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MicroED is a method which combines cryo-EM sample preparation and instrumentation,

with electron and X-ray crystallography data analysis, and it has been employed to solve

many protein crystal structures at high resolution. Initially, the main doubts of this method

for structure determination were the dynamic scattering of electrons, which would cause

severe inaccuracies in the measured intensities. In this paper, we will review the evolution

of MicroED data collection and processing, the major differences of multiple scattering

effects in protein crystals and inorganic material, and the advantages of continuous

rotation data collection. Additionally, because of the periodic nature of the crystalline

sample, radiation doses can be kept significantly lower than those used in single particle

data collection. We review the work where this was used to assess the radiation damage

of a high-energy electron beam on the protein molecules at much lower dose ranges

compared to imaging.
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INTRODUCTION

Cryo-EM has become one of the most powerful tools in structural biology after nearly four
decades of improvements in electron optics, direct electron detectors, and software (Frank,
2016). The major break-through technologies that have enabled the wide-spread adoption of
cryo-EM are the computerized and newly designed electron optic systems and the introduction
of direct electron detectors (Ruskin et al., 2013; Cheng et al., 2015). These technologies have
facilitated the automated collection of large single particle data sets, and the development of
the new software to reduce the effects caused by specimen motion (Grigorieff, 2013; Li et al.,
2013). With these advances, large structures can routinely be determined at resolutions that
allow the modeling of amino acid side chains. In addition to single particle cryo-EM, electron
crystallography has been used to determine 2D membrane crystal structure at high resolution
(Gonen et al., 2005). 3D crystals were also analyzed by electron crystallography, however for
many years these samples resisted structure determination (Dorset and Parsons, 1975; Unwin
and Henderson, 1975; Shi et al., 1998; Jiang et al., 2009). In 2013, micro electron diffraction,
or MicroED, was developed and used to determine the first structure of a protein from a thin
3D microcrystal (Shi et al., 2013). The MicroED technique is used to collect high-resolution
electron diffraction movie data sets from sub-micrometer sized 3D protein crystals at extremely
low-dose (Nannenga and Gonen, 2016). The new advantage of MicroED is that the electron
diffraction movies collected using the continuous rotation method (Nannenga et al., 2014b)
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can then be processed by standard X-ray crystallographic
programs. In recent years, electron diffraction methods become
a valuable tool and has been used to determine biomolecular
structures, in some cases at sub-angstrom resolution(Nannenga
et al., 2014a; Rodriguez et al., 2015; Yonekura et al., 2015;
Sawaya et al., 2016; Krotee et al., 2017; Gallagher-Jones et al.,
2018; Guenther et al., 2018; Hughes et al., 2018; Liu and
Gonen, 2018; Seidler et al., 2018; Xu et al., 2018), and
applied to material science to novel structures (Mugnaioli
et al., 2009; Simancas et al., 2016; Palatinus et al., 2017;
Vergara et al., 2017; Yuan et al., 2018; Zhang et al., 2018).
The general applicability of electron diffraction techniques
to all these samples has been made possible by continued
method development and optimization. The evolution of
MicroED methods are briefly described in the following
section.

THE EVOLUTION OF DATA COLLECTION
AND PROCESSING

In the first proof of concept MicroED study (Shi et al., 2013),
still diffraction patterns were collected at discrete angles from
multiple lysozyme crystals, and the data was processed and
merged manually. Due to the nature of still diffraction patterns,
most of the recorded intensities were only partially sampled.
To collect full intensities, the continuous rotation (CR) method
for MicroED was developed, in which the compustage of the
cryo-TEM is continuously rotated at a constant speed. Initially,
the tilting speed of the microscope was controlled by the force
applied to the F20 (FEI/ThermoFisher) alpha tilt buttons. After
few tests, a constant speed of 0.09 degrees per second was
generated by a weight, as shown in the Supplementary Video.
The rotation rate can be seen by the alpha value in the lower-
right corner of the screen. This approach was the first used
for the MicroED CR method, and it was applied to the same
lysozyme crystals used in the first study (Nannenga et al.,
2014b), as well as the study of catalase and α-synuclein peptide
fragments (Nannenga et al., 2014a; Rodriguez et al., 2015).
The next iteration of CR rotated the stage using a home
designed device (Shi et al., 2016), and this was followed by
the third generation of CR where the rotation is controlled via
software embedded in ThermoFisher/FEI microscopes. Other
related electron diffraction techniques have also made use of
continuous rotation data collection to improve the resulting data
quality (Nederlof et al., 2013; Gemmi et al., 2015). In the initial
MicroED study, a combination of manual indexing and in-house
developed programs based on previous algorithms (Shi et al.,
1998) for integration were used to generate merged intensity
of still diffraction data (Iadanza and Gonen, 2014). Since CR
was developed, all diffraction movies from the rotating protein
crystals can be easily processed through previously developed X-
ray crystallographic software [e.g., Mosflm (Hattne et al., 2015),
XDS (Rodriguez et al., 2015)], and DIALS (Clabbers et al.,
2018). Detailed protocols on sample preparation, data collection,
and processing have been published previously (Hattne et al.,
2015).

MULTIPLE SCATTERING AND DYNAMIC
SCATTERING IN PROTEIN CRYSTALS AND
INORGANIC CRYSTALS

Because of the strong interaction between electrons and the
sample, the dynamical scattering of electrons in a crystal has been
a major hurdle in the recording of accurate intensities (Spence,
1993). To overcome this, the precession electron diffraction
(PED) technique was developed for diffraction data collection
(Vincent and Midgley, 1994), and this has been shown to
dramatically decrease the effects of dynamic scattering relative to
traditional electron diffraction patterns (Oleynikov et al., 2007).
The rotation electron diffraction (RED) method was developed
to determine the structures of inorganic crystals using fine
step rotation and small-angle beam tilting (Wan et al., 2013),
in which the diffraction data was off-zone axis patterns and
might contain less overall dynamic scattering events. Similarly,
the CR method developed for MicroED was shown to reduce
the effects of dynamic scattering included on the zone axes of
reciprocal space and yield more accurate structures (Nannenga
et al., 2014b). Because the crystal is rotating as the data is being
collected, the allowed secondary scattering events are reduced as
the Bragg reflections are being integrated. Also, both the PED
and the CR methods employ the relative movement between
the Ewald sphere and the reciprocal lattice to scan reciprocal
space, facilitating the collection of full diffraction intensities. The
subtle difference between these two methods is that the crystal
and its reciprocal spaces are continuously rotating while the
scattered electron traveling in the crystal for the CR, as shown
in Figure 1, and both the real and its reciprocal spaces are static
to the scattered electrons in the PEDmethod. In other words, the
continuously rotation could generate an additional subtle tilting
of the crystal to the dynamically scattered electrons. It would
be interesting to compare the electron diffraction data from the
same crystals using the PED and the CR methods on the major
zone axis.

In addition to reducing dynamic scattering through data
collection strategies, the difference in atomic composition of
biological crystals (light atoms) relative to inorganic crystals
(heavier atoms) also plays an important role in reducing the
dynamic scattering. When thin catalase crystals (∼200 nm thick)
were used to assess the scattering observed for MicroED data,
it was found that the ratio of elastically scattered electrons
relative to un-scattered electrons (direct beam) was low (0.2),
indicating that the kinematic assumption is appropriate. The
results of this analysis were very similar to those obtained in
previous work on catalase (Dorset and Parsons, 1975; Unwin
and Henderson, 1975). These also agree on the fact that the
elastic scattering mean free path of the high energy electrons
in the cryo-biological samples are at least 4 times longer than
in the inorganic materials with atomic number bigger than 25
(Grimm et al., 1996; Iakoubovskii and Mitsuishi, 2009), which
means that the multiple scattering events could be less frequent
in the protein crystals than in the inorganic crystals. Together,
this could explain why biological samples with CR method do
not appear to suffer from dynamic scattering as much as is seen
in inorganic crystals (Spence, 1993).
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USING MICROED TO ASSESS RADIATION
DAMAGE

The radiation damage caused by high-energy electrons when they
interact with beam sensitive material is the key reason for the
resolution limitations in cryo-EM. Both protein crystals (Stark
et al., 1996; Baker et al., 2010) and single particles (Bartesaghi
et al., 2014; Grant and Grigorieff, 2015) have been used to
estimate radiation damage. The radiation damages are more

FIGURE 1 | Continuous rotation data collection in MicroED. The effects of

multiple scattering (light blue) can be reduced using the CR method, as both

the crystal and the reciprocal lattices are being rotated while the scattered

electrons traveling in the crystal.

likely accumulated from high energy electron beam knocking out
the electrons of protein molecules in vitreous ice, it would be
important to assess the damage starting from lower dose. The
signal of a diffraction experiment increases with the square of
the number of unit cells in the crystal; therefore, MicroED can
obtain accurate 3D density maps at high resolution using total
doses of as low as∼1 e/Å2, which allows the analysis of radiation
damage effects in both reciprocal space and real space (Hattne
et al., 2018).

A study on the effects of radiation damage at these very
low doses was conducted by collecting data over the same
rotation range from the same crystals in increments of 1.6
e/Å2 total dose (Hattne et al., 2018). Figures 2A,B show the
plots of the averaged intensities and the number of merged
reflections in different resolution bins as the dose accumulates.
The number of reflections rapidly decreases in the high-
resolution shells as the fine features of the crystals lattice are
lost to radiation damage, and the total intensities gradually
decay at resolution-dependent rates as the dose accumulates.
After a very small amount of dose has accumulated, there
are no measurable reflections beyond 2 Å, which indicated
the most of high-resolution information has already been lost.
When the accumulated dose reaches > ∼8 electron/Å2, most
information at better than 3 Å in resolution is also lost. In
this study, the effects of site-specific radiation damage were
also found to follow a similar trend indicating that these effects
are not solely do to a loss in crystalline order. This suggests
that radiation damage at the atomic scale could occur at much
higher rates than what has been estimated using single-particle
measurements (Bartesaghi et al., 2014; Grant and Grigorieff,
2015).

DISCUSSION

Since the initial presentation of MicroED, the data collection,
and processing methods have evolved to continually improve
the method. The use of MicroED has several advantages

FIGURE 2 | The plots of sweep number vs. (A) intensity of average per spot and (B) total number of measurable reflection numbers in the different resolution sphere

shells of merged 3D reciprocal lattice, each resolution bin was colored differently.
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for structure determination including the ability to determine
structures from a small number of crystals (in some cases
a single crystal (Nannenga et al., 2014b) that are several
orders of magnitude smaller than those needed by traditional
crystallographic methods. A unique advantage of electron
diffraction is that it is very sensitive to charge and chemical
bonding (Chang et al., 1999; Wu and Spence, 2003; Yonekura
and Maki-Yonekura, 2016). When these effects are properly
accounted for and modeled, MicroED could be used to directly
visualize charge and bonding in protein structures. Specimen
preparation usually is the bottle neck for MicroED because of
the fragileness of protein crystals, using cryo-FIB/SEM to reshape
large proteins crystals embedded in ice without blotting is a very
promisingmethod (Duyvesteyn et al., 2018), few other groups are
also working on the similar approach. Continued development
of the method promises to cement electron diffraction’s status as
a unique and valuable tool for structural biology and materials
characterization.
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