (B) Accumulation
of ROS in C. elegans under H2O2-induced oxidative stress. (i): Relative fluorescence intensity of worms was quantified using ImageJ software. (ii):
Representative image of worms which was treated with POE in both conditions. Bars with no letters in common are significantly different (p < 0.05).
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3.5 Effects of P. oxalate extract on body
length and lipofuscin accumulation in C.
elegans

Lipofuscin, a marker of ageing, is commonly used

to assess the health status of C. elegans. The body length

and lipofuscin levels in C. elegans were also evaluated

and representative images are presented in Figure 4A. In

terms of body size (Figure 4B), there was no significant

change between the POE treatment groups and the

control group (p > 0.05), indicating that POE did not

affect the body size of the worms. Relative

fluorescence quantitative analysis showed that

50 and 75 µg/ml POE significantly reduced the

accumulation of lipofuscin by 13.63% and 13.61%,

respectively, in comparison with the control group

(Figure 4B; p < 0.05).

FIGURE 4
The effect of POE on lipofuscin accumulation and body size in C. elegans. (A) Representative images of fluorescence and bright field
micrographs are shown, the scale bar was 100 μm; (B) body length and lipofuscin was measured and quantitated by ImageJ. Bars with no letters in
common are significantly different (p < 0.05).

FIGURE 5
The effect of POE on lifespan ofC. elegans. Results of lifespan
experiments were analysed using the Kaplan-Meier survival model,
and for significance by means of a long rank pairwise comparison
test between the control and treatment groups. Differences
compared to control group were considered significant at p < 0.05
(*), p < 0.01 (**) and p < 0.001 (***).
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3.6 Effect of P. oxalate extract on the
lifespan of C. elegans

Next, we evaluated whether POE (50 µg/ml) could prolong

the lifespan of worms. This concentration was chosen as the

treatment dose because it was found to be more beneficial for

reducing lipofuscin accumulation and enhancing stress

tolerance. However, there was no significant difference in

survival curves between the treatment and control groups

(Figure 5; p > 0.05 by the log-rank test), indicating that

although POE can alleviate the accumulation of age pigments,

it is not sufficient to prolong the lifespan of worms.

3.7 Effect of P. oxalate extract on the
fertility and movement of C. elegans

Fertility and movement assays were performed to examine

whether POE had some side effects on the physiological function

of this dose (50 µg/ml). Analyses of fertility showed that the size

of the brood and progeny number from Day 4 were slightly

decreased after POE treatment, but there were no differences in

total brood size, total progeny number or total hatchability in

worms treated with POE when compared with the controls

(Figures 6A–C).

In addition, we found that, as the worms aged, their motility

gradually declined, and B-class and C-class locomotion began to

appear in the middle and middle-late stages of the life cycle

(Figure 6D). However, the movement assay did not show

significant differences in locomotion ability between the POE-

treated group and control group in the different stages of the life

cycle (Figure 6D).

Considered together, these results showed that POE had no

obvious effects on the reproductive and motor systems of C.

elegans.

3.8 P. oxalate extract enhanced stress
resistance in C. elegans by activating
oxidative stress-inducible genes that
might not be associated with skn-1 but
might be dependent on daf-16 and hsf-1

The antistress ability of POE has been proved, but the

underlying molecular mechanisms require further study. Since

POE can enhance antioxidant enzyme activity and reduce ROS

FIGURE 6
The effect of POE on reproduction and movement in C. elegans. (A) Brood size; (B) Progeny number; (C) Hatchability; (D) The three levels of
locomotivity were measured and the individuals were classified according to the movement: A-free movement, B-movement after prodding,
C-weak movement after prodding. Data were expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical significance
(p < 0.05).
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accumulation, we further investigated the relative expression levels

of oxidative stress-inducible genes (sod-3, sod-5, gst-4, ctl-1, and ctl-

2) using RT‒qPCR. As indicated in Figure 7, the relative

expression levels of various oxidative stress-inducible genes of

in the POE-treated group were significantly higher than that of the

control group, especially ctl-2 (exhibiting a 25.2-fold increase).

Moreover, it was observed that the relative expression levels of daf-

16 (25.59-fold), hsf-1 (4.21-fold), hsp-16.1 (2.19-fold) and hsp-16.2

(1.82-fold) were upregulated significantly (p < 0.05) compared to

the control group. However, the relative expression levels of skn-1

were decreased 0.48 times. In addition, to further confirm the

underlying molecular mechanisms, the daf-16, skn-1, and hsf-1

mutants were used to evaluate the effects of POE on lifespan in C.

elegans mutants under H2O2-induced oxidative stress. We found

that the survival rate of POE-treated skn-1 mutants was

significantly increased compared to that of the control group

(Figure 7B, p < 0.05), confirming that POE might act

independently of skn-1. However, the daf-16 and hsf-1 mutants

did not show a protective effect of POE on worm lifespan (Figures

7C,D; p > 0.05), indicating that daf-16 and hsf-1might be necessary

for POE to improve stress resistance.

3.9 Effect of P. oxalate extract on DNA
damage protective activity

3.9.1 DNA nicking assay for hydroxyl radical
scavenging activity

The protective effect of POE on hydroxyl radical-induced

DNA oxidative damage is shown in Figure 8. The plasmid DNA

corresponding to the prominent faster moving band was the

supercoiled form (SC DNA) (Figure 8A, Lane 1). After the

addition of Fe2+ and H2O2, the supercoiled circular DNA

completely converted into the open circular or linear forms

(OC DNA) referred to as the slowest moving line (Figure 8A,

Lane 2) and the DNA double helix percentage was 13%

(Figure 8B), suggesting that the hydroxyl radicals generated by

the Fenton reaction damaged the original structure of DNA and

led to DNA nicking. However, when different concentrations of

POE were added, part of the OC DNA reverted to SC DNA

(Figure 8A, Lanes 3–5) and their DNA double helix percentages

were 44%, 55%, and 57%, respectively (Figure 8B), indicating that

POE can effectively relieve hydroxyl radical-induced DNA

damage.

FIGURE 7
The molecular mechanism of POE in the antioxidant stress. (A) The expression of stress-related genes in C. elegans under H2O2-induced
oxidative stress conditions. (B) The survival curve of skn-1mutant worms under H2O2-induced oxidative stress. (C) The survival curve of hsf-1mutant
worms under H2O2-induced oxidative stress. (D) The survival curve of daf-16 mutant worms under H2O2-induced oxidative stress. Data were
expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical significance (p < 0.05). * Significant p-value <0.05 by the log-
rank test.
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3.9.2 Cytochalasin blocked micronucleus assay
in lymphocytes

The DNA damage protection of POE was also investigated

using the CBMN assay (Figure 9). As shown in Figure 9A, the

forms of DNA damage were MN, nuclear buds and

nucleoplasmic bridges and the mean frequency of DNA

damage in the 25, 50, and 75 µg/ml treatment groups was

15 ± 2, 14.3 ± 2 and 18 ± 2, respectively, exhibiting a

significant decrease in micronucleus frequency compared with

the controls (27.7 ± 2.5) (Figure 9B; p < 0.05). The current study

revealed that POE was able to improve the protection against

DNA damage in lymphocytes.

FIGURE 8
The DNA protective effect of POE against •OH generated by Fenton’s reagent. (A) Electrophoretogram. Lanes 1 and 2 were the normal DNA
treated with and without 1 mM FeSO4 and 1 mM H2O2, respectively. Lanes 3–6 were treated with various concentrations of POE (25, 50, and 75 μg/
ml) and VE (500 μM). (B) Double helix percentage. Bars with different letters indicated statistical significance (p < 0.05).

FIGURE 9
The effect of POE on DNA damage protection in lymphocyte. (A) Various forms of DNA damage seen as (a) MN, (b) nucleoplasmic ridge and (c)
nuclear bud on cells treated with H2O2, the scale bar was 5 μm. (B) The mean frequency of DNA damage in human lymphocytes exposed to H2O2

(250 µM), H2O2 (250 µM) + POE (25, 50, and 75 μg/ml). Data were expressed as the mean ± SD (n = 3). Bars with different letters indicated statistical
significance (p < 0.05).
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4 Discussion

Endophytic fungi can produce medicinal ingredients with the

same or similar functions as the host plant by long-term

mutualism with host plants (Aly et al., 2011). L. chuanxiong

Hort (Umbelliferae), a medicinal and edible plant, is commonly

used for the promotion of good body health, anti-inflammation,

antioxidation, neuron protection and blood vessel elasticity

(Yuan et al., 2020). It has also been reported that the

endophytic fungus L. chuanxiong can produce abundant

secondary metabolites that might be applied for various

purposes (Li et al., 2020; Cao et al., 2021). In our earlier

study, P. oxalate isolated from L. chuanxiong exhibited strong

antioxidant activity in chemical-based assays and P. oxalate

extracts (POE) contained rich polyphenols such as ferulic

acid, hesperidin and chlorogenic acid (Tang et al., 2021). In

the present study, the biological activities of POE were further

studied with regard to DNA damage protection effects and stress

resistance properties.

Oxidative stress is closely related to the pathogenesis of

various diseases such as cancer and neurological diseases (Xie

et al., 2013). According to our results, we first found that POE

could improve tolerance against oxidative stress (UV, 35°C and

H2O2-induced) in C. elegans and the protection was not given in

a concentration-dependent manner. In fact, only treatment with

POE at 50 μg/ml significantly improved the worm’s ability to

respond to various stressors, while 75 μg/ml POE showed no

effect.

The reason for this finding could be that POE has been

proven to contain complex chemical components, while some

compounds, such as caffeic acid, exhibit a hormetic response,

eventually producing a deleterious effect when its content

increases to greater than certain levels (Pietsch et al., 2011;

Gutierrez-Zetina et al., 2021). Therefore, we hypothesized that

POE concentrations of 50–75 μg/ml could represent the

inflection point from which the beneficial effects induced by

the POE in C. elegans would begin to decline. Furthermore, some

authors have also observed that the survival of oxidative stress-

induced C. elegans was significantly improved with increasing

extract concentrations within a certain level, but decreased at

higher concentrations (Dueñas et al., 2013; Duangjan et al.,

2019b), which is consistent with our results. Notably,

moderate-dose POE was found to enhance the mean lifespan

of C. elegans under H2O2-mediated oxidative stress (increased by

17.12%), comparable to resveratrol (positive control) and some

crude extracts such as polysaccharides (Lin et al., 2020).

Moreover, ferulic acid, hesperidin, chlorogenic acid and other

polyphenols with antioxidant activity have been reported

(Gülçin, 2012; Li and Schluesener, 2017), while their content

is very low in POE. However, some researchers have attributed

the biological effect of the extract to the synergic and additive

action among multiple chemicals (Vayndorf et al., 2013; Wang

et al., 2018). Therefore, we proposed that the outstanding stress

resistance activity of POE might be attributed to the interactions

among various compounds of endophytic fungi instead of single

secondary metabolites. However, it is inevitable that the study

also had some limitations, such as lack of studies on biological

effects of other single components of POE, requiringes further

study in the future.

It is widely believed that compounds exert their biological

effects not only because of their role as conventional antioxidants

but also because of their ability to modulate the expression of

related genes and act simultaneously on complex signalling

pathways (Mansuri et al., 2014). In C. elegans, the daf-16 gene

encodes the transcription factor DAF-16, which is considered to

be a crucial regulator in the insulin/IGF-1 signalling pathway and

regulates stress-related gene expression in cells (Sen et al., 2020).

Thus, extracts can increase the ability to prevent or repair stress

damage in C. elegans by activating the daf-16 transcription factor

and reducing IIS pathway activity (Ayuda-Durán et al., 2019).

Moreover, sod-3,4, ctl-1, ctl-2, and gst-4 are target genes of DAF-

16, which encode proteins responsible for antioxidant defences

(Murphy et al., 2003). In our study, the survival curve of the daf-

16 mutant showed no significant change after POE treatment,

suggesting that the observed overexpression of these genes

following treatment with POE could be related to the increase

in the expression of DAF-16 (Gutierrez-Zetina et al., 2021).

Therefore, POE improved the stress resistance of C. elegans by

activating the daf-16 transcription factor, further promoting the

expression of downstream target genes. Moreover, some

antioxidant enzymes can reduce or eliminate excess free

radicals in the body through biochemical reactions to

maintain body stability. For example, superoxide dismutase-3

(SOD-3) catalyses the conversion of superoxide radicals to

hydrogen peroxide and diatomic oxygen (Moreno-arriola

et al., 2014). Thus, the overexpression of these target genes in

C. elegans can also explain the decreased ROS level in the present

study. In addition to DAF-16 signalling, SKN-1 is also an

important regulator of oxidative stress resistance, mobilizing a

conservative phase 2 detoxification response and promoting the

activation of multiple genes in C. elegans (Tullet et al., 2008).

However, there was no significant change in the expression of the

skn-1 gene in worms treated with POE, and POE treatment

significantly increased the longevity of the skn-1 mutant,

indicating that it might not be conducive to POE-mediated

resistance. In addition, another important gene was hsf-1. This

gene encodes the thermal shock transcription factor HSF-1

which regulates the expression of various molecular

chaperones (HSP-16.1 and HSP-16.2) to defend against

thermal or oxidative stress (Hsu et al., 2003; Hsu et al., 2003;

Kumsta et al., 2017). In the present study, overexpression of hsf-1,

hsp-16.1, and hsp-16.2 and the lack of effect of POE on the

longevity of hsf-1 mutants provide evidence that the HSF-1

pathway might be necessary for the antistress properties of

POE. Accordingly, we hypothesized that the mechanism by

which POE improves the stress resistance of C. elegans is that
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POE activates daf-16 to activate oxidative stress-inducible genes

(sod-3, sod-5, gst-4, ctl-1, and ctl-2) and hsf-1 to promote the

expression of downstream heat stress-inducible genes (hsp-16.1

and hsp-16.2), rather than skn-1 under stress conditions

(Figure 10).

In general, an increase in lifespan is often accompanied by an

increase in stress resistance in C. elegans (Murphy et al., 2003).

Lipofuscin is an autofluorescent compound that accumulates

gradually with the ageing of C. elegans (Clokey and Jacobson,

1986). However, our results showed that POE decreased

lipofuscin levels in worms, while it did not extend life,

indicating that POE showed some health benefits, but they

were not sufficient to prolong the lifespan of worms because

the lifespan is affected by multiple factors. Thus, the enhanced

antistress ability of worms treated with POE found in the present

study is not in line with lifespan extension, consistent with the

observations of Duangjan et al. (2021) working. Moreover,

lifespan analysis was used to evaluate the long-term toxicity of

extracts (Romero-Márquez et al., 2022). Thus, the results also

showed that POE has no long-term toxicity to worms. Ideally,

there should be no harm to health indicators while showing some

beneficial biological effects. However, some studies have

measured only one or two indicators to evaluate the side

effects of extracts on worms (Moliner et al., 2020; Duangjan

et al., 2021). Therefore, this study comprehensively evaluated

from four perspectives: long-term and short-term acute toxicity,

reproduction, locomotion and growth. It demonstrated that POE

has a beneficial effect on enhancing stress resistance without

adverse effects.

There is a considerable amount of evidence revealing a

correlation between DNA lesions and the occurrence of

chronic and degenerative illness (Thanan et al., 2014); for

example, DNA strand breaks caused by hydroxyl radical-

induced persistent oxidative damage are suspected to be a

major cause of carcinogenesis (Powell et al., 2005;

Chandrasekara and Shahidi, 2011). In our study, the DNA

damage protection capacity of POE was evaluated on

pBR322 plasmid DNA when treated with Fenton’s reagent.

The hydroxyl radical generated by the Fenton reactant can

attack DNA and cause a dramatic scission of the supercoiled

(SC) DNA strand to open circular (OC) strands (Qian et al.,

2008). Under such conditions, POE can may interfere with the

reaction of Fe2+with H2O2 or directly quench hydroxyl

radicals by providing an electron due to its high

antioxidant potential and further protect the supercoiled

plasmid DNA against hydroxyl radicals (Chandrasekara

and Shahidi, 2011). Moreover, a significant reduction in

CBMN was observed in H2O2 treated lymphocytes when

exposed to POE, which again demonstrated its antioxidant

and DNA damage protection effects. This result is in line with

previous studies in which Aspergillus fumigatus (Kaur et al.,

2021) and P. oxalicum (Kaur et al., 2020) extracts showed

DNA damage protection. Abundant phenolic compounds, viz;

hesperetin, ferulic acid, alternariol and apigenin have been

found in POE in our previous studies (Tang et al., 2021),

which might be responsible for its biological effects. For

example, hesperidin not only showed strong free radical

scavenging ability in vitro (Wilmsen et al., 2005), but it

also provided strong cellular antioxidant protection to

alleviate oxidative stress and DNA damage (Sahu et al.,

2013). Therefore, although the underlying mechanisms of

DNA damage protection are not fully understood, the

protective ability of POE could be related to the abundant

secondary metabolites of P. oxalate.

5 Conclusion

In this study, the antioxidant activity and stress resistance

of POE were investigated in C. elegans, and the protection

activity against DNA damage of POE was evaluated by the

pBR322 plasmid and lymphocytes. Our study revealed that

POE might effectively counteract UV, 35°C and H2O2-induced

oxidative stress without compromising the growth,

reproduction and locomotion of C. elegans. The partial

oxidative resistance properties of POE can be attributed to

diminished intracellular ROS, as well as elevated activity of

antioxidant enzymes (SOD CAT and GSH-PX). The possible

mechanism by which POE enhances stress resistance in C.

elegans is mediated by activating the DAF-16 and HSF-1

pathways and promoting the overexpression of stress

response genes. In addition, we found that POE had a

FIGURE 10
A possible model of the mechanism of action of POE-
mediated stress resistance in C. elegans. POE alleviates the
accumulation of ROS by activating the antioxidant defense system,
and ultimately improves the anti-stress ability of C. elegans.
The observed effects were mediated, at least in part, by the two
master regulators DAF-16 and HSF-1 signaling pathways rather
than SKN-1.
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protective effect against Fenton reaction produced DNA

nicking and H2O2-induced DNA damage in lymphocytes.

In summary, this study is the first to report the antistress

effects and DNA damage protection potential of endophytic

fungus P. oxalate extracts, which could be a potential resource

for treating oxidative stress and DNA damage diseases.

However, the underlying mechanisms of the biological

effects and more in vivo interventions with complex model

organisms are needed to support the therapeutic potential of

POE in the future.
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