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Leggett-Garg inequalities (LGI) test the correlations of a single system measured at different times.
Violation of LGI implies either the absence of a realistic description of the system or the impossibility of
measuring the system without disturbing it. We investigate the violation of the Leggett-Garg inequality for a
two level system under decoherence in a non-Markovian dephasing environment. We discuss the
non-Markovian dynamics of the violation of LGI at zero temperature and also at finite temperature for
different structured environments. An enhanced quantum coherence is shown through the violation of
Leggett-Garg inequality in the strong non-Markovian regime of the environment.

T
here has been recent attention and renewed interests in the investigation of Leggett-Garg (LG) inequalities.
The original motivation1 for these inequalities was to test quantum coherence in macroscopic systems. LG
inequalities also play a useful role for microscopic systems as an indicator of nonclassicality due to the

existence of superposition states and their collapse under measurement in the quantum regime. The LG inequal-
ities were derived under following two assumptions (A1) macrorealism: performance of a measurement on a
macroscopic system reveals a well-defined pre-existing value (A2) noninvasive measurability: this pre-existing
value can be measured without disturbing the system. Violation of Leggett-Garg inequalities (LGI) implies either
the absence of a realistic description of the system or the impossibility of measuring the system without disturbing
it. Quantum mechanics (QM) violates the inequalities on both accounts. In recent years, theoretical study of QM
violation of LGI has been carried out for a variety of systems like electron transport through quantum dot (to
distinguish classical and quantum transport)2, for investigating nonclassicality in opto-electro-mechanical sys-
tems3, to investigate quantum coherence in oscillating neutral kaons4 and in biological light-harvesting protein
complex5. The first measured violation of LGI was announced6 by Palacios-Laloy et al. and within a few years,
violations had been probed in a diverse range of physical systems such as photons7–9, defect centres in diamond10,
nuclear magnetic resonance11,12, phosphorus impurities in silicon13.

Violation of LGI is associated to the presence of coherence in the quantum system which inevitably
interacts with its surrounding environment (reservoirs or baths) and the coherence is lost in general due
to this unavoidable interaction. Generally, the non-unitary evolution of the reduced-density matrix of the
system is obtained after taking partial trace of the total system-plus-reservoir density operator rT(t) over the
reservoir degrees of freedom. Some approximations are often made in the derivation of master equation for
the system’s reduced density matrix. The most important approximations14–16 are the weak coupling or Born
approximations, assuming that the coupling between the system and the reservoir is small enough to justify a
perturbative approach, and the Markov approximation, assuming that the correlation time of the reservoir is
very short compared to the typical system response time so that the reservoir correlation function is assumed
to be delta correlated in time. Although, the use of the Markovian approximation is justified in a large variety
of quantum optical experiments, one should notice that non-Markovian effects are crucial, for example, for
high-speed quantum communication where the characteristic time of the relevant system becomes comparable
with the reservoir correlation time, or if the environment is structured with a particular spectral density, for
example, for quantum systems embedded in solid-state devices, where memory effects are typically non-
negligible. In these cases, the dynamics can be substantially different from the Markovian dynamics. Due
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to their fundamental importance in quantum information proces-
sing and quantum computation, non-Markovian quantum deco-
herence have attracted much attention in recent years18–26, one of
the main purposes of which in the long run is to engineer different
types of (artificial) reservoirs and couple them to the system in a
controlled way.

The evolution equation of an open system density matrix is
governed by the reduced Liouville equation or called the quantum
master equation that can be Markovian or non-Markovian. In the
Markovian case, an useful procedure to calculate the two-time
(multi-time) correlation functions (CFs) for open (dissipative)
quantum systems is the so-called quantum regression theorem
(QRT)14,17 that gives a direct relation between the time evolution
equation of the single-time expectation values and that of their
corresponding two-time (multi-time) CFs. So, knowing the master
equation and the time evolution of the reduced density matrix, one
is able to calculate the single-time expectation values as well as the
two-time (multi-time) CFs using QRT. But knowing the time
evolution of the reduced density matrix is not sufficient to calculate
the temporal (two-time or multi-time) correlation function (CFs)
of system observables in non-Markovian case, for non-Markovian
open (dissipative) quantum systems, the QRT is not valid in gen-
eral37–40. Leggett-Garg inequalities test the correlations of a single
system measured at different times, so one needs to calculate these
two-time correlation functions ‘‘ÆQ(tj)Q(ti)æ’’ of an observable Q
for this open quantum system. Two-time (multi-time) correlation
functions (CFs) of an open quantum system in itself are important
physical quantities14,15. A very useful evolution equation that allows
systematically calculating the two-time correlation functions (CFs)
of system operators for non-Markovian open (dissipative)
quantum systems is derived40 recently. The derivation is based
on perturbative quantum master equation approach, valid to sec-
ond order in the system-environment interaction. We will use this
method to calculate the two-time correlation functions for a two
level system in a structured non-Markovian dephasing envir-
onment, and finally investigate the non-Markovian dynamics of
LGI-violation (coherence) for this specific open quantum system.
The two-time CFs obtained using the derived evolution equa-
tion40,41 in the weak system-environment coupling case for this
non-Markovian pure-dephasing model happen to be the same as
those obtained from the exact evaluation. However, the two-time
correlation functions so obtained significantly differ from the non-
Markovian two-time CFs obtained by wrongly directly applying
the quantum regression theorem (QRT), a useful procedure to
calculate the two-time CFs for weak-coupling Markovian open
systems.

The simplest LGI can be constructed as follows. Let Q(t) be the
observable of a two level system such that, whenever measured, it is
found to take a value 11 or 21, depending on whether the system is
in state j1æ or j2æ. We then perform three set of experimental runs
such that in the first set of runs Q is measured at times t1 and t2 5 t1 1

Dt; in the second, at t1 and t3 5 t1 1 2Dt; in the third at t2 and t3 (here
t3 . t2 . t1). From such measurements, it is intuitive to determine
the two-time correlation functions Kji 5 ÆQ(tj)Q(ti)æ where tj . ti.
Leggett and Garg1 adopted the standard argument leading to a Bell-
type inequality, with times ti and tj playing the role of apparatus
settings. For any set of runs corresponding to the same initial state,
any individual Q(t) has the same definite value (assumption A1),
irrespective of the pair Q(tj)Q(ti) in which it is measured; i.e., the
value of Q(tj) or Q(ti) in any pair does not depend (assumption A2)
on whether any prior or subsequent measurement has been made on
the system. Consequently the combination Q(t2)Q(t1) 1 Q(t3)Q(t2)
2 Q(t3)Q(t1) has an upper bound of 11 and lower bound of 23. If all
the individual product terms in this expression are replaced by their
averages over the entire ensemble of such sets of runs, the following
form of LGI is then obtained:

K3~K21zK32{K31ƒ1 ð1Þ

The same LGI can also be derived through probability argument42.
With similar arguments one can also derive a Leggett-Garg inequal-
ity for measurements at four different times, t1, t2, t3 and t4 5 t1 1

3Dt given by

K4~K21zK32zK43{K41ƒ2 ð2Þ

The two-time operators Q(tj)Q(ti) are not Hermitian operators,
and the two-time correlation functions Kji 5 ÆQ(tj)Q(ti)æ are in
general complex quantities. We consider the symmetrised com-
bination of the two-time correlators: Kji 5 Æ{Q(tj), Q(ti)}æ/2, to
indentify them with physical expectation values of the two-time
measurements. Please note that the symmetrised operator Æ{Q(tj),
Q(ti)}æ/2 5 (Q(tj)Q(ti) 1 Q(ti)Q(tj))/2 is Hermitian whose expecta-
tion value can be associated to the average value of the two-time
measurements (see Supplementary Information and43). Hence, we
will only consider the real part of K3 and K4 to investigate the
Leggett-Garg inequalities for a two level system interacting with a
non-Markovian dephasing environment. Recently, a general frame-
work for understanding the influence of non-unitary evolution on
maximal violations of the LGI was given44 for a class of Markovian
decoherence channels. Using LG inequalities, another proposal45

was given to test quantum coherent dynamics of a two-qubit sys-
tem undergoing through a superradiant decay under a common
reservoir, Born-Markov master equation was used for the open
system dynamics. For the experimental realization, they provided
a feasible scheme, which consists of two quantum dots coupled to
nanowire surface plasmons. Dynamics of the violation of the
Leggett-Garg inequality for a two level system under decoherence
in a non-Markovian dephasing environment, to our knowledge,
have not been presented in the literature. We will briefly discuss
the pure-dephasing spin-boson model and the perturbative method
to calculate the non-Markovian evolution equation for reduced
density matrix and two-time CFs valid up to second order in
system-environment coupling strength. Then we present our
numerical results to investigate Leggett-Garg inequality under the
non-Markovian decoherence dynamics, where we show an
enhanced quantum coherence through the violation of Leggett-
Garg inequality in a suitably tuned non-Markovian regime of the
environment.

Results
First, we discuss on the evolution equation of non-Markovian two-
time correlation functions. We consider a general class of open
quantum systems modeled by the total Hamiltonian of the system
plus reservoir as

H~HSzHRzHI

~HSz
X

k

�hvka{kakz
X

k

�h gkL{akzg�k La{k

� � ð3Þ

where HS and HR are system and environment Hamiltonian, respect-
ively, and HI describes the interaction between the system and the
environment. Here the operator L acts on the Hilbert space of the
system, a{k and ak are the creation and the annihilation operators on
the bosonic environment Hilbert space, and gk and vk are the coup-
ling strength and the frequency of the kth environmental oscillator,
respectively. The reduced density operator of the system can be
obtained from the density operator of the total system by tracing
over the environmental degrees of freedom rS(t) 5 TrE (rT(t)).
The total density operator is governed by the quantum evolution:
rT tð Þ~e{ i

�hHtrT 0ð Þei
�hHt . One can obtain a time-convolutionless non-

Markovian master equation at finite temperature, valid to second
order in the system-environment interaction strength
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drS tð Þ
dt

~
1
i�h

HS, rS tð Þ½ �

{

ðt

0
dt a t{tð Þ L{~L t{tð ÞrS tð Þ{~L t{tð ÞrS tð ÞL{� ��

zb t{tð Þ L~L{ t{tð ÞrS tð Þ{~L{ t{tð ÞrS tð ÞL
� �

zH:c:
�

,

ð4Þ

where

a t{tð Þ~
X

k

�nkz1ð Þ gkj j2e{ivk t{tð Þ, ð5Þ

b t{tð Þ~
X

k

�nk gkj j2eivk t{tð Þ, ð6Þ

are the environment CFs with a t{tð Þ~
X

k
gk~ak tð Þ

X
k’

gk’
1~a{k’ tð Þ

D E
rR

and b t{tð Þ~
X

k
gk
1~a{k tð Þ

X
k’

gk’~ak’ tð Þ
D E

rR

, where ~ak tð Þ~

ake{ivkt and ~a{k tð Þ~a{keivkt are the environment operators in the
interaction picture, and the symbol � � �h iR denotes taking a trace with
respect to the density matrix of the thermal reservoir (environment).
Here �nk~ exp �hvk=kBTð Þ{1ð Þ{1 is the thermal mean occupation
number of the bosonic environment oscillators.

Using open quantum system technique and quantum master
equation approach, one can also calculate the non-Markovian evolu-
tion equation of the two-time CFs of system observables Q(ti) and
Q(tj) (for finite temperature environment), valid to second order in
system-environment coupling as40

d Q tj
� 	

Q tið Þ

 ��

dtj

~ i=�hð ÞTrS HS,Q½ �f g tj

� 	
Q tið Þr 0ð Þ

� 	

z

ðtj

0
dtTrS

a�ð tj{t
� 	

~L{ t{tj
� 	

Q,L½ �
� �

tj
� 	

Q tið Þr 0ð Þ

za tj{t
� 	

L{,Q
� �

~L t{tj
� 	� �

tj
� 	

Q tið Þr 0ð Þ

zb� tj{t
� 	

~L t{tj
� 	

Q,L{� �� �
tj
� 	

Q tið Þr 0ð Þ

zb tj{t
� 	

L,Q½ �~L{ t{tj
� 	� �

tj
� 	

Q tið Þr 0ð Þ

z

ðti

0
dtTrS

a tj{t
� 	

L{,Q
� �� ��

tj
� 	

Q, ~L t{tið Þ
� �� �

tið Þr 0ð Þ

zb tj{t
� 	

L,Q½ �f g tj
� 	

Q,~L{ t{tið Þ
� �� �

tið Þr 0ð Þ
	
:

ð7Þ

where ~L tð Þ~exp iHSt=�hð ÞL exp {iHSt=�hð Þ is the system operator of
the interaction Hamiltonian (Eq. 3) in the interaction picture with
respect to HS and Q 5 Q(0). In the derivation of Eqs.(4) and (7), we
have considered the factorized initial system-bath state rT(0) 5 rS(0)
fl rR, where rR 5 exp(2bHR)/Tr[exp(2bHR)]. Quantum regres-
sion theorem for this non-Markovian evolution is not applicable due
to the presence of the last integral term in Eq.(7). For pure dephasing
spin-boson model L 5 sz 5 L{, and

HS~ �hv0=2ð Þsz, ð8Þ

then the non-Markovian master equation for the reduced system
density matrix becomes16

drS tð Þ
dt

~
{iv0

2
sz,rS tð Þ½ �{C tð Þ

2
rS tð Þ{szrS tð Þsz½ �: ð9Þ

The non-Markovian effect in the master equation (9) is taken into
account by the time-dependent coefficient C(t) given by

C tð Þ~2
ðt

0
dt aef f t{tð Þzaef f

1 t{tð Þ
� 	

, ð10Þ

where aeff(t 2 t) is the effective bath CF given by41

aef f t{tð Þ~a t{tð Þzb t{tð Þ ð11Þ

where a(t 2 t) and b(t 2 t) are defined in Eqs.(5) and (6). The single-
time expectation value of an operator can be obtained as

Q tð Þh i~TrS6R Q tð ÞrT 0ð Þð Þ

~TrS6R e
iH t
�h Q 0ð Þe{iH t

�h rT 0ð Þ
� �

~TrS6R Q 0ð ÞrT tð Þð Þ~TrS Q 0ð ÞrS tð Þð Þ

ð12Þ

Using Eq.(7), one can also calculate the non-Markovian evolution
equation of the two-time CFs of system observables as

d
dtj

sx tj

� 	
sy tið Þ


 �
~{C tj

� 	
sx tj

� 	
sy tið Þ


 �
{v0 sy tj

� 	
sy tið Þ


 �

{C1 tj,ti
� 	

sy tj
� 	

sx tið Þ

 �

,

ð13Þ

d
dtj

sy tj
� 	

sx tið Þ

 �

~{C tj
� 	

sy tj
� 	

sx tið Þ

 �

zv0 sx tj
� 	

sx tið Þ

 �

{C1 tj,ti
� 	

sx tj
� 	

sy tið Þ

 �

,

ð14Þ

d
dtj

sx tj
� 	

sx tið Þ

 �

~{C tj
� 	

sx tj
� 	

sx tið Þ

 �

{v0 sy tj
� 	

sx tið Þ

 �

zC1 tj,ti
� 	

sy tj
� 	

sy tið Þ

 �

,

ð15Þ

d
dtj

sy tj
� 	

sy tið Þ

 �

~{C tj
� 	

sy tj
� 	

sy tið Þ

 �

zv0 sy tj
� 	

sy tið Þ

 �

zC1 tj,ti
� 	

sx tj
� 	

sx tið Þ

 �

,

ð16Þ

where

C1 tj,ti
� 	

~4
ðti

0
dtaef f tj{t

� 	
: ð17Þ

To calculate the functions C(t) and C1(tj, ti), we need to evaluate the
environment correlation function:

aef f t{tð Þ~
ð?

0
dvJ vð Þ coth �hv=2kBTð Þcos v t{tð Þ½ �f

{i sin v t{tð Þ½ �g
ð18Þ

where J(v) 5 Skjgkj2d(v 2 vk) is the spectral density of the envir-
onment. We may consider any spectral density to characterize the
environment, here we consider the following spectral density

J vð Þ~cv
v

L

� �s{1
exp {

v

L

� �
ð19Þ

where c is the coupling strength between the system and the envir-
onment and L is the cutoff frequency. When s , 1, 1, and .1, the
corresponding environments are sub-Ohmic, Ohmic, and super-
Ohmic respectively. Let us now discuss the non-Markovian charac-
teristics of these environments through the dynamics given by
Eq.(9). Recently important steps towards the development of a gen-
eral consistent theory of non-Markovian quantum dynamics have
been made and several measures have been proposed27–33 which try to
define the border between Markovian and non-Markovian quantum
evolution and to quantify memory effects in the open system
dynamics. It is important to mention here that non-Markovianity
can be used as a resource in the new quantum technologies. One can
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induce non-Markovianity, in the spirit of reservoir engineering, to
improve quantum protocols such as quantum metrology and
quantum key distribution34–36. Here, we consider a particular
approach to demonstrate the non-Markovian dynamics of the two
level system, based on the trace distance between quantum states28.
Quantum memory effects can be visualized through the dynamics of
the trace distance D(r1, r2) 5 (1/2) Tr jr1 2 r2j between two
quantum states r1 and r2. This quantity can be interpreted as a
measure for the distinguishability of the two states. Markovian pro-
cesses tend to continuously reduce the distinguishability of physical
states, which means that there is a one way flow of information from
the open system to its environment. In order to have non-Markovian
effects, there must be, for some interval of time, an information flow
from the environment back to the system. In view of this interpreta-
tion the characteristic feature of a non-Markovian quantum process
is the increase of the distinguishability, that is a reversed flow of
information from the environment back to the open system. The
information flowing from the environment back to the system allows
the earlier states of the system to have an effect on the later dynamics
of the system, that is, it allows the emergence of memory effects. The
non-Markovian dynamics of the two-level system is illustrated in
Fig. 1 where we plot the trace distance D(r1(t), r2(t)) for the follow-
ing pair of initial states

r1 0ð Þ~ zj i zh j, r2 0ð Þ~ 1
2

zj iz {j ið Þ zh jz {h jð Þ, ð20Þ

where where j1æ and j2æ are the eigenstates of sz. Fig. 1 shows that
the non-Markovian memory effect is enhanced for suitable choices of
the cutoff frequencies for Sub-Ohmic and Ohmic environment,
whereas the strong memory effect under a super-Ohmic envir-
onment is less sensitive to the cutoff frequency. We plot in Fig. 2,
the noise power spectrum S(v) for different type of environments.
S(v) is just the Fourier spectrum of Æsx(t 1 t)sx(t)æ calculated using
Eqs.(13–16). We compare the non-Markovian noise power spectrum
S(v) with its Markovian counterpart calculated by using the
quantum regression theorem (QRT). The coherent peaks of the
Fourier spectrum are higher and widths are narrower in the non-
Markovian evolution. It is important to mention here that the noise
power spectrum S(v) was directly measured in the first experimental
test of LGI violation6, and two-time correlation functions were then
computed by inverse Fourier transformation of S(v). Next, we
investigate the dynamics of LGI for a two-level system under deco-

herence in a non-Markovian dephasing environment with Q 5 sx

and Kji 5 Æsx(tj)sx(ti)æ using Eq.(7). We stress that the non-
Markovian effects are crucial for open quantum systems interacting
with an environment structured with a particular spectral density.
We show that the violation of LGI, or in other words the quantum
coherence dynamics can be controlled with suitable choices of the
environment spectral density. The initial environment state is con-
sidered to be in the thermal equilibrium state and the system is

arbitrarily chosen to Yj i~
ffiffiffi
3
p

2
zj iz 1

2
{j i, hence rS(0) 5 jYæ ÆYj.

Then we calculate K3 and K4 in three different cases with different
structured environments characterized by the spectral density (19).
In Fig. 3, we plot the real part of K3 and K4 for different values of the
environmental parameter s. We show the dynamics of this inequality
for different structured environments by varying the cutoff fre-
quency L. In Figs. 3(a) and (d), we consider a sub-Ohmic (s 5

0.5) zero temperature environment. In Figs. 3(b) and (e), we consider
vacuum reservoir with Ohmic (s 5 1) spectrum. Figs. 3(c) and (f)
show the dynamics of K3 and K4 for a super-Ohmic (s 5 3) vacuum
bath. In general, the system dynamics goes beyond classical descrip-
tion (violation of LGI) for short measurement intervals Dt. From
Figs. 3(a) and (d), we notice that the quantities K3 and K4 are oscil-
latory and violate the LG inequalities with the strongest violation

occurring at the first maxima, at Dt~
p

3v0
, with cut-off frequency L

5 v0/3. The maximum QM value of K3 or K4 depend on the value of
the cut-off frequency L of the spectral density. We observe an
enhanced dynamics of quantum violation of LGI (K3 . 1 and K4

. 2) at lower cut-off frequencies for sub-Ohmic and Ohmic envir-
onment. The enhanced quantum coherence dynamics is due to the
stronger non-Markovian memory effect when the cut-off frequency
is small. For sub-Ohmic and Ohmic spectrum, we see a reduced
violation of LGI (Figs. 3(a), (d) and (b), (e)) as we increase the
cut-off frequency. Fig. 3(c) and (f) indicate that the LGI violation
is less sensitive to cutoff frequency in case of super-Ohmic (s 5 3)
environment, and we have wide range of Dt where LGI is violated in
case of super-Ohmic spectrum. This is also clear from Fig. 1, where
we see an enhanced non-Markovian memory effect for Sub-Ohmic
and Ohmic environment when the cut-off frequency is small, also
the trace distance D(r1(t), r2(t)) is less sensitive to the cutoff fre-
quency in case of super-Ohmic environment. Next, we go to the
finite-temperature case for which �nk~ exp �hvk=kBTð Þ{1ð Þ{1

=0:

Figure 1 | We plot the trace distance D(r1(t), r2(t)) at zero temperature for three different values of s 5 0.5, s 5 1, s 5 3 corresponding to sub-Ohmic,
Ohmic and super-Ohmic environments with c 5 0.05. For each environment, we consider three different cutoff frequencies L 5 v0/3, L 5 v0,

and L 5 30v0.
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In Fig. 4, we show the effect of temperature on LG inequality for the
system arbitrarily chosen in an initial state jYæ and the environment
initially in the thermal equilibrium state. We calculate K3 and K4 for

three different values of the environmental parameters ‘‘s’’ with fixed
value of L 5 v0. We find that at low temperature (kBT 5 0.01v0),
revival of the violation of LGI occur, but at higher temperature (kBT

Figure 2 | We plot the noise spectrum S(v) at zero temperature for three different values of s 5 0.5, s 5 1, s 5 3 corresponding to sub-Ohmic,
Ohmic and super-Ohmic environments with cutoff frequency L 5 v0/3, coupling strengths c 5 0.05 and t 5 0.1. We compare the non-Markovian noise

power spectrum S(v) with its Markovian counterpart calculated by using the quantum regression theorem (QRT).

Figure 3 | We plot real parts of K3 and K4 at zero temperature for three different values of s 5 0.5, s 5 1, s 5 3 corresponding to sub-Ohmic,
Ohmic and super-Ohmic environments with c 5 0.05. For each environment, we consider three different cutoff frequencies L 5 v0/3, L 5 v0, and

L 5 30v0.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6165 | DOI: 10.1038/srep06165 5



5 5v0) we see only one-peak violating the LGI (for very short mea-
surement interval Dt), and the system generally goes to classical
regime at higher temperatures. Fig. 5 describes an explicit comparison
between the LGI violation for the open system dynamics and the close
dynamics (in absence of the environment) under the Hamiltonian
(8). Two-time correlation functions for the closed system are calcu-
lated following the calculation in the supplementary material. We see
that the LGI violation is reduced when the coupling strength c of the
two level system with its environment is gradually increased.

Discussion
Non-Markovian quantum decoherence dynamics have attracted
much attention in recent years18–36 with interesting memory effects,
e.g., non-divisibility of dynamical maps, back flow of information,
dissipative dynamics with negative decay rate, non-monotonous
increase of entropy of an open system, breakdown of quantum
regression theorem etc., they all have fundamental importance in
quantum information processing and quantum computation. We
investigate the dynamics of quantum coherence through LG inequal-

Figure 4 | We plot real part of K4 at finite temperature for three different values of s 5 0.5, s 5 1, s 5 3 corresponding to sub-Ohmic, Ohmic and super-
Ohmic environments with c 5 0.05 and L 5 v0. For each environment, we consider three different temperatures kBT 5 0.01v0, kBT 5 v0, and

kBT 5 5v0.

Figure 5 | We compare the open system LGI violations with that corresponding to close system case. We plot the real part of K4 for the closed system and

that in presence of the reservoir at zero temperature. We consider three different values of s (s 5 0.5, s 5 1, s 5 3) corresponding to sub-Ohmic,

Ohmic and super-Ohmic environments with cutoff frequency L 5 v0/3. We consider four different values of the coupling strengths c 5 0.05, 0.2,

0.5, 1.0.
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ities for a two-level system under decoherence in a non-Markovian
dephasing environment where we show the dynamics of the violation
of LGI at zero or finite temperature for structured environments with
different spectral densities (19). We have utilized an useful method40

to calculate the dynamics of two-time correlation function and the
noise spectrum for non-Markovian open quantum systems. An
enhanced violation of LGI is observed in the strong non-
Markovian regime when we lower the cutoff frequency of the envir-
onment. It is important to understand that how does the memory
(non-Markovianity) of the environment quantitatively affect the
violation of LGI. Generally, the non-Markovian nature of the system
appears when the system gets correlated with the environment, so it
is not obvious how does this system-environment correlation is
related with the measurement correlation when the system is mea-
sured at different times. Our aim is to quantitatively address this
question which is missing in the literature.

Methods
The two-time correlation functions ÆQ(tj)Q(ti)æ are calculated by solving the linear
coupled differential equations (Eqs.13–16) with the initial values are given by fol-
lowing single-time expectation values

sx tið Þsx tið Þh i~TrS s2
xrS tið Þ

� 	
~1, ð21Þ

sy tið Þsy tið Þ

 �

~TrS s2
yrS tið Þ

� �
~1, ð22Þ

sx tið Þsy tið Þ

 �

~TrS sxsyrS tið Þ
� 	

~i sz tið Þh i, ð23Þ

sy tið Þsx tið Þ

 �

~TrS sysxrS tið Þ
� 	

~{i sz tið Þh i, ð24Þ

which are calculated using Eq.(12). The trace distance is defined as

D r1,r2ð Þ~ 1=2ð ÞTr r1{r2j j, ð25Þ

where the modulus of an operator A is defined by Aj j~
ffiffiffiffiffiffiffiffiffi
A{A
p

.
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