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A B S T R A C T   

Developing meat analogues of superior amino acid (AA) profiles in the food industry is a challenge as plant 
proteins contain less of some essential AA than animal proteins. Mathematical optimisation models such as 
linear/non-linear programming models were used to overcome this challenge and create high-moisture meat 
analogues (HMMA) with AA profiles as close as possible to chicken breast meat. The effect on the physiochemical 
properties and specific mechanical energy (SME) of the HMMA was investigated. The AA content of HMMA was 
generally lower than chicken. Strong intermolecular bonds present in the globulin fraction could hinder protein 
acid hydrolysis of HMMA. Plant proteins also affect the HMMA colour as certain AA forms Maillard reaction 
products with higher browning intensity. Lastly, different characteristics of plant proteins resulted in different 
SME values under the same extrusion conditions. While mathematical programming can optimise plant protein 
combinations, fortification is required to match the AA profile of HMMA to an animal source.   

1. Introduction 

The consumption of plant-based foods has stagnated since the year 
2018 due to the lack of technological innovation that could lower costs 
and environmental impact while improving consumers’ satisfaction and 
well-being (Bedoya et al., 2022). New food products are often developed 
via “trial and error", which is costly and time-consuming (Sheibani et al., 
2018). As such, computational modelling and optimisation can be used 
to accelerate the development of new food products. Mathematical 
models have been used in food research for several purposes, such as 
classifying foods, determining bioactive compounds, and optimising 
product formulation for better nutrition and consumer acceptability 
(Bedoya et al., 2022). Linear programming has been used to solve diet 
problems, which aims to find a diet meeting nutritional needs while 
minimising economic and environmental costs (van Dooren, 2018), 
whereas non-linear and mixed integer programming have been applied 
to the design of vegetarian diets (Kesse-Guyot et al., 2022) and sus-
tainable diet (García-Leal et al., 2023). Such technologies could mini-
mise food waste, improve the food production system’s efficiency, fulfil 

nutritional requirements, and reduce environmental impact (Hassoun 
et al., 2022). 

While the market for meat substitutes has experienced significant 
growth in recent years, it is still a fraction of traditional meat (e.g., 
poultries, red meats, and seafood). There is definite potential for further 
growth, especially in countries like China and India (Szenderák et al., 
2022). In the food industry, extrusion is a well-developed process 
involving mixing, shearing, and cooking raw materials before the 
mixture is forced through a die under high pressure. As the mixture 
leaves the opening, material expansion occurs due to the sudden drop in 
pressure and water is converted into steam (Leonard et al., 2020). The 
extrusion of protein powders with twin-screw extruders is often used for 
the production of high-moisture meat analogue (HMMA) with 
well-defined fibre structures (Choton et al., 2020; He et al., 2020). 
HMMA comprises plant proteins from common plant materials such as 
legumes and cereals (Kumar, 2016). Although the growth and harvest-
ing of plants are significantly more energy efficient than meat produc-
tion, the nutritional aspect of HMMA remains a challenge to the food 
industry (Szenderák et al., 2022). This is because animal proteins are 
complete proteins, whereas plant proteins typically lack at least one 
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essential amino acid (AA). As all AAs are needed for protein synthesis, 
deficiency in one or more AAs could affect the postprandial muscle 
protein synthetic response (Gorissen et al., 2018). De Marchi, Costa, 
Pozza, Goi, and Manuelian (2021) reported that alanine, glycine and 
methionine contents were lower in plant-based burgers than in 
meat-based burgers. The authors explained that as plant-based burgers 
were mainly made of soy and pea protein, using a blend of plant proteins 
would help lower the difference. This presents an opportunity for using 
linear/non-linear programming to optimise and improve the nutritional 
profile of HMMA. 

This study used the AA composition of various meat samples (e.g., 
chicken, pork, beef, and salmon) and plant protein powders as data. 
These meat samples were selected as they are widely consumed animal 
proteins in the world (Govoni et al., 2021; Torrissen et al., 2011). 
Mathematical optimisation models were then used to generate combi-
nations of plant protein powders at different compositions that best 
matched the AA profile of a target meat source. Mathematical optimi-
sation techniques have been applied to plant-based meat design in many 
aspects. For instance, the response surface method (RMS) has been 
applied to optimise the proportions of hydrocolloid, water, and encap-
sulated anthocyanins to obtain meat analogues with high sensory 
acceptability and physicochemical parameters similar to traditional 
meat products (Szpicer et al., 2022). The combinations were then 
shortlisted for extrusion to produce HMMA. The effect of HMMA with 
different protein combinations on their physicochemical properties and 
the specific mechanical energy (SME) was then investigated. 

2. Materials and methods 

2.1. Materials 

Chicken breast, minced pork, and minced beef were purchased from 
a local supermarket (NTUC FairPrice Co-operative Ltd, Singapore). 
Salmon fillet was bought from Oriental Food & Services Pte Ltd, 
Singapore. Plant proteins were obtained from various commercial 
sources, including Wilmar International Ltd, Connell Caldic Malaysia 
Sdn Bhd, Roquette Singapore, Growthwell Foods Singapore, Nutraonly 
Nutrition Inc China, ETprotein China, Beneo Asia-Pacific Pte Ltd, and 
Ingredion Singapore. 

Each meat sample was packed into a polyamide/polyethene pouch 
and vacuum sealed (C200, Multivac, Germany). The meat samples were 
then placed into a water bath (SD28H170-A12P, PolyScience, 
Singapore) at 90 ◦C for 20 min for cooking. The samples were cooled and 
drained before further analysis. 

2.2. Protein content analysis 

The meat samples were ground before protein content and total AA 
composition analysis. Protein content was determined using Dumas 
combustion, which was conducted using an automated protein analyser 
(Dumatherm® N Pro, Gerhardt GmbH, Germany). Protein content was 
calculated with a nitrogen conversion factor of 6.25 for animal and plant 

proteins, and 5.7 for wheat gluten (WG). 

2.3. Total amino acids composition analysis 

The total AA composition for all samples was carried out as described 
by Schuster (1988), Barkholt and Jensen (1989), Henderson et al. 
(2000), and Henderson and Brooks (2010) with modifications. Samples 
were hydrolysed with 6M HCl containing 0.1% w/v phenol at 110 ◦C for 
24 h. The amino acid residues were converted into cysteic acid and 
methionine sulphone by performic acid before acid hydrolysis. The 
analysis was determined by injecting 0.5 μl of each sample into 
high-performance liquid chromatography (HPLC) (Agilent 1200SL, 
Agilent Technologies, USA) after pre-column derivatisation with flour-
enylmethoxycarbonyl (FMOC)-chloride for primary amino acids and 
ortho-phthaldialdehyde (OPA) for proline. A C18 stationary phase (150 
mm × 2.1 mm id, 3.5 μm particle size) column (ZORBAX Eclipse Plus, 
Chrom Tech, USA) was used for separation at a flow rate of 0.42 ml/min 
at 40 ◦C. Two mobile phases were used: Mobile A comprised of 0.01M 
disodium phosphate, 0.01M sodium tetraborate decahydrate and 
0.005M sodium azide at pH8.2; Mobile B composed of acetonitrile: 
methanol: ultrapure water (45:45:10, v: v: v). A fluorescence detector 
operated at 230 nm (excitation) and 450 nm (emission) was used to 
estimate AA concentrations in the sample. AA standards (Sigma-Aldrich, 
Singapore) were used to identify compounds based on retention time. 
Quantification was determined using external calibration curves. 

2.4. Optimisation-based replicate formula design 

In the food industry, existing studies that apply optimisation tech-
niques mainly focus on linear programming approaches. On the other 
hand, the replication problem in this study was cast into a more general 
non-linear programming framework to allow more flexibility on opti-
misation criteria. The general form of a non-linear programming model 
was as follows: 

minxf (x)

subject to: 

gi(x) ≤ 0, i= 1,…,m  

hi(x)= 0, i= 1,…, n  

x ∈ X 

This meant that to find x satisfying constraints, gi(x) ≤ 0, i= 1,…,m, 
hi(x)= 0, i= 1,…, n and x ∈ X while f(x) is minimised. 

Contrary to linear programming, non-linear programming allows 
objective function (f(x)) and constraints (gi(x) and hi(x)) to be non- 
linear. In special cases, it can also include linear programming. Non- 
linear programming has been widely used in many other areas, such 
as path planning, petroleum production, statistical inference, and many 
others. Although non-linear programming for complex problems con-
sisting of big data, such as training large neural network models (e.g., 
millions to billions of variables) remains challenging, small- and 
medium-sized problems (e.g., less than a few thousand variables) can be 
solved relatively efficiently. The optimisation problems formulated in 
this study shall be considered as small-sized ones. 

The replicate formula design was described as determining the ratio 
of different plant protein powders such that the AA profile of the mixed 
proteins was similar to a given animal source. This objective could be 
cast into linear/non-linear mathematical programming models given as 
follows: 

It was assumed to have AA profiles of N plant protein sources, and 
they were denoted as a column vector xi ∈ RM,i= 1,…,N, where M is the 
total number of amino acids, N is the number of candidate plant protein 
sources, and RM represents M dimensional Euclidean space. The AA 
profile of the target animal source is denoted as y ∈ RM. It was further 

Abbreviations 

AA amino acid 
SPC soy protein concentrate 
WG wheat gluten 
CPI chickpea protein isolate 
PPI pea protein isolate 
MBPI mung bean protein isolate 
RPI rice protein isolate 
HMMA high-moisture meat analogues  
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assumed that the sum of the components of each xi equals that of y, 
which means that each animal and plant protein source sample has the 
same weight. For each plant protein source xi, its ratio is denoted as wi 
and thus, the AA profile of the mixed proteins can be expressed as 
x≜

∑N
i=1wixi. Further, w = (w1,…,wN)

T
∈ RN, A = (x1,…, xN) ∈ RM×N, 

and x = Aw were introduced. With the above notations, finding the 
optimal ratio vector w is equivalent to sol1ving the following mathe-
matical optimisation problem: 

minxf (Aw, y)

subject to: 

wi ≥ 0,i= 1,…,N  

∑N

i=1
wi= 1  

where function f(x, y) measures the difference between two vectors x 
and y. 

There were multiple options for the function f(x,y), which have been 
used for our formula design as follows:  

1) Cosine similarity: the cosine similarity between x and y is given by 
f(x, y)= −

xTy
‖x‖2‖y‖2

, where xT denotes the transpose of x and ‖.‖2 

denotes the 2-norm operator. This function essentially measures the 
angle between x and y, and the negative sign is for minimization.  

2) L1-norm (Manhattan distance): the Manhattan distance between x 

and y is given by f(x,y) =
∑M

i=1

⃒
⃒
⃒
⃒ xi − yi

⃒
⃒
⃒
⃒, where xi and yi denotes the 

i-th component of x and y.  
3) L2-norm (Euclidean distance): the Euclidean distance between x 

and y is given by f(x,y) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑M

i=1(xi − yi)
2

√

.  
4) L∞-norm (Chebyshev distance): the Chebyshev distance between x 

and y is given by f(x,y) = maxi=1,…,M
⃒
⃒xi − yi

⃒
⃒. 

The above functions are symmetric with respect to their arguments. 
However, in our problem setup, x is the AA profile of the replicate, and y 
is that of the target animal protein source. They are naturally asym-
metric, i.e., they have different roles in this replica process. To capture 
such property, the following functions are considered:  

5) Sum of deficiencies: the sum of deficiencies from x to y is given by 
f(x,y) =

∑M
i=1max{yi − xi,0}. In other words, this function measures 

the sum of deficiencies of each amino acid of x compared with y.  
6) Greatest deficiency: the greatest deficiency from x to y is given by 

f(x, y) = max{y1 − x1,…, yM − xM,0}. In other words, this function 
measures the greatest deficiencies of each amino acid of x compared 
with y. 

Nevertheless, applying the above models to the convex combination 
of the plant protein powders and the target animal sources led to some 
trivial solutions using a single plant protein to replicate the target ani-
mal source. For instance, under the cosine similarity criterion, the 
optimal formula for replicating chicken breast meat was to mix 10% WG 
(the minimal amount as the base) and 90% pea protein isolate (PPI). 
Mathematically, it was correct, but the lack of variety made such a 
formula undesirable. The fundamental mathematical reason was that 
the convex cone spanned by vectors representing plant AA profiles was 
not large enough to contain the vector representing the target animal 
source. From a nutrition perspective, the variety of plant protein sources 
was insufficient. Thus, one can only replicate the projection of the target 
vector onto the convex cone. Unfortunately, when the projection 
happened to be one of the edges of the cone, the resulting formula 
became a trivial solution by picking a single plant protein. 

One possible remedy was to add more plant protein powders as 
candidates such that the size of the convex cone can be enlarged, sug-
gesting the variety of protein powders not from a nutrition perspective 
but from a mathematical perspective. Ten plant protein powders were 
introduced in the experimental design to reduce the possibility of trivial 
solutions. Another approach was introducing more criteria to measure 
the difference between two AA profiles to get more replicate formulas 
and pick those non-trivial ones from them. In what follows, two non- 
linear transformations that were applied to the AA profiles were 
described, resulting in 12 more candidate formulas for each target ani-
mal source. It was noted that the above criteria only concerned the 
absolute difference between the AA profile of x and y. Table 1 shows an 
example that motivated another formulation concerning the relative 
ratio of components in x and y. 

Table 1 shows that the amount of methionine in the replicate was 
1.52 less than that of chicken breast meat. This absolute difference was 
less than that of lysine, which was 3.78. However, considering the 
relative ratio, lysine was 63.16% of chicken breast meat in the replicate, 
while methionine was less than 50%. Although the absolute difference in 
methionine was lesser, its difference in the ratio was more. In this case, 
the absolute difference between AA profiles might not comprehensively 
quantify their similarity. 

One of the extra optimisation criteria was derived from a function 

r(x, y) =
(

x1

y1,…, xM

yM

)T 
which computed the relative ratio of each 

component in x and y. Intuitively, a relative ratio vector between the 
replicate and the target animal source should be close to the all-one 
vector 1≜(1,…,1)

⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
M 1s

T as much as possible. Consequently, the linear/non- 

linear programming formulation was considered with the objective 
function f(r(Aw,y), 1), where f(⋅, ⋅) is defined in (1) to (6). The optimi-
sation model under this category was named with the prefix ‘relative’. 
Similarly, one can define a slightly more complex transformation ̃r(x) =
(

x1

x1,…, x1

xM,…, xM

x1 ,…, xM

xM

)T
. This gives the relative ratio of each amino acid 

of the given AA profile. The objective functions f (̃r(Aw), r̃(y))y))̃r(Aw), r̃ 
was then considered, where f(⋅, ⋅) is defined in (1) to (6). The optimi-
sation model under this category was named with the prefix ‘ratio’. In 
summary, six different objective functions f(x, y) were adopted to 
quantify the difference between two vectors x and y, each of which had 
been further applied to three vector-couples: x = Aw,y = y; x = r(Aw,y)
, y = 1; and x = r̃(Aw),y = r̃(y). 

As a result of optimisation algorithms and computational device 
development, each of the above models can be solved in less than 1 s on 
an ordinary personal computer, with multiple choices of open-source 
optimizers such as IPOPT (Waechter et al., 2006), ADMB (Fournier 
et al., 2012), and others. The numerical tools chosen were CasADi 
(Andersson et al., 2019), which is an automatic differentiation tool for 
computing gradients and Hessian matrices, and IPOPT, which accepts 
gradients and Hessian matrices computed by CasADi to accelerate 
computation. Therefore, one can conveniently derive formulas for 
different plant protein powders and animal sources. Another advantage 
of mathematical optimisation was its flexibility in handling arbitrary 
quantitative requirements. For example, in numerical examples, a 
constraint that required the minimum WG to be 10% would be included. 
Similarly, it was easy to include constraints requiring minimal and/or 
maximal amounts of other plant protein powders. The objective function 
could also be revised to include more criteria where one wants to opti-
mise. For instance, different plant powders had different price points, so 
one may want to seek a balance between the total price and the simi-
larity of the AA profile. This could be achieved by coding an extra term 
into the objective function as follows: Suppose that the price of each 
plant is pi per unit weight. Then, the cost of raw material for producing a 
unit weight of mixed plant-based protein is 

∑M
i=1wipi without consid-

ering loss during the extrusion process. This can thus minimise f(x, y) +
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∑M
i=1wipi to seek a balance between the similarity of AA profiles repre-

sented by f(x,y), and the total price represented by 
∑M

i=1wipi. 
On the other hand, it could also be seen that under this mathematical 

optimisation framework, every feature must be quantified, and the non- 
quantifiable properties of plant protein powders and animal sources 
cannot be optimised directly. Consequently, this study focused mainly 
on AA profile optimisation without considering the textural properties of 
HMMA, which were somewhat difficult to quantify. 

2.5. High-moisture extrusion 

Extrusion experiments were performed with a laboratory, co- 
rotating and intermeshing twin screw extruder (Process 16 Hygienic, 
Thermo Fisher Scientific, Karlsruhe, Germany) with a screw diameter of 
16 mm, a smooth barrel, and a length-diameter ratio of 40:1. The 
extrusion formulations of HMMA were based on Table 2. Formulations 
consisting of different plant protein combinations were derived from the 
mathematical optimisation process discussed in the previous section. 
The extrusion screw profile comprised of (from feed to exit): fifteen 16 
mm feed screws (240 mm); twelve 4 mm mixing elements (48 mm); 
eight 16 mm feed screws (128 mm); ten 4 mm mixing elements (40 mm); 
ten 16 mm forward screws (160 mm); and one 24 mm discharge element 
(24 mm). The barrel was segmented into the feeding zone, and seven 
temperature-controlled zones heated by an electric cartridge system and 
cooled with water. A long die with dimensions of 83 × 49 × 188 mm (W 
× H × L) was attached at the end of the extruder, with water at 80 ◦C as a 
cooling medium. A gravimetric feeder (Brabender Technology GmbH, 
Duisburg, Germany) was used to feed the dry materials into the extruder 
at a feed rate of 1.8 kg/h. At the same time, salt solution at 1% w/w was 
injected into the extruder via a peristaltic pump (Masterflex L/S, Vernon 
Hills, IL, USA) into the second barrel through an inlet port at different 
flow rates for different formulations to obtain a moisture content of 
approximately 55% w/w (wet basis) in the HMMA. The screw speed was 
kept at 400 rpm, and the barrel had a temperature profile of 40, 60, 80, 
100, 120, 120, 140 and 140 ◦C in the eight zones from feed to die. 

Extrusion parameters such as product pressure, temperature and 
torque were monitored. Following Osen (2017), the specific mechanical 
energy (SME) was then calculated using the equation below: 

SME (kJ / kg)=
2π × N × T

ṁ  

where N is the rotational screw speed (min− 1), T is the motor torque 
(kJ), and ṁ is the mass flow rate (kg/min). 

The HMMA produced were then subjected to pH, moisture, and 
colour analyses. The pH of the HMMA was measured after blending the 

samples at 20% w/w concentration in ultrapure water at 12,000 rpm 
with a high-shear mixer (T25 digital Ultra Turrax®, IKA, Germany). The 
moisture content of the HMMA was determined using the air-oven 
method. Five grams of samples were first weighed on separate pans 
and dried at 105 ◦C for 24 h. The dried samples’ final weight was 
recorded after cooling down in a desiccator for 2 h. The colour of the 
HMMA was measured using a benchtop spectrophotometer (CM-5, 
Konica Minolta, Japan). A black calibration cup was used to calibrate the 
instrument while the measured colours were expressed in the Hunter- 
Lab parameters as L*, a*, and b* values. The Petri dish measurement 
mode with a 30 mm measurement area was selected, and three mea-
surements were recorded using random surface locations of the extru-
dates. L* represents the lightness (0 = black, 100 = white), -a/+a 
represents greenness or redness, and –b/+b represents blueness or 
yellowness. 

2.6. Statistical analyses 

All treatments were conducted in triplicates, and the results were 
reported as the mean value ± standard deviation (SD). The data were 
analysed using a one-way analysis of variance (ANOVA) with Tukey 
pairwise comparison of means (p ≤ 0.05) using Minitab 17 statistical 
software (Minitab Inc., USA). 

3. Results and discussion 

3.1. Animal and plant proteins 

3.1.1. Protein content 
The protein content and total AA profiles in the meat samples and 

plant proteins are shown in Tables 3 and 4, respectively. Comparing the 
animal sources, cooked chicken breast meat had the highest protein 
content, while cooked salmon had the lowest. From Table 3, the protein 
content of cooked chicken breast, pork, and beef in this study was 
slightly higher than those reported in the literature (Hong et al., 2015; 
Villalobos-Delgado et al., 2020; Witte et al., 2022). There were multiple 
reasons for these discrepancies. Tougan et al. (2013) reported that 
extrinsic and intrinsic factors such as feed, age and gender played a role 
in the protein content of chickens. Daszkiewicz et al. (2005) mentioned 
that fat content was inversely correlated with crude protein content in 
pork. On the other hand, the protein content found in salmon (23.33% 
w/w) was similar to the protein range of salmon fillets (18.8%–24.2% 
w/w) reported by Sprague et al. (2020). Salmon had a lower protein 
content than other meat types, possibly because it had a higher fat 
content of 11.0%–17.0% w/w (Sprague et al., 2020). 

Table 1 
Components comparison of chicken breast meat and optimal mixed proteins replicate under L2-norm criterion.  

AA Component Threonine Valine Isoleucine Leucine Phenylalanine Lysine Histidine Methionine Non-essential AA 

Chicken 4.62 5.23 5.00 8.21 4.20 10.26 3.32 2.97 56.18 
Replicate 3.56 5.27 4.88 8.55 6.00 6.48 2.58 1.45 56.18  

Table 2 
Portion of plant protein powders for mixed protein matrices’ combinations selected for extrusion.  

Optimisation criterion (Formulation) Plant protein (%) a 

SPC-1 SPC-2 WG PPI MBPI CPI RPI 

ratio_cos_sim (F1) – 92.11 7.89 – – – – 
relative_chebyshev_dist (F2) – 44.92 7.32 – – 47.76 – 
relative_manhattan_dist (F3) 62.05 – – 37.95 – – – 
ratio_euclidean (F4) 34.70 – – – 13.58 – 51.72 
relative_manhattan_dist (F5) – 39.89 10.00 50.11 – – – 
euclidean_dist (F6) – – 10.00 66.81 23.19 – –  

a Abbreviation: SPC-1, soy protein concentration (brand 1); SPC-2, soy protein concentration (brand 2); WG, wheat gluten; PPI, pea protein isolate; MBPI, mung bean 
protein isolate; CPC, chickpea protein isolate; RPI, rice protein isolate. 
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As shown in Table 4, plant protein powders were typically classified 
as a concentrate or isolate, with isolates having a protein content of at 
least 90% dry weight basis (Ma et al., 2022). The difference in the 
protein content was mainly due to the type of extraction method uti-
lised, with the additional defatting and filtration steps creating highly 
purified protein isolates. 

3.1.2. Amino acid compositions 
In Table 3, the meat samples contained all essential AA (tryptophan 

not analysed), making them a good source of complete protein, with 
cooked minced beef having the highest leucine content. Cooked minced 
beef and pork had the highest essential AA among the four samples. The 
AA profiles of these meat samples slightly differed from past literature 
(Colombo and Mazal, 2020; Jensen et al., 2020; Purchas et al., 2014; Tan 
et al., 2012), which could have been due to the different agricultural 
practices in various geographical locations. These conditions affected 
how the animals were reared, which could have affected the AA profiles 
of the meat. 

Among the ten plant protein powders, rice protein isolate (RPI) and 
WG belong to the cereal family, while the other proteins were sourced 
from legumes. RPI and WG contained a good amount of sulphur- 
containing AA (i.e., cysteine and methionine). However, they were 
lacking in lysine, as reported previously by Day (2013) and Herreman 
et al. (2020). In contrast, the legume proteins had a high proportion of 
lysine but were lower in sulphur-containing AAs. Their combination in a 

blend could be used to improve protein quality. For example, products 
made with cereal proteins can be enriched with legume proteins, or vice 
versa, to provide nutritional advantages (Chiang et al., 2021; Monnet 
et al., 2019). 

The predominant AA in the plant proteins was glutamic acid, which 
was higher than in the meat samples. Animal proteins provide essential 
AA in balanced proportions, while plant proteins gave sub-optimal ratios 
with slightly higher leucine and phenylalanine contents but lower lysine 
and methionine contents (Day, 2013; Herreman et al., 2020). 
Jiménez-Munoz, Tavares, and Corredig (2021) mentioned that food 
products using a single plant protein would not be sufficient to provide 
an appropriate dietary source of amino acids, even at high concentra-
tions. Hence, complementary protein sources must be combined to 
achieve a good AA profile to design future foods using plant proteins for 
nutritional characteristics comparable to animal protein. The subse-
quent section used mathematical optimisation models to obtain several 
mixed plant protein combinations to attain AA profiles similar to animal 
proteins. 

3.2. Numerical optimisation results 

This section presented the numerical optimisation results for chicken 
breast meat. The results for the other three animal protein sources (i.e., 
beef, salmon, and pork) can be found in the supplementary materials. 
The presented results were generated from three different scenarios. In 
Scenario 1, SPC-1, SPC-2, WG, PPI, MBPI and CPI were used as candi-
dates from the plant protein powders. In Scenario 2, SPC-1, SPC-2, PPI, 
CPI, CPC, MBPI, FBP, LP, RPI and WG were all used as candidates. In 
Scenario 3, the amount of WG, which served as the basis for protein 
texturisation, should be at least 10% w/w. It was noted that due to the 
flexibility of the mathematical optimisation model, the above three 
scenarios could be easily solved in a single programme with slight 
modification on some input parameters. 

In Table 5a–c, formulas for replicating the AA profile of chicken 
breast meat were presented under different scenarios with various 
optimisation models. One can see the necessity of introducing more 
plant protein powders and optimisation criteria to obtain formulas with 
more varieties. Table 5a shows that with six plant protein powders, there 
were six trivial formulas. However, the number of trivial formulas was 
reduced to three when ten plant protein powders were used (Table 5b). 
A constraint on the minimum amount of WG was also introduced, where 
seven trivial formulas were obtained. This was unsurprising since such 
constraint reduced the volume of the convex cone spanned by the plant 
protein powders. As a result, the ‘projection’ of the target AA profile had 
a more considerable change to be an edge of the convex cone. The ne-
cessity of introducing more optimisation criterion to obtain non-trivial 
formulas was also apparent. For instance, in Table 5c, only one non- 
trivial formula was obtained in the first six plain models. After intro-
ducing the ‘ratio’ and ‘relative’ models, ten non-trivial candidate for-
mulas were generated for further exploration with texture factors. 

In Table 6a–c, the AA profiles of replicas under different scenarios 
were compared with various optimisation criterion with the target 
chicken breast meat AA profile. Some observations and discussions were 
listed as follows.  

1) All plant-based replicas had a deficiency in total essential AA. This 
was due to the fundamental difference between animal sources and 
plant protein powders. Plant protein generally contains less essential 
AA than animal protein (Gorissen et al., 2018).  

2) Among essential AAs, those having more significant deficiencies 
were leucine, lysine, and methionine (Gorissen et al., 2018).  

3) In all formulas, WG was used with a minimal amount (10% serving as 
the base). The reason was that WG has the lowest amount of essential 
AA in total and almost every kind of essential AA. Thus, using more 
WG would make the AA profile of the replica further from the target 
animal source AA profile. Consequently, the models always used a 

Table 3 
Total amino acid composition of proteins from different animal sources.  

Samples Total amino acids (mg/100 mg protein)a 

Cooked 
chicken breast 

Cooked 
minced pork 

Cooked 
minced beef 

Cooked 
salmon 

Protein (g/ 
100g) 

30.74 ± 0.81 25.62 ± 1.65 27.43 ± 0.17 23.33 ±
1.45 

Essential amino acids 
Histidine 2.77 ± 0.14 3.32 ± 0.10 3.01 ± 0.04 2.61 ±

0.01 
Isoleucine 4.16 ± 0.13 4.49 ± 0.20 4.57 ± 0.15 4.33 ±

0.12 
Leucine 6.84 ± 0.23 7.78 ± 0.33 8.15 ± 0.08 7.11 ±

0.11 
Lysine 8.54 ± 0.44 8.98 ± 0.12 8.77 ± 0.83 8.58 ±

0.53 
Methionine 2.47 ± 0.09 2.78 ± 0.13 2.76 ± 0.09 2.92 ±

0.04 
Phenylalanine 3.50 ± 0.14 4.09 ± 0.14 4.18 ± 0.04 3.85 ±

0.06 
Threonine 3.85 ± 0.18 4.36 ± 0.12 4.48 ± 0.07 4.44 ±

0.04 
Valine 4.36 ± 0.14 4.91 ± 0.23 4.92 ± 0.17 4.95 ±

0.04 
Total EAA 36.51 ± 1.49 40.69 ± 1.37 40.85 ± 1.44 38.79 ±

0.95 
Non-essential amino acids 
Alanine 4.99 ± 0.17 5.78 ± 0.22 6.11 ± 0.17 5.81 ±

0.16 
Arginine 6.61 ± 0.24 6.56 ± 0.26 6.85 ± 0.10 7.11 ±

0.04 
Aspartic acid 8.41 ± 0.28 9.46 ± 0.30 9.60 ± 0.23 9.58 ±

0.16 
Cystine 1.03 ± 0.06 1.16 ± 0.08 1.30 ± 0.13 1.09 ±

0.04 
Glutamic acid 12.35 ± 0.44 14.29 ± 0.49 15.32 ± 0.18 12.50 ±

0.27 
Glycine 3.72 ± 0.18 5.07 ± 0.18 5.52 ± 0.81 5.24 ±

0.72 
Proline 3.14 ± 0.10 4.09 ± 0.26 4.56 ± 0.15 3.56 ±

0.22 
Serine 3.45 ± 0.12 3.98 ± 0.12 4.07 ± 0.12 3.84 ±

0.11 
Tyrosine 3.10 ± 0.12 3.54 ± 0.11 3.60 ± 0.04 3.43 ±

0.05  

a Data are presented as the mean and standard deviation of three replicates. 
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minimal amount of WG. This was the natural consequence of the AA 
profile optimisation procedure. On the other hand, WG helped to 
improve the fibre formation and texture of HMMA (Gasparre, van 
den Berg, Oosterlinck and Sein, 2022); in some cases, these aspects 
may be preferred. 

3.3. Extruded mixed protein matrices 

3.3.1. Validation of the mathematical optimised model 
Six HMMA formulations (F1 to F6) were chosen to be produced via 

extrusion. The AA composition of the extruded mixed protein matrices 
was compared with the values obtained from the optimised replicate 
formula design and presented as a percentage difference in Table 7. The 
difference in the values between the actual AA composition of the 
extruded mixed protein matrices and those from the optimised replicate 
formula design ranged from − 12.59 (methionine in F2) to 16.41% 
(lysine in F6). These discrepancies could be due to the extrusion process, 
where AA content was affected by the feed moisture, pressure, tem-
perature, and other parameters (Nadeesha Dilrukshi, Torrico, Brennan 
and Brennan, 2022). Alonso, Grant, Dewey, and Marzo (2000) reported 

Table 4 
Total amino acid composition of various plant proteins from legume and cereal origins.  

Samples Total amino acids (mg/100 mg protein)a,b 

SPC-1 SPC-2 PPI CPI CPC MBPI FBP LP RPI WG 

Protein (g/ 
100g) 

71.53 ±
0.07 

62.56 ±
0.13 

79.01 ±
0.01 

81.98 ±
0.18 

69.68 ±
0.01 

81.73 ±
0.17 

53.25 ±
0.07 

52.76 ±
0.03 

83.88 ±
0.18 

74.20 ±
0.06 

Essential amino acids 
Histidine 2.60 ± 0.10 2.68 ± 0.07 2.66 ± 0.01 2.94 ± 0.11 2.78 ± 0.12 3.08 ± 0.01 2.73 ± 0.02 2.28 ± 0.02 2.55 ± 0.04 2.21 ± 0.09 
Isoleucine 4.63 ± 0.24 4.69 ± 0.11 5.31 ± 0.15 5.34 ± 0.16 5.25 ± 0.18 5.12 ± 0.06 4.29 ± 0.03 4.14 ± 0.03 4.51 ± 0.05 3.98 ± 0.13 
Leucine 7.59 ± 0.38 7.75 ± 0.27 9.09 ± 0.18 9.44 ± 0.34 9.01 ± 0.31 9.40 ± 0.08 7.77 ± 0.01 7.22 ± 0.01 8.85 ± 0.06 7.38 ± 0.23 
Lysine 6.29 ± 0.19 5.81 ± 0.30 7.56 ± 0.77 6.96 ± 0.36 7.17 ± 1.37 7.00 ± 0.52 6.79 ± 0.10 6.79 ± 0.26 3.37 ± 0.23 1.35 ± 0.36 
Methionine 1.59 ± 0.11 1.67 ± 0.08 1.43 ± 0.12 1.87 ± 0.05 1.86 ± 0.10 1.63 ± 0.07 0.81 ± 0.01 0.75 ± 0.01 3.00 ± 0.11 1.83 ± 0.04 
Phenylalanine 5.09 ± 0.23 5.12 ± 0.26 6.01 ± 0.06 7.42 ± 0.27 7.20 ± 0.29 7.45 ± 0.08 4.57 ± 0.01 4.92 ± 0.01 5.86 ± 0.07 5.61 ± 0.14 
Threonine 3.84 ± 0.18 4.06 ± 0.12 4.09 ± 0.04 3.97 ± 0.17 3.83 ± 0.13 3.15 ± 0.02 3.72 ± 0.02 3.79 ± 0.01 3.93 ± 0.06 2.75 ± 0.06 
Valine 4.52 ± 0.25 4.66 ± 0.17 5.65 ± 0.15 5.29 ± 0.15 5.28 ± 0.15 5.86 ± 0.08 4.58 ± 0.02 4.41 ± 0.04 6.14 ± 0.06 4.02 ± 0.11 
Total EAA 36.15 ±

1.68 
36.44 ±
1.38 

41.81 ±
1.47 

43.23 ±
1.61 

42.38 ±
2.65 

42.69 ±
0.91 

35.25 ±
0.21 

34.29 ±
0.40 

38.22 ±
0.67 

29.11 ±
1.16 

Non-essential amino acids 
Alanine 4.24 ± 0.16 4.39 ± 0.15 4.66 ± 0.05 4.98 ± 0.20 4.78 ± 0.24 4.40 ± 0.05 4.25 ± 0.02 3.94 ± 0.02 6.21 ± 0.11 2.69 ± 0.13 
Arginine 7.13 ± 0.34 7.33 ± 0.23 8.94 ± 0.08 10.49 ±

0.40 
9.77 ± 0.36 7.89 ± 0.03 9.83 ± 0.03 8.81 ± 0.26 9.14 ± 0.11 3.70 ± 0.12 

Aspartic acid 11.34 ±
0.43 

11.62 ±
0.31 

12.32 ±
0.32 

14.19 ±
0.69 

13.15 ±
0.84 

13.01 ±
0.19 

11.40 ±
0.07 

11.14 ±
0.08 

9.81 ± 0.32 3.36 ± 0.17 

Cystine 1.34 ± 0.14 1.52 ± 0.07 1.26 ± 0.10 1.34 ± 0.04 1.20 ± 0.07 0.52 ± 0.11 1.15 ± 0.01 0.79 ± 0.03 2.23 ± 0.17 2.49 ± 0.36 
Glutamic acid 17.52 ±

0.81 
17.96 ±
0.56 

17.68 ±
0.29 

19.44 ±
0.86 

17.80 ±
0.80 

19.09 ±
0.24 

16.99 ±
0.06 

15.52 ±
0.08 

19.15 ±
0.38 

38.86 ±
1.63 

Glycine 4.36 ± 0.17 4.06 ± 0.12 4.10 ± 0.30 4.11 ± 0.25 4.11 ± 0.60 3.43 ± 0.22 4.14 ± 0.07 3.76 ± 0.12 4.66 ± 0.37 3.22 ± 0.79 
Proline 4.87 ± 0.26 4.98 ± 0.16 4.64 ± 0.07 5.59 ± 0.23 4.74 ± 0.15 4.60 ± 0.07 5.01 ± 0.02 4.43 ± 0.03 5.29 ± 0.01 13.18 ±

0.38 
Serine 4.89 ± 0.17 5.06 ± 0.19 5.50 ± 0.13 6.38 ± 0.30 5.88 ± 0.32 5.71 ± 0.10 5.17 ± 0.02 5.03 ± 0.05 5.53 ± 0.18 5.04 ± 0.30 
Tyrosine 3.62 ± 0.15 3.79 ± 0.13 4.28 ± 0.05 3.61 ± 0.18 3.52 ± 0.15 3.49 ± 0.05 3.73 ± 0.02 3.27 ± 0.01 5.77 ± 0.09 3.67 ± 0.14  

a Data are presented as the mean and standard deviation of three replicates. 
b Abbreviation: SPC-1, soy protein concentration (brand 1); SPC-2, soy protein concentration (brand 2); PPI, pea protein isolate; CPI, chickpea protein isolate; CPC, 

chickpea protein concentrate; MBPI, mung bean protein isolate; FBP, faba bean protein; LP, lentil protein; RPI, rice protein isolate; WG, wheat gluten. 

Table 5a 
Portion of plant protein powders for replicating the total amino acid profile of chicken breast meat under different optimisation criterion (Scenario 1).  

Plant protein1 Optimisation criterion 

SPC-1 SPC-2 WG PPI MBPI CPI 

0 0 0 0.324 0.676 0 chebyshev_dist 
0 0 0 1 0 0 cos_sim* 
0 0 0 0.976 0.024 0 euclidean_dist 
0.223 0 0 0.777 0 0 manhattan_dist 
0.223 0 0 0.777 0 0 min_all_defi 
0 0 0 1 0 0 min_greatest_defi* 
0 0 0 0 0 1 ratio_cheby_dist* 
0 0.921 0.079 0 0 0 ratio_cos_sim 
0 0.145 0 0 0 0.855 ratio_euclidean_dist 
0 1 0 0 0 0 ratio_manhattan_dist* 
1 0 0 0 0 0 ratio_min_all_defi 
0 0.928 0.072 0 0 0 ratio_min_greatest_defi 
0 0.449 0.073 0 0 0.478 relative_chebyshev_dist 
1 0 0 0 0 0 relative_cos_sim* 
1 0 0 0 0 0 relative_euclidean_dist* 
0 0.6205 0 0.3795 0 0 relative_manhattan_dist 
0 0.245 0 0.755 0 0 relative_min_all_defi 
0 0 0.128 0 0 0.872 relative_min_greates_defi  

* Optimisation criteria leading to trivial formulas: only use single plant protein. 
1 Abbreviation: SPC-1, soy protein concentration (brand 1); SPC-2, soy protein concentration (brand 2); WG, wheat gluten; PPI, pea protein isolate; MBPI, mung bean 

protein isolate; CPI, chickpea protein isolate. 
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that extrusion significantly lowered the methionine content of peas by 
34%. This phenomenon was also observed in extruded field beans and 
soybeans. The authors attributed this to the formation of cross-linkages 
or Maillard reactions between AA and reducing sugars, thereby reducing 
the amount of available AA. 

Consequently, the change in lysine content indicated the extent of 
thermal treatments (Alonso et al., 2000). On the contrary, Cargo-Froom 
et al. (2022) explained that subjecting legumes to moisture, heat, and 
pressure during extrusion could make more sulphur-containing AA 
available in the sample, thus allowing more to be captured during AA 
digestion and analysis. Meanwhile, Osen et al. (2015) reported no sig-
nificant change in amino acid contents and attributed this to the pro-
tective effect of feed moisture on amino acid as it can lower the shear 
stress and dispersion of mechanical energy in the extruder during the 
extrusion process. 

3.3.2. Protein content and amino acid compositions of chicken breast meat 
and mixed protein matrices 

Table 7 also describes the protein content and total AA composition 
(mg/100 mg protein) of chicken breast meat and selected extruded 
mixed protein matrices. All HMMA had significantly higher protein 
content than chicken breast meat. However, the total amount of essen-
tial and non-essential AA of the HMMA was still lower (Table 7). Due to 
the difference in peptide bond stability within the protein, acid hydro-
lysis of protein to amino acids was hypothesised to have not been 
completed (Chiang et al., 2021). Strong intermolecular bonds, such as 
disulphide and hydrophobic bonds, between proteins could hinder acid 
access to hydrolyse the protein backbones (Dai et al., 2019). Globulin, 
consisting of 7S and 11S oligomeric proteins, is the predominant protein 
fraction in legumes (Carbonaro and Nucara, 2022). While the ratio of 
7S:11S present in legumes is dependent on species type, Wu et al. (2020) 
reported that a higher amount of 11S ratio resulted in protein aggregates 
with higher surface hydrophobicity and disulphide bond content. This 

Table 5b 
Portion of plant protein powders for replicating the total amino acid profile of chicken breast meat under different optimisation criterion (Scenario 2).  

Plant protein1 Optimisation criterion 

SPC-1 SPC-2 WG PPI MBPI CPC FBP CPI LP RPI 

0 0 0 0.324 0.676 0 0 0 0 0 chebyshev_dist 
0 0 0 1 0 0 0 0 0 0 cos_sim* 
0 0 0 0.976 0.024 0 0 0 0 0 euclidean_dist 
0.223 0 0 0.777 0 0 0 0 0 0 manhattan_dist 
0.223 0 0 0.777 0 0 0 0 0 0 min_all_defi 
0 0 0 0 0 0 0 0 1 0 min_greatest_defi* 
0 0 0 0 0.122 0.312 0 0 0 0.566 ratio_cheby_dist 
0.61 0 0 0 0 0 0 0 0 0.39 ratio_cos_sim 
0.347 0 0 0 0.136 0 0 0 0 0.517 ratio_euclidean_dist 
0.714 0 0 0 0 0 0 0 0 0.286 ratio_manhattan_dist 
0 0 0 0 0 0 0.939 0 0.061 0 ratio_min_all_defi 
0 0 0 0 0 0 1 0 0 0 ratio_min_greatest_defi* 
0.542 0 0 0 0 0.354 0 0 0 0.105 relative_chebyshev_dist 
0.936 0 0 0 0 0 0 0 0 0.064 relative_cos_sim 
0.919 0 0 0 0 0 0 0 0 0.081 relative_euclidean_dist 
0 0.6205 0 0.3795 0 0 0 0 0 0 relative_manhattan_dist 
0 0.245 0 0.755 0 0 0 0 0 0 relative_min_all_defi 
0 0 0 0 0 0.905 0 0 0 0.095 relative_min_greates_defi  

* Optimisation criteria leading to trivial formulas: only use single plant protein. 
1 Abbreviation: SPC-1, soy protein concentration (brand 1); SPC-2, soy protein concentration (brand 2); WG, wheat gluten; PPI, pea protein isolate; MBPI, mung bean 

protein isolate; CPC, chickpea protein concentrate; FBP, faba bean protein; CPI, chickpea protein isolate; LP, lentil protein; RPI, rice protein isolate. 

Table 5c 
Portion of plant protein powders for replicating the total amino acid profile of chicken breast meat under different optimisation criterion (Scenario 3).  

Plant protein1 Optimisation criterion 

SPC-1 SPC-2 WG PPI MBPI CPC FBP CPI LP RPI 

0 0 0.1 0 0.9 0 0 0 0 0 chebyshev_dist* 
0 0 0.1 0.9 0 0 0 0 0 0 cos_sim* 
0 0 0.1 0.668 0.232 0 0 0 0 0 euclidean_dist 
0 0 0.1 0.9 0 0 0 0 0 0 manhattan_dist* 
0 0 0.1 0.9 0 0 0 0 0 0 min_all_defi* 
0 0 0.1 0 0 0 0 0 0.9 0 min_greatest_defi* 
0 0 0.1 0 0.022 0.38 0 0 0 0.498 ratio_cheby_dist 
0.579 0 0.1 0 0 0 0 0 0 0.321 ratio_cos_sim 
0.298 0 0.1 0 0.15 0 0 0 0 0.451 ratio_euclidean_dist 
0.671 0 0.1 0 0 0 0 0 0 0.229 ratio_manhattan_dist 
0 0 0.1 0 0 0 0.833 0 0.067 0 ratio_min_all_defi 
0 0 0.1 0 0 0 0.9 0 0 0 ratio_min_greatest_defi* 
0.428 0 0.1 0 0 0.443 0 0 0 0.028 relative_chebyshev_dist 
0.9 0 0.1 0 0 0 0 0 0 0 relative_cos_sim 
0.881 0 0.1 0 0 0 0 0 0 0.019 relative_euclidean_dist 
0 0.399 0.1 0.501 0 0 0 0 0 0 relative_manhattan_dist 
0 0 0.1 0.9 0 0 0 0 0 0 relative_min_all_defi* 
0 0 0.1 0 0 0.879 0 0 0 0.021 relative_min_greates_defi  

* Optimisation criteria leading to trivial formulas: only use single plant protein except for wheat gluten, which served as the base. 
1 Abbreviation: SPC-1, soy protein concentration (brand 1); SPC-2, soy protein concentration (brand 2); WG, wheat gluten; PPI, pea protein isolate; MBPI, mung bean 

protein isolate; CPC, chickpea protein concentrate; FBP, faba bean protein; CPI, chickpea protein isolate; LP, lentil protein; RPI, rice protein isolate. 
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Table 6a 
Calculated total amino acid profile comparison between chicken breast meat and its replica under different optimisation criterion (per 100g protein) for Scenario 1.  

Optimisation criterion Threonine Valine Isoleucine Leucine Phenylalanine Lysine Histidine Methionine Non-essential TAA 

Chicken breast meat 4.621 5.232 4.998 8.213 4.204 10.257 3.327 2.969 56.178 
chebyshev_dist 3.293 5.523 4.938 8.861 6.654 6.841 2.803 1.494 59.593 
cos_sim* 3.891 5.375 5.046 8.640 5.716 7.188 2.531 1.364 60.250 
euclidean_dist 3.870 5.38 5.042 8.648 5.749 7.176 2.541 1.368 60.226 
manhattan_dist 3.919 5.233 5.002 8.487 5.630 7.055 2.574 1.432 60.668 
min_all_defi 3.919 5.233 5.002 8.487 5.630 7.055 2.574 1.432 60.668 
min_greatest_defi* 3.891 5.375 5.046 8.640 5.716 7.188 2.531 1.364 60.250 
ratio_cheby_dist 3.570 4.916 4.889 8.397 6.712 6.681 2.589 1.734 60.512 
ratio_cos_sim* 4.056 4.717 4.744 7.904 5.270 5.613 2.707 1.723 63.266 
ratio_euclidean_dist 3.658 4.898 4.880 8.336 6.502 6.580 2.614 1.732 60.798 
ratio_manhattan_dist* 4.180 4.794 4.827 7.981 5.266 5.984 2.759 1.722 62.487 
ratio_min_all_defi 4.018 4.735 4.848 7.952 5.331 6.590 2.724 1.670 62.132 
ratio_min_greatest_defi 4.066 4.723 4.751 7.910 5.270 5.644 2.711 1.723 63.202 
relative_chebyshev_dist 3.774 4.780 4.780 8.108 5.961 5.972 2.630 1.729 62.267 
relative_cos_sim* 4.018 4.735 4.848 7.952 5.331 6.590 2.724 1.670 62.132 
relative_euclidean_dist* 4.018 4.735 4.848 7.952 5.331 6.590 2.724 1.670 62.132 
relative_manhattan_dist 4.078 4.999 4.904 8.213 5.425 6.409 2.679 1.596 61.698 
relative_min_all_defi 3.962 5.233 4.992 8.479 5.606 6.893 2.587 1.452 60.798 
relative_min_greates_defi 3.447 4.775 4.747 8.219 6.535 5.990 2.527 1.734 62.026  

* Optimisation criteria leading to trivial formulas: only use single plant protein. 

Table 6b 
Calculated total amino profile comparison between chicken breast meat and its replica under different optimisation criterion (per 100g protein) for Scenario 2.  

Optimisation criterion Threonine Valine Isoleucine Leucine Phenylalanine Lysine Histidine Methionine Non-essential TAA 

Chicken breast meat 4.621 5.232 4.998 8.213 4.204 10.257 3.327 2.969 56.178 
chebyshev_dist 3.293 5.523 4.938 8.861 6.654 6.841 2.803 1.494 59.593 
cos_sim* 3.891 5.375 5.046 8.640 5.716 7.188 2.531 1.364 60.250 
euclidean_dist 3.870 5.380 5.042 8.648 5.749 7.176 2.541 1.368 60.226 
manhattan_dist 3.919 5.233 5.002 8.487 5.630 7.055 2.574 1.432 60.668 
min_all_defi 3.919 5.233 5.002 8.487 5.630 7.055 2.574 1.432 60.668 
min_greatest_defi* 4.167 4.844 4.547 7.935 5.409 7.459 2.505 0.826 62.309 
ratio_cheby_dist 3.579 5.495 4.532 8.439 6.090 4.699 2.526 2.333 62.308 
ratio_cos_sim 3.897 5.147 4.618 8.107 5.408 5.262 2.599 2.122 62.840 
ratio_euclidean_dist 3.720 5.398 4.548 8.295 5.674 4.839 2.586 2.254 62.684 
ratio_manhattan_dist 3.929 5.038 4.679 8.066 5.388 5.615 2.632 2.002 62.652 
ratio_min_all_defi 3.856 4.734 4.431 8.009 4.756 7.028 2.796 0.837 63.553 
ratio_min_greatest_defi* 3.836 4.727 4.423 8.014 4.714 7.000 2.815 0.838 63.634 
relative_chebyshev_dist 3.827 4.910 4.801 8.151 5.840 6.266 2.643 1.814 61.749 
relative_cos_sim 3.998 4.803 4.810 7.978 5.344 6.372 2.703 1.744 62.248 
relative_euclidean_dist 3.993 4.820 4.800 7.984 5.347 6.316 2.698 1.763 62.278 
relative_manhattan_dist 4.078 4.999 4.904 8.213 5.425 6.409 2.679 1.596 61.698 
relative_min_all_defi 3.962 5.233 4.992 8.479 5.606 6.893 2.587 1.452 60.798 
relative_min_greates_defi 3.583 4.999 4.829 8.392 6.600 6.349 2.572 1.838 60.838  

* Optimisation criteria leading to trivial formulas: only use single plant protein. 

Table 6c 
Calculated total amino acid profile comparison between chicken breast meat and its replica under different optimisation criterion (per 100g protein) for Scenario 3.  

Optimisation criterion Threonine Valine Isoleucine Leucine Phenylalanine Lysine Histidine Methionine Non-essential TAA 

Chicken breast meat 4.621 5.232 4.998 8.213 4.204 10.257 3.327 2.969 56.178 
chebyshev_dist* 2.967 5.416 4.775 8.770 6.925 6.136 2.850 1.574 60.587 
cos_sim* 3.763 5.219 4.919 8.476 5.677 6.597 2.488 1.401 61.461 
euclidean_dist 3.558 5.270 4.882 8.552 5.998 6.478 2.581 1.446 61.236 
manhattan_dist* 3.763 5.219 4.919 8.476 5.677 6.597 2.488 1.401 61.461 
min_all_defi* 3.763 5.219 4.919 8.476 5.677 6.597 2.488 1.401 61.461 
min_greatest_defi* 4.012 4.741 4.470 7.841 5.401 6.840 2.464 0.917 63.314 
ratio_cheby_dist 3.530 5.257 4.464 8.246 5.993 4.399 2.455 2.276 63.380 
ratio_cos_sim 3.777 4.982 4.552 7.984 5.394 4.966 2.559 2.048 63.737 
ratio_euclidean_dist 3.585 5.249 4.481 8.189 5.686 4.534 2.548 2.183 63.545 
ratio_manhattan_dist 3.806 4.885 4.606 7.948 5.376 5.279 2.588 1.942 63.571 
ratio_min_all_defi 3.735 4.643 4.367 7.907 4.821 6.458 2.723 0.927 64.418 
ratio_min_greatest_defi* 3.713 4.635 4.359 7.912 4.775 6.427 2.744 0.928 64.507 
relative_chebyshev_dist 3.670 4.753 4.742 8.066 5.948 6.003 2.593 1.738 62.488 
relative_cos_sim 3.877 4.643 4.741 7.858 5.330 6.059 2.661 1.676 63.155 
relative_euclidean_dist 3.871 4.663 4.730 7.865 5.334 5.996 2.656 1.698 63.189 
relative_manhattan_dist 3.878 4.987 4.832 8.213 5.497 6.117 2.579 1.544 62.353 
relative_min_all_defi* 3.763 5.219 4.919 8.476 5.677 6.597 2.488 1.401 61.461 
relative_min_greates_defi 3.477 4.824 4.765 8.256 6.549 6.068 2.536 1.757 61.768  

* Optimisation criteria leading to trivial formulas: only use single plant protein except for wheat gluten, which served as the base. 
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could explain the higher resistance of the HMMA to acid hydrolysis 
compared to chicken. 

Furthermore, cereal proteins (e.g. RPI) are deficient in lysine, 
whereas legume proteins are lacking in sulphur-containing AAs such as 
methionine and cysteine (Sá et al., 2020). These trends were reflected in 
Table 7, where F4 (containing RPI) had the least lysine content while F1, 
F2, F3, F5, and F6 (all containing mainly legume proteins) had much 
lower methionine content than F4 and chicken breast meat. This sug-
gests that while mathematical programming could optimise the AA 
profile of HMMA by generating plant protein combinations, it is still 
incomparable to animal proteins as plant proteins are inherently lower 
in some of the essential AA contents. 

The sum of essential and non-essential AA of the HMMA ranged 
between 60.84 and 66.25 mg/100 mg protein, with F1 and F2 having the 
lowest and highest values, respectively (Table 7). As mentioned previ-
ously, the amount of globulin present is one factor that might improve 
intermolecular bonding between proteins due to higher surface hydro-
phobicity and disulphide bond content. Soy, pea, chickpea, and mung 
bean protein comprise around 90%, 65%–80%, 33.11%–52.16% and 
62% globulin, respectively. As such, F1, which contains mostly SPC, 
might have the highest globulin content and, thus, the highest surface 
hydrophobicity and disulphide bond content. This might have provided 
F1 with the highest resistance to hydrolysis. Conversely, F2, which 
contains chickpea protein, likely has the least globulin and weaker 
intermolecular bonds. 

Deficiencies in essential AA could reduce the nutritional values of 
plant crops to 50–75% compared to a diet comprising a balanced level of 
AA (Galili and Amir, 2013). The lack of some essential AA such as 
leucine, lysine, and methionine might have contributed to lower 
anabolic properties of plant proteins. In the presence of a limiting 
essential AA, the remaining AA will not be rightly used for protein 
synthesis but instead will be deaminated, oxidised, and irreversibly 
eliminated (Berrazaga et al., 2019). Thus, in this case, utilising different 
combinations of plant protein and then fortifying formulations with free 
AA is one practical approach to help improve the anabolic properties of 
plant-based products (Kouw et al., 2022). Kouw et al. (2022) reported in 
a study involving 24 healthy and young male participants that ample 

consumption of protein (40 g) in the form of a lysine-enriched plant 
protein product increased muscle protein synthesis rates to a similar 
extent as an isonitrogenous amount of chicken. Likewise, Engelen et al. 
(2007) demonstrated that compared to a soy diet, supplementation of 
branched-chain AA (i.e., valine, isoleucine, and leucine) to the soy meal 
reduced splanchnic protein synthesis, while improving peripheral (e.g., 
muscle) protein synthesis in healthy elderly. 

3.3.3. Visual observation and colour analysis 
[Insert Fig. 1 and Table 8]. 
All HMMA appeared to be brown (Fig. 1). Among the six formula-

tions, F4 was observed to be the darkest in appearance (Fig. 1), while its 
L* value was the lowest (Table 8). Their a* and b* values were signifi-
cantly higher and lower, respectively. While the extrusion process could 
result in colour changes due to the Maillard reaction, Hwang et al. 
(2011) showed that browning intensity could be affected by the type of 
AA and reducing sugar present. Sugar systems containing alanine, 
tryptophan, and asparagine resulted in Maillard reaction products with 
the highest browning intensity (Hwang et al., 2011). Indeed, RPI, pre-
sent in F4, had the highest protein and alanine content (Table 4). Rice 
protein was also known to be hydrophobic and rich in amide-containing 
amino acids such as asparagine (Paraman et al., 2007). 

3.3.4. Moisture content and pH 
Table 8 describes the moisture content and pH of the HMMA. 

Although the moisture content of the feed was set to 55% w/w, moisture 
was still lost to a limited extent during the extrusion process. Moisture 
loss could have occurred along the extrusion flow or when the extrudate 

Table 7 
Measured protein content and total amino acid composition of chicken breast meat and selected extruded mixed protein matrices, including percentage difference of 
amino acid composition in selected extruded mixed protein matrices against the mathematically optimised amount.  

Optimisation criterion 
(sample) 

Protein 
content 
(%) 

Total amino acids (mg/100 mg protein) 
(% difference against the mathematically optimised amount) 

Threonine Valine Isoleucine Leucine Phenylalanine Lysine Histidine Methionine Total 
NEAA 

Chicken breast meat 30.74 ±
0.63 a 

3.85 ± 0.18 
c 

4.36 ±
0.14 d 

4.16 ± 0.13 
c 

6.84 ±
0.23 d 

3.50 ± 0.14 b 8.54 ±
0.44 b 

2.77 ±
0.14 c 

2.47 ± 0.09 c 46.81 ±
1.56 c 

ratio_cos_sim (F1) 33.02 ±
0.06 c 

2.44 ±
0.02 b 

(− 1.26) 

2.91 ±
0.01 a 

(1.28) 

2.90 ± 0.02 
a (0.48) 

4.80 ±
0.03 a 

(− 0.18) 

3.20 ± 0.03 a 

(− 0.26) 
3.64 ±
0.17 a 

(6.64) 

1.67 ±
0.01 ab 

(1.27) 

0.93 ± 0.01 a 

(− 11.07) 
38.35 ±
0.41 ab 

(0.60) 
relative_chebyshev_dist 

(F2) 
31.82 ±
0.25 b 

2.49 ±
0.02 b 

(− 0.37) 

3.16 ±
0.02 ab 

(− 0.27) 

3.16 ± 0.02 
ab (− 0.27) 

5.31 ±
0.02 bc 

(− 1.16) 

3.87 ± 0.04 c 

(− 2.11) 
4.38 ±
0.61 a 

(10.62) 

1.76 ±
0.04 ab 

(0.98) 

1.00 ± 0.02 a 

(− 12.59) 
41.12 ±
0.15 b 

(0.48) 
relative_manhattan_dist 

(F3) 
36.42 ±
0.28 e 

2.45 ±
0.08 b 

(− 5.47) 

3.13 ±
0.12 ab 

(− 1.50) 

3.08 ± 0.14 
ab (− 1.03) 

5.18 ±
0.17 abc 

(− 0.63) 

3.55 ± 0.11 b 

(3.25) 
4.62 ±
0.73 a 

(13.56) 

1.68 ±
0.03 ab 

(− 1.27) 

0.90 ± 0.05 a 

(− 11.67) 
38.91 ±
0.85 abc 

(1.11) 
ratio_euclidean (F4) 38.78 ±

0.05 f 
2.49 ±
0.04 b 

(1.81) 

3.51 ±
0.11 c 

(− 1.21) 

3.10 ± 0.05 
ab (3.66) 

5.55 ±
0.12 c 

(1.66) 

3.84 ± 0.09 c 

(2.77) 
3.58 ±
0.09 a 

(12.34) 

1.80 ±
0.03 b 

(5.93) 

1.34 ± 0.06 b 

(− 9.40) 
40.61 ±
0.88 bc 

(2.69) 
relative_manhattan_dist 

(F5) 
34.90 ±
0.31 d 

2.51 ±
0.10 b 

(6.96) 

3.24 ±
0.10 b 

(− 6.64) 

3.13 ± 0.10 
ab (− 2.70) 

5.35 ±
0.20 bc 

(− 5.03) 

3.63 ± 0.16 bc 

(− 8.21) 
4.60 ±
0.44 a 

(7.73) 

1.71 ±
0.09 ab 

(0.69) 

0.90 ± 0.03 a 

(− 5.24) 
40.81 ±
1.57 bc 

(− 1.84) 
euclidean_dist (F6) 39.19 ±

0.50 f 
2.16 ± 0.03 
a (− 9.19) 

3.15 ±
0.02 ab 

(2.90) 

2.91 ± 0.04 
a (− 1.99) 

5.12 ±
0.08 ab 

(1.59) 

3.66 ± 0.06 bc 

(8.39) 
4.37 ±
0.50 a 

(16.41) 

1.61 ±
0.05 a 

(1.43) 

0.87 ± 0.02 a 

(− 8.27) 
37.56 ±
0.46 a 

(3.18) 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F-value 227.77 124.34 82.96 75.80 62.52 15.20 38.15 104.98 431.81 28.90 

Data are presented as the mean and standard deviation of three replicates. 
Values bearing different lowercase letters under the same column were significantly different (p ≤ 0.05) according to Tukey’s posthoc test. 

Fig. 1. Visual images of selected extruded mixed protein matrices.  
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exited the cooling die. The amount of water vapour flashed off at the 
cooling die upon exit of the extrudate was dependent on the amount of 
water vapour entrapped in the starch matrix of the mixture (Mohamad 
Mazlan et al., 2019). Nevertheless, the moisture content of the extru-
dates between F1 and F6 was not significantly different (Table 8). 

The pH of the extrudates ranged from 6.84 to 7.29, with F4 and F3 
having the lowest and highest pH values, respectively (Table 8). The 
results found in this study were similar to the pH range (6.98–7.13) 
reported by Chiang et al. (2019). 

3.3.5. Specific mechanical energy (SME) 
SME represents the energy transferred to the feed material during 

extrusion and can be used to establish extrusion conditions (Feng and 
Lee, 2014). It assists in the optimisation of process conditions to produce 
better quality extruded products while improving energy efficiency 
(Kantrong et al., 2018). The SME during the extrusion of F1 to F6 was 
calculated and reported in Table 8. 

Among the six formulations, SME was the highest and lowest during 
the extrusion of F1 and F2, respectively (Table 8). SME can be affected 
by factors such as screw speed, barrel temperature, and the character-
istics of the raw materials (Kantrong et al., 2018). Process conditions like 
rotational screw speed and temperature were kept constant during the 
extrusion process in this study. This suggested that using different raw 
materials (i.e., plant protein powders) at different water feeds (to ach-
ieve approximately 55% moisture content) significantly affects the SME 
value. A protein dough could form when protein and water were mixed 
in the extruder due to protein-water interactions and/or 
protein-water-protein interactions (Lee et al., 2022). Lee et al. (2022) 
elaborated that due to the lower water affinity of RPI than soy protein 
isolate (SPI), replacing SPI with RPI lowered the dough’s elasticity and 
increased the mixture’s mass flow rate. As a result, lower screw force 
was used, and the residence time of the mixture in the barrel was 
shortened. This signified that the mixture was subjected to a lower 
amount of mechanical energy while the extent of protein denaturation 
was limited, causing a lower level of texturisation in the extrudate. 

4. Conclusion 

For producing HMMA via the extrusion process, mathematical 
optimisation was used to generate combinations of plant protein pow-
ders at different compositions (F1 – F6) to mimic the AA composition of 
chicken breast meat. Slight discrepancies in AA content between the 
calculated and actual HMMA values existed as the extrusion process 
could have influenced the amount of AA available for capture and 
analysis. As plant proteins naturally contain less of some essential AA, 
the resulting HMMA produced still had lower AA contents than chicken. 
Strong intermolecular bonds (e.g., disulphide and hydrophobic bonds) 
present in the globulin fraction might also have hindered the completion 
of protein acid hydrolysis during AA composition analysis, lowering the 
AA content detected in the HMMA compared to chicken breast meat. 
The use of different plant proteins also affected the final product’s 
colour; F4, containing RPI, appeared the darkest. This was likely due to 

the high alanine and asparagine content that could form Maillard re-
action products with the highest browning intensity. Lastly, SME values 
were mainly altered by the plant proteins’ characteristics, as differences 
in water affinity could affect the dough’s elasticity, screw force used and 
residence time of the mixture in the extruder barrel. To conclude, this 
study demonstrated the possibility of using mathematical programming 
to generate optimised plant protein combinations that best matched an 
animal source, such as chicken breast meat. To further improve the AA 
composition of HMMA, fortifying formulations with free AA could be 
employed. The structural, textural and chemical properties of the 
HMMA derived in this study will be explored in subsequent work. 
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Table 8 
Colourimetric values, moisture content, pH and specific mechanical energy (SME) of selected extruded mixed protein matrices.  

Optimisation criterion (sample) L* a* b* Moisture (%) pH SME (kJ/kg) 

ratio_cos_sim (F1) 48.95 ± 0.95 c 1.04 ± 0.01 a 13.30 ± 0.35 a 52.51 ± 1.08 6.96 ± 0.02 b 133.60 ± 8.17 d 

relative_chebyshev_dist (F2) 53.93 ± 0.73 d 1.55 ± 0.23 b 18.16 ± 0.40 c 53.93 ± 1.73 6.98 ± 0.03 b 87.64 ± 7.96 a 

relative_manhattan_dist (F3) 48.15 ± 0.69 c 2.44 ± 0.26 c 16.36 ± 0.15 b 51.18 ± 1.06 7.29 ± 0.01 d 119.55 ± 8.03 c 

ratio_euclidean (F4) 44.29 ± 0.35 a 4.36 ± 0.06 e 14.27 ± 0.44 a 52.02 ± 0.76 6.84 ± 0.02 a 120.91 ± 8.39 c 

relative_manhattan_dist (F5) 48.53 ± 0.49 c 3.40 ± 0.06 d 16.38 ± 0.46 b 53.51 ± 0.68 7.09 ± 0.02 c 107.14 ± 5.86 b 

euclidean_dist (F6) 46.26 ± 0.64 b 4.54 ± 0.08 e 18.19 ± 0.36 c 51.51 ± 0.62 7.09 ± 0.02 c 101.89 ± 0.00 b 

p-value 0.000 0.000 0.000 0.050 0.000 0.000 
F-value 70.78 288.75 83.35 3.22 212.10 65.98 

Data are presented as the mean and standard deviation of three replicates. 
Values bearing different lowercase letters under the same column were significantly different (p ≤ 0.05) according to Tukey’s posthoc test. 
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