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Aims Iron deficiency (ID) is common in heart failure (HF) patients and negatively impacts symptoms and prognosis. The
aetiology of ID in HF is largely unknown. We studied determinants and the biomarker profile of ID in a large inter-
national HF cohort.

...................................................................................................................................................................................................
Methods
and results

We studied 2357 worsening HF patients from the BIOSTAT-CHF cohort. ID was defined as transferrin saturation
<20%. Univariable and multivariable logistic regression models were constructed to identify determinants for ID.
We measured 92 cardiovascular markers (Olink Cardiovascular III) to establish a biomarker profile of ID. The pri-
mary endpoint was the composite of all-cause mortality and first HF rehospitalization. Mean age (±standard devi-
ation) of all patients was 69 ± 12.0 years, 26.1% were female and median N-terminal pro B-type natriuretic peptide
levels (þinterquartile range) were 4305 (2360–8329) ng/L. Iron deficiency was present in 1453 patients (61.6%),
with highest prevalence in females (71.1% vs. 58.3%; P < 0.001). Independent determinants of ID were female sex,
lower estimated protein intake, higher heart rate, presence of peripheral oedema and orthopnoea, chronic kidney
disease, lower haemoglobin, higher C-reactive protein levels, lower serum albumin levels, and P2Y12 inhibitor use
(all P < 0.05). None of these determinants were sex-specific. The biomarker profile of ID largely consisted of
pro-inflammatory markers, including paraoxonase 3 (PON3) and tartrate-resistant acid phosphatase type 5. In mul-
tivariable Cox proportional hazard regression analyses, ID was associated to worse outcome, independently of pre-
dictors of ID (hazard ratio 1.25, 95% confidence interval 1.06–1.46; P = 0.007).

...................................................................................................................................................................................................
Conclusion Our data suggest that the aetiology of ID in worsening HF is complex, multifactorial and seems to consist of a

combination of reduced iron uptake (malnutrition, fluid overload), impaired iron storage (inflammation, chronic kid-
ney disease), and iron loss (antiplatelets).
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Introduction

Numerous studies showed the adverse clinical and prognostic conse-
quences of iron deficiency (ID) in patients with chronic heart failure
(HF).1–4 Despite the significant prevalence of ID in HF, its pathophysi-
ology and aetiology are not well-understood. Suggested mechanisms
for ID in HF are poor dietary iron intake, drug interactions, (occult)
gastrointestinal blood loss due to antiplatelet drugs and anticoagu-
lants, and hepcidin-induced iron entrapment due to chronic low-
grade inflammation.5 While ID is present in approximately half of all
HF patients, its prevalence seems highest in females.1,4 It is currently
unclear which factors are driving this sex difference. In the present
study, we identified determinants of ID in a large international cohort
of worsening HF patients and sought to find sex-specific clinical and
biochemical predictors of ID. Moreover, we established a cardiovas-
cular biomarker profile of patients with ID.

Methods

Study population
We included HF patients from the BIOSTAT-CHF study (A systems
BIOlogy Study to TAilored Treatment in Chronic Heart Failure). This co-
hort has been described in full detail elsewhere.6–8 In short, the
BIOSTAT-CHF study included patients either hospitalized for HF or pre-
senting with worsening HF in the outpatient setting. Patients were eligible
to participate with a left ventricular ejection fraction (LVEF) of <_40% or,
alternatively, brain natriuretic peptide or N-terminal pro B-type natri-
uretic peptide (NT-proBNP) levels of >400 ng/L or >2000 ng/L, respect-
ively. Additionally, patients had to receive suboptimal evidence-based HF
treatment (i.e. <_50% of target dose of angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, and/or beta-blockers). After
study inclusion, treating physicians were encouraged to up-titrate these
drugs during a 3-month treatment optimization phase. The BIOSTAT-
CHF study was conducted in accordance with the Declaration of
Helsinki. All patients provided written informed consent prior to any
study-related activities.

Of all 2516 patients enrolled in the BIOSTAT-CHF cohort, serum for
iron status analysis was available in 2357 (93.7%) patients.

Laboratory measurements
Iron parameters were assessed from venous blood. Blood samples were
centrifuged at 2500 g for 15 min (4�C) and stored at -80�C afterwards.
Samples were never thawed before laboratory analyses. The following
blood markers reflecting iron metabolism were assessed on a Roche
modular cobas 8000 using standard methods: serum iron, ferritin, and
transferrin. Transferrin saturation (TSAT) was calculated as follows:
[72.17 * iron (mg/dL)]/transferrin (mg/dL).9

Renal function was expressed as the estimated glomerular filtration
rate (mL/min/1.73 m2), calculated using the Chronic Kidney Disease
Epidemiology collaboration equation (CKD-EPI). Serum NT-proBNP lev-
els were determined using an immunoassay based on electrochemilumi-
nescence (Elecsys, Roche Diagnostics, Mannheim, Germany). Serum
hepcidin levels were measured using a competitive ELISA as described
previously.10 Serum soluble transferrin receptor (sTfR) levels were meas-
ured using immunonephelometry on a BNII Nephelometer (Siemens AG,
Erlangen, Germany).

To establish a biomarker profile for patients with and without ID, 92
cardiovascular-related biomarkers from the Olink Cardiovascular III panel
were measured, which were selected based on literature search on

bioinformatics (e.g. Uniprot and DisGeNET) and by consulting experts in
the cardiovascular field. All biomarkers were measured by Olink
Proteomics (Uppsala, Sweden) using the Proximity Extension Assay tech-
nology, as previously described.11 Results are reported as Normalized
Protein eXpression (NPX) on a log2 scale.

Definitions and study endpoints
Anaemia was defined as a haemoglobin level <12 g/dL in women and
<13 g/dL in men as per WHO standards.12 Iron deficiency was defined as
a TSAT <20%, as proposed by Grote Beverborg et al.13 This definition
has been validated against the gold standard test for ID (bone marrow
iron staining) in HF patients and has previously been used.4,13 Daily pro-
tein intake of patients was estimated using spot urinary nitrogen and body
mass index.14 Median follow-up of the study was 21 months. The primary
endpoint of this study was the composite of all-cause mortality and first
HF rehospitalization. Secondary endpoints included all-cause mortality
and first HF rehospitalization.

Statistical analyses
Data are presented as mean ± standard deviation (SD) when normally
distributed, as median and interquartile range (IQR) when non-normally
distributed or as percentage when categorical. Baseline characteristics
were compared using the Student’s t-test (normally distributed variables),
the Mann–Whitney U test (non-normally distributed variables), and the
v2 test (categorical or binary variables). All baseline characteristics were
stratified by iron status and sex. After baseline analyses, skewed variables
were natural log2-transformed to obtain normal distributions. To identify
independent predictors of ID, univariable and multivariable logistic re-
gression models were constructed. Associates of ID with a univariable
P-value of <_0.1 were entered into the multivariable logistic regression
models. Final multivariable models were established using backward elim-
ination based on the significance of each variable. Bootstrap analyses with
1000 repeats (using the ‘swboot’ package in Stata) were performed to
evaluate the robustness of the final models. Variables selected >700 times
were considered robust predictors. As a sensitivity analysis, a regulariza-
tion approach was performed using multivariable lasso regression. The
final model was checked for multicollinearity by calculating the variance
inflation factor. Restricted cubic splines (three knots for all variables)
were constructed for better visualization of the predictive value of con-
tinuous parameters on ID. Multivariable interaction analyses for sex were
performed with each predictor of ID.

The differential Olink biomarker expression pattern in iron-deficient
patients was visualized using a volcano plot, displaying the magnitude in
change of each biomarker (log2-fold change) against the significance of
the difference in biomarker expression [negative log10 of the P-value
(Mann–Whitney U test)]. Biomarkers in the top left or right of the plot
are of interest (large magnitude fold change and high statistical signifi-
cance). False discovery rate was controlled by correcting the P-values
according to the Benjamini–Hochberg procedure (false discovery rate of
0.05). Biomarkers that were significantly up- or down-regulated in ID and
had an absolute log2-fold change of >0.25 were entered in uni- and multi-
variable logistic regression analyses with ID as dependent variable.

Kaplan–Meier curves were constructed to determine the prognostic
consequences of ID. Differences in survival rates were tested using the
log-rank Mantel–Cox test. The influence of ID on outcome was further
assessed with univariable and multivariable Cox proportional hazard re-
gression models. In the multivariable models, adjustment was made for
the BIOSTAT prediction models as described elsewhere.8 Additionally,
the prognostic consequences of continuous TSAT levels were analysed
using univariable and multivariable fractional polynomial analyses. The
proportional hazards assumption was evaluated using Schoenfeld
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residuals and was applicable to all variables included in the outcome mod-
els. Missing predictor values were five times imputed as previously
described.8 Survival analyses were performed in all five imputation mod-
els and the results were averaged in agreement with Rubin’s rules. The
degree of missingness of all variables used in the model development is
depicted in Supplementary material online, Table S6. A two-sided P-value
<0.05 was considered statistically significant, while for interaction testing
a P-value <0.1 was used. Data were analysed using Stata version 15.1
(StataCorp LLC, College Station, TX, USA) and R version 3.5.1 (R
Foundation for Statistical Computing, Vienna, Austria).

Results

Baseline characteristics
Baseline characteristics of the present study cohort, stratified by iron
status, are depicted in Table 1. Mean age (±SD) of all patients was
69± 12.0 years, median LVEF (þIQR) was 30% (25–36), and 37.2% of
all patients were in New York Heart Association (NYHA) functional
class III or IV. The overall prevalence of ID was 61.6% (n = 1453) with
highest prevalence in females (71.1% vs. 58.3%, P < 0.001). According
to the ‘conventional’ definition of ID in HF patients (i.e. ferritin
<100mg/L or ferritin 100–300mg/L with a TSAT <20%), the preva-
lence of ID was even higher (n = 1632; 69.2%). Iron-deficient patients
were older, had more comorbidities (including anaemia) and more
signs of fluid overload compared to patients without ID (all P < 0.05).
Furthermore, patients with ID had lowest estimated protein intake,
more inflammation, and highest rate of proton-pump inhibitor and
P2Y12 inhibitor use (all P < 0.001). HF aetiology and type of HF event
(i.e. new-onset HF or worsening HF) was comparable between
patients with and without ID.

Similar in females and males, patients with ID had more severe HF
at baseline (e.g. peripheral oedema, orthopnoea, and highest NT-
proBNP levels), showed more signs of inflammation, had highest
prevalence of anaemia and lowest estimated protein intake (all
P < 0.01, see Supplementary material online, Table S1). Numerically,
iron-deficient males had most comorbidities and highest rate of
proton-pump inhibitor and P2Y12 inhibitor use, although no signifi-
cant interaction between these variables and sex was present.
A higher prevalence of atrial fibrillation in iron-deficient patients was
observed in females, but not in males (P for interaction, 0.028).

Determinants of iron deficiency
Univariable and multivariable logistic regression prediction models
for ID are shown in Table 2. Independent determinants of ID were
lower estimated protein intake, higher heart rate, presence of periph-
eral oedema and orthopnoea, history of renal disease, lower haemo-
globin, higher C-reactive protein (CRP), lower serum albumin, and
use of P2Y12 inhibitors (all P < 0.005). The c-statistic of this model
was 0.76. None of the determinants had a significant interaction with
sex. All determinants in the final model remained highly selected in
additional bootstrap analyses. Additional Lasso regression analysis of
the multivariable model confirmed our findings and selected haemo-
globin and CRP as best predictors for ID. The variance inflation fac-
tors of variables in the multivariable model were not suggestive of
multicollinearity (range of factors 1.02–1.27). Restricted cubic splines
showing the association between ID and estimated daily protein in-
take, serum levels of CRP and albumin, and haemoglobin are

displayed in Figure 1A–D. Sex-specific restricted cubic splines for
these determinants can be found in Supplementary material online,
Figure S1A–D.

Biomarker profile of iron deficiency
Median log2 levels of the 92 cardiovascular biomarkers from the
Olink Cardiovascular III panel are depicted in Supplementary material
online, Table S2. In patients with ID, the following biomarkers were
significantly up-regulated with largest magnitude of change: fatty acid
binding protein 4 (FABP4), growth differentiation factor 15 (GDF15),
NT-proBNP, osteopontin (OPN), ST2 protein (ST2), tumour necro-
sis factor receptor 1 (TNF-R1), and transferrin receptor protein 1
(TR). Only paraoxonase 3 (PON3) and tartrate-resistant acid phos-
phatase type 5 (TR-AP) were strongly and significantly down-
regulated in ID (Figure 2). After correcting for the determinants for
ID originating from Table 2, only PON3, TR-AP, ST2, NT-proBNP,
and TR remained significantly associated with ID (all P < 0.05;
Supplementary material online, Table S3).

Prognostic consequences of iron
deficiency
During a median follow-up of 21 months, overall rates of mortality
and first HF hospitalization were 26.9% (n = 615) and 24.5%
(n = 578), respectively. Event rates were comparable between males
and females (see Supplementary material online, Figure S3A and B).
Kaplan–Meier estimator curves (for all-cause mortality and the com-
posite endpoint of all-cause mortality and first HF hospitalization)
and cumulative incident curves (for first HF hospitalization), stratified
by iron status, are shown in Supplementary material online, Figure
S2A–C. Iron deficiency was a significant predictor for all endpoints (all
P < 0.05). No interaction was observed between iron status and sex
on all endpoints. Univariable and multivariable Cox proportional haz-
ard regression analyses for all endpoints are depicted in
Supplementary material online, Tables S4 and S7. Iron deficiency
remained independently associated with the primary composite end-
point of all-cause mortality and first HF rehospitalization after cor-
recting for the BIOSTAT prediction model [hazard ratio (HR) 1.30,
95% confidence interval (CI) 1.12–1.50; P = 0.0005] and the logistic
regression prediction model for ID (HR 1.25, 95% CI 1.06–1.46;
P = 0.007). In a multivariable fractional polynomial analysis, lower
TSAT levels were associated to an increased risk of all-cause mortal-
ity (see Supplementary material online, Figure S4). Finally, in the prog-
nostic models including haemoglobin (all-cause mortality and the
composite endpoint), we compared the prognostic power of haemo-
globin and ID (defined as TSAT < 20% and using TSAT as a continu-
ous variable). Exchanging haemoglobin for either ID or TSAT did not
alter the prognostic power of both models (see Supplementary ma-
terial online, Table S8).

Discussion

In a large cohort of patients with worsening HF, we identified the fol-
lowing independent determinants of ID: female sex, lower estimated
protein intake, higher heart rate, presence of peripheral oedema and
orthopnoea, history of renal disease, lower haemoglobin, higher CRP
levels, lower serum albumin levels, and antiplatelet use. None of
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Table 1 Baseline characteristics for the total cohort, stratified by iron status

Variables Total cohort No ID ID P-value

N 2357 904 1453

Clinical parameters

Age (years) 68.9 ± 12.0 68.1 ± 12.1 69.3 ± 11.9 0.016

Females (%) 616 (26.1) 178 (19.7) 438 (30.1) <0.001

BMI (kg/m2) 27.9 ± 5.5 27.8 ± 5.3 27.9 ± 5.6 0.65

Estimated protein intake (g/day) 55.0 ± 11.2 56.8 ± 12.2 53.9 ± 10.5 <0.001

Ischaemic aetiology 1069 (46.2) 395 (44.6) 674 (47.1) 0.24

LVEF (%) 30 (25–36) 30 (25–35) 30 (25–37) 0.93

HFrEF 1707 (80.9) 687 (82.6) 1020 (79.8) 0.034

HFmrEF 271 (12.8) 107 (12.9) 164 (12.8)

HFpEF 132 (6.3) 38 (4.6) 94 (7.4)

Previous hospitalization for HF 736 (31.2) 278 (30.8) 458 (31.5) 0.70

NYHA functional class III/IV 1417 (61.8) 455 (51.6) 962 (68.3) <0.001

Systolic blood pressure (mmHg) 125 ± 22 124 ± 20 125 ± 23 0.36

Heart rate (b.p.m.) 80 ± 19 77 ± 18 82 ± 20 <0.001

Peripheral oedema 1165 (59.5) 354 (48.8) 811 (65.7) <0.001

Elevated JVP 518 (33.5) 156 (26.4) 362 (37.8) <0.001

Hepatomegaly 333 (14.2) 118 (13.1) 215 (14.8) 0.24

Orthopnoea 818 (34.8) 231 (25.6) 587 (40.5) <0.001

6MWT (m) 316 (225–393) 345 (250–416) 300 (210–374) <0.001

KCCQ (overall score) 49 ± 22 56 ± 22 45 ± 22 <0.001

Comorbidities

Atrial fibrillation 1063 (45.1) 393 (43.5) 670 (46.1) 0.21

Diabetes mellitus 759 (32.2) 238 (26.3) 521 (35.9) <0.001

COPD 406 (17.2) 133 (14.7) 273 (18.8) 0.011

Renal disease 649 (27.5) 177 (19.6) 472 (32.5) <0.001

Device therapy 582 (24.7) 215 (23.8) 367 (25.3) 0.42

Laboratory

Haemoglobin (g/dL) 13.2 ± 1.9 13.9 ± 1.8 12.8 ± 1.8 <0.001

Anaemiaa 778 (36.2) 181 (23.0) 597 (43.8) <0.001

Haematocrit (%) 40.0 ± 5.4 41.6 ± 5.2 39.1 ± 5.2 <0.001

Mean corpuscular volume (fL) 90 ± 9 92 ± 9 89 ± 8 <0.001

Iron (mg/dL) 45 (28–73) 78 (62–101) 34 (22–45) <0.001

Ferritin (mg/L) 103 (50–193) 142 (80–240) 78 (39–162) <0.001

Transferrin (mg/dL) 200 (160–250) 200 (170–240) 210 (160–250) 0.17

Transferrin saturation (%) 17 (11–25) 27 (23–33) 12 (9–16) NA

sTfR (mg/L) 1.5 (1.2–2.1) 1.3 (1.0–1.7) 1.7 (1.3–2.3) <0.001

Hepcidin (nmol/L) 6.3 (2.2–16.5) 8.4 (4.4–20.0) 4.6 (1.4–13.1) <0.001

CRP (mg/L) 13.0 (5.8–26.4) 8.0 (3.5–17.2) 16.9 (8.4–32.1) <0.001

Leucocytes (109/L) 7.8 (6.4–9.6) 7.5 (6.3–9.1) 8.0 (6.6–9.8) <0.001

AST (U/L) 25 (19–35) 26 (20–35) 25 (19–35) 0.28

ALT (U/L) 25 (17–38) 26 (18–40) 24 (16–37) 0.005

c-GT (U/L) 55 (28–109) 53 (29–107) 56 (27–110) 0.89

Alkaline phosphatase (mg/L) 85 (65–118) 83 (63–117) 86 (66–120) 0.26

Total bilirubin (mmol/L) 14 (10–21) 14 (10–20) 14 (10–22) 0.14

Sodium (mmol/L) 140 (137–142) 140 (137–142) 139 (137–142) <0.001

Potassium (mmol/L) 4.2 (3.9–4.6) 4.3 (4.0–4.6) 4.2 (3.9–4.6) 0.012

NT-proBNP (ng/L) 4305 (2360–8329) 3300 (1833–6767) 4812 (2688–8991) <0.001

Creatinin (mmol/L) 101 (82–128) 97 (80–122) 104 (84–133) <0.001

eGFR (mL/min/1.73 m2) 60 (44–79) 64 (48–83) 57 (43–76) <0.001

Albumin (g/L) 32 ± 9 34 ± 8 31 ± 9 <0.001

Urea (mmol/L) 11.4 (7.6–18.2) 10.3 (7.1–16.4) 12.0 (7.8–19.0) <0.001

Continued
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.these factors had a significant interaction with sex. The adverse prog-
nostic consequences of ID are independent of these identified predic-
tors. Finally, we provided a biomarker profile of patients with ID, in
which predominantly pro-inflammatory markers seem up-regulated.

Determinants of iron deficiency
Our observational data suggest factors which may be involved in the
aetiology of ID in HF. These determinants are depicted in Take home
figure and are discussed below.

Sex difference

In the final prediction model for ID, we could not identify significant
interactions with sex. Instead, female sex was an independent pre-
dictor for ID, which has been reported in other studies as well.1,4,15

Several mechanisms might be underlying this association. First, to ex-
clude menstrual blood loss as a confounding factor, we performed a
sensitivity analysis in which we excluded premenopausal women (i.e.
age <52 years; Supplementary material online, Table S5). This yielded
a nearly identical prediction model for ID. Second, female patients in
our cohort had a higher prevalence of HFpEF, a HF subtype which
has been linked to highest prevalence of ID.16

Reduced estimated protein intake

As depicted in Figure 1A, the prevalence of ID rapidly increases in
patients with lower estimated protein intake. Additionally, we identi-
fied lower serum albumin levels as an independent predictor of ID
(Figure 1C). These findings might suggest a poor nutritional status as
an aetiological pathway of ID. Several risk scores for estimating mal-
nutrition have included serum albumin levels as predictor, also in HF
patients.17–20 Although we did not study dietary iron intake per se,
daily protein intake should provide a fair estimation of daily dietary
iron intake, as a significant amount of dietary iron intake is provided
by protein-rich food, such as meat (haem iron), nuts and legumes

(non-haem iron).21 It should be acknowledged that we only esti-
mated total daily protein intake using surrogate markers; we did not
have data on the exact daily protein intake, nor exact daily iron
intake.

Venous congestion

Heart failure is associated with right-sided venous congestion which
leads to increased gastrointestinal wall thickness and malabsorp-
tion.22–25 Intestinal wall oedema due to right-sided congestion might
also negatively influence nutrient absorption, including dietary iron. In
the multivariable prediction model for ID, we showed that peripheral
oedema, as an indicator of right-sided congestion, was an independ-
ent predictor of ID. Consequently, malabsorption due to venous
congestion may also play a role in the aetiology of ID in HF.

Antiplatelet drugs

Iron-deficient patients had higher prevalence of antiplatelet drug use
compared to patients without ID. These patients might be more
prone to (sub)clinical gastrointestinal blood loss, for example due to
gastrointestinal malignancies or angiodysplasia, which might eventual-
ly lead to ID due to iron loss. A recent study by Meijers et al.26

revealed that HF patients may be at risk for incident cancer, including
colorectal cancer, possibly due to circulating cardiac and inflamma-
tory markers.

We did not find differences in vitamin K antagonist use in patients
with and without ID. Due to the very low use of direct-acting oral
anticoagulants (DOACs) in the present cohort (n = 17, 0.7%), it was
not possible to study this drug group in relation to ID. Given the con-
flicting gastrointestinal bleeding risk of DOACs compared to vitamin
K antagonists, the prevalence of anticoagulant-related bleeding as a
cause of ID might change in the future as DOAC prescriptions be-
come more common in general practice.

....................................................................................................................................................................................................................

Table 1 Continued

Variables Total cohort No ID ID P-value

Medication

Loop diuretics 2346 (99.5) 902 (99.8) 1444 (99.4) 0.17

Beta-blockers on target dose 128 (5.4) 54 (6.0) 74 (5.1) 0.36

ACEi/ARB on target dose 314 (13.3) 128 (14.2) 186 (12.8) 0.35

Aldosterone antagonist 1259 (53.4) 514 (56.9) 745 (51.3) 0.008

Proton-pump inhibitors 825 (35.0) 260 (28.8) 565 (38.9) <0.001

Antiplatelets

P2Y12 inhibitors 363 (15.4) 108 (11.9) 255 (17.5) <0.001

Acetylsalicylic acid 1168 (49.6) 443 (49.0) 725 (49.9) 0.67

Anticoagulants 915 (38.8) 349 (38.6) 566 (39.0) 0.87

Vitamin K antagonists 898 (38.1) 341 (37.7) 557 (38.3) 0.77

DOACs 17 (0.7) 8 (0.9) 9 (0.6) 0.46

6MWT, 6-min walk test; ACEi, angiotensin-converting enzyme inhibitor; ALT, alanine aminotransferase; ARB, angiotensin receptor blocker; AST, aspartate aminotransferase;
BMI, body mass index; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; DOAC, direct-acting oral anticoagulant; eGFR, estimated glomerular filtration
rate; c-GT, gamma-glutamyltransferase; HFmrEF, heart failure with mid-range ejection fraction; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with
reduced ejection fraction; ID, iron deficiency; JVP, jugular venous pressure; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEF, left ventricular ejection fraction; NT-
proBNP, N-terminal pro B-type natriuretic peptide; sTfR, soluble transferrin receptor.
aAnaemia was defined as a haemoglobin level <12 g/dL in women and <13 g/dL in men.
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Table 2 Univariable and multivariable logistic regression prediction models for iron deficiency

Variables Univariable Multivariable

Odds ratio

(95% CI)

Z-value P-value P for interaction

with sex

Odds ratio

(95% CI)

Z-value P-value

Clinical parameters

Age (per 5 years) 1.04 (1.01–1.08) 2.40 0.016 0.464

Sex (female vs. male) 1.76 (1.44–2.15) 5.58 <0.001 — 1.42 (1.13–1.79) 2.99 0.003

BMI (per 5 kg/m2) 1.02 (0.95–1.10) 0.60 0.551 0.368

Estimated protein intake (per 10 g/day) 0.80 (0.74–0.86) -5.74 <0.001 0.405 0.87 (0.79–0.94) -3.32 0.001

Ischaemic aetiology (yes vs. no) 1.11 (0.93–1.31) 1.17 0.241 0.687

LVEF (per 5%) 1.03 (1.00–1.08) 1.71 0.087 0.008

Male 0.98 (0.93–1.02) -0.95 0.340

Female 1.11 (1.02–1.19) 2.54 0.011

Previous HF hospitalization (yes vs. no) 1.04 (0.87–1.24) 0.39 0.695 0.261

NYHA functional class III/IV (vs. I/II) 2.02 (1.70–2.40) 7.95 <0.001 0.899

Systolic blood pressure (per 5 mmHg) 1.01 (0.99–1.03) 0.85 0.395 0.726

Heart rate (per 5 b.p.m.) 1.08 (1.05–1.10) 6.10 <0.001 0.157 1.06 (1.04–1.09) 3.83 <0.001

Peripheral oedema (yes vs. no) 1.97 (1.67–2.34) 7.90 <0.001 0.649 1.36 (1.12–1.66) 3.03 0.002

Elevated JVP (yes vs. no) 1.69 (1.35–2.12) 4.59 <0.001 0.735

Hepatomegaly (yes vs. no) 1.16 (0.91–1.48) 1.23 0.220 0.116

Orthopnoea (yes vs. no) 1.96 (1.64–2.36) 7.28 <0.001 0.927 1.33 (1.07–1.66) 2.59 0.010

Comorbidities

Atrial fibrillation (yes vs. no) 1.11 (0.94–1.31) 1.25 0.211 0.016

Male 1.02 (0.84–1.23) 0.19 0.850

Female 1.69 (1.17–2.44) 2.82 0.005

Diabetes mellitus (yes vs. no) 1.56 (1.30–1.88) 4.80 <0.001 0.539

COPD (yes vs. no) 1.34 (1.07–1.68) 2.54 0.011 0.165

Renal disease (yes vs. no) 1.98 (1.62–2.41) 6.76 <0.001 0.474 1.62 (1.28–2.04) 4.07 <0.001

Device therapy (yes vs. no) 1.08 (0.89–1.31) 0.81 0.419 0.133

Laboratory

Anaemiaa (yes vs. no) 2.49 (2.07–3.00) 9.64 <0.001 0.201

Haemoglobin (per g/dL) 0.75 (0.71–0.78) -11.77 <0.001 0.216 0.79 (0.74–0.83) -7.87 <0.001

CRP (per doubling) 1.48 (1.40–1.57) 13.66 <0.001 0.805 1.39 (1.30–1.48) 10.14 <0.001

AST (per doubling) 0.97 (0.87–1.09) -0.45 0.653 0.740

ALT (per doubling) 0.94 (0.86–1.02) -1.44 0.150 0.467

c-GT (per doubling) 0.99 (0.84–1.24) -0.18 0.859 0.967

Alkaline phosphatase (per doubling) 1.06 (0.89–1.26) 0.65 0.516 0.186

Total bilirubin (per doubling) 1.08 (0.98–1.18) 1.57 0.116 0.942

Sodium (per mmol/L) 0.97 (0.94–0.99) -3.19 0.001 0.162

Potassium (per mmol/L) 0.81 (0.70–0.94) -2.73 0.006 0.182

NT-proBNP (per doubling) 1.23 (1.16–1.30) 6.95 <0.001 0.028

Male 1.26 (1.18–1.35) 6.91 <0.001

Female 1.08 (0.96–1.22) 1.25 0.211

Creatinin (per doubling) 1.35 (1.15–1.58) 3.74 <0.001 0.027

Male 1.69 (1.40–2.05) 5.40 <0.001

Female 1.09 (0.78–1.53) 0.52 0.604

eGFR (per doubling) 0.79 (0.69–0.91) -3.39 0.001 0.162

Albumin (per 5 g/L) 0.81 (0.77–0.86) -8.09 <0.001 0.776 0.93 (0.87–0.98) -2.46 0.014

Urea (per doubling) 1.26 (1.15–1.38) 4.90 <0.001 0.387

Medication

Loop diuretics (yes vs. no) NA

Beta-blockers on target dose (yes vs. no) 0.84 (0.59–1.21) -0.92 0.359 0.716

ACEi/ARB on target dose (yes vs. no) 0.89 (0.70–1.13) -0.94 0.346 0.472

Continued
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Table 2 Continued

Variables Univariable Multivariable

Odds ratio

(95% CI)

Z-value P-value P for interaction

with sex

Odds ratio

(95% CI)

Z-value P-value

Aldosterone antagonist (yes vs. no) 0.80 (0.68–0.94) -2.64 0.008 0.745

Proton-pump inhibitors (yes vs. no) 1.58 (1.32–1.88) 4.99 <0.001 0.197

P2Y12 inhibitors (yes vs. no) 1.57 (1.23–2.00) 3.64 <0.001 0.693 1.64 (1.24–2.16) 3.47 0.001

Acetylsalicylic acid (yes vs. no) 1.04 (0.88–1.22) 0.42 0.674 0.225

Anticoagulants (yes vs. no) 1.01 (0.86–1.20) 0.17 0.866 0.156

ACEi, angiotensin-converting enzyme inhibitor; ALT, alanine aminotransferase; ARB, angiotensin receptor blocker; AST, aspartate aminotransferase; BMI, body mass index; CI,
confidence interval; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate; c-GT, gamma-glutamyltransferase; JVP,
jugular venous pressure; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro B-type natriuretic peptide.
aAnaemia was defined as a haemoglobin level <12 g/dL in women and <13 g/dL in men.

Figure 1 (A) Restricted cubic spline of the association between estimated protein intake and the prevalence of iron deficiency. (B) Restricted cubic
spline of the association between C-reactive protein and the prevalence of iron deficiency. (C) Restricted cubic spline of the association between
serum albumin and the prevalence of iron deficiency. (D) Restricted cubic spline of the association between haemoglobin and the prevalence of iron
deficiency. The solid lines indicate estimates of the prevalence of iron deficiency across continuous levels of estimated protein intake, C-reactive pro-
tein, serum albumin, and haemoglobin, fitted using logistic regression analysis. The dashed lines indicate 95% confidence intervals.
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Chronic inflammation

Iron-deficient patients in the present study had higher levels of inflam-
matory markers compared to patients without ID, whereas hepcidin
levels were lowest in iron-deficient patients. This is an interesting
finding, as hepcidin levels are expected to be elevated in inflammatory
states. Despite the pro-inflammatory state in iron-deficient patients,

there must be mechanisms lowering hepcidin levels in these patients.
It seems conceivable that these patients have ID due to iron unavail-
ability, malabsorption or loss rather than inflammation, which might
explain lower hepcidin levels. In this hypothesis, the influence of
chronic inflammation on iron status via the inflammation-hepcidin-
iron axis seems limited: systemic iron status itself seems to dictate
hepcidin release over inflammatory status. This hypothesis has been
postulated by Weber et al.27 in their study comprising 60 stable
chronic HF patients with anaemia. They showed that iron-deficient
patients have lower hepcidin levels despite increased levels of the
pro-inflammatory cytokine tumour necrosis factor-a (TNF-a). Our
study yields comparable results using CRP and pro-inflammatory bio-
markers from the Olink Cardiovascular III panel. Furthermore, some
pro-inflammatory cytokines directly influence iron status independ-
ently of hepcidin, for example TNF-a.28

Biomarker profile of iron deficiency
As shown in Figure 2, many biomarkers from the Olink
Cardiovascular III panel were significantly up- or down-regulated in
ID. After correcting for HF severity, renal function and predictors for
ID, several biomarkers remained independently associated with iron
status. Of these, paraoxonase 3 (PON3) and TR-AP are both down-
regulated in ID. PON3 is a liver-derived, HDL-bound protein, which

Figure 2 Biomarker expression profile (volcano plot) in iron-deficient heart failure patients compared to patients without iron deficiency. The vol-
cano plot shows the difference in cardiovascular biomarker expression in patients with and without iron deficiency. Each dot represents one of the
92 biomarkers of the Olink Cardiovascular III panel. On the x-axis, the log2-fold change in biomarker expression is depicted (positive log2-fold change
is higher biomarker expression in patients with iron deficiency; negative log2-fold change is lower biomarker expression in patients with iron defi-
ciency), while the y-axis shows the magnitude of the biomarker expression difference as -log10 of the P-value. Red dots are biomarkers with a signifi-
cant up- or down-regulation in patients with iron deficiency (corrected for a false discovery rate of 5%); green dots indicate biomarkers with an
absolute log2-fold change of >0.25. Most biomarkers were significantly up-regulated in patients with ID (n = 39, 42.4%), while 15 biomarkers had sig-
nificantly lower expression (16.3%). FABP4, fatty acid binding protein 4; GDF15, growth differentiation factor 15; NT-proBNP, N-terminal prohor-
mone brain natriuretic peptide; OPN, osteopontin; PON3, paraoxonase 3; ST2, ST2 protein; TNF-R1, tumour necrosis factor receptor 1; TR,
transferrin receptor protein 1; TR-AP, tartrate-resistant acid phosphatase type 5.

Determinants of iron deficiency in heart failure 

Iron uptake Iron storage Iron loss 

P2Y12 inhibitor 
use Malnutrition 

Fluid overload 

Inflammation 

Renal disease 

Female sex PON3 
TR-AP 

Take home figure Determinants of iron deficiency in heart
failure. Several graphical elements in this figure are provided by
Freepik and DinosoftLabs from www.flaticon.com.

Iron deficiency in worsening heart failure 3623

http://www.flaticon.com


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
has several antiatherogenic and antioxidative properties. In animal
studies, overexpression of PON3 seemed protective against athero-
sclerosis and cardiac hypertrophy, while PON3-deficient mice show
mitochondrial and fatty acid oxidation dysfunction.29–32 Second, TR-
AP is predominantly an osteoclast-derived, iron-containing protein
reflecting bone turnover rate and is expressed by activated macro-
phages. In vitro studies show that the expression of TR-AP is regulated
by iron status.33,34 TR-AP knockout mice display altered osteoclastic
function leading to mild osteopetrosis and an increased proinflamma-
tory response.35,36 Unfortunately, both PON3 and TR-AP are poorly
studied in human (patho)physiology. Although our study shows an in-
dependent link between PON3, TR-AP, and iron status, the clinical
significance of the biomarker expression pattern in ID need to be
elucidated.

Clinical implications
Our data confirm the adverse prognostic consequences of ID, which
are independent of established predictors of outcome. While ID is
frequently observed in HF patients, the aetiology is often unknown.
However, it is essential to explore the underlying cause(s), since
some of them are treatable and reversible.37 For example, if ID is
caused by gastrointestinal blood loss, the underlying cause of this
blood loss (e.g. malignancy, angiodysplasia or antiplatelet use) needs
to be detected and treated. When ID is caused by the use of antipla-
telets or anticoagulants, their use should be reconsidered, especially
in patients without a direct treatment indication. Finally, when poor
nutritional status is causing ID, this should be treated as well.

Strengths and limitations
To our knowledge, this is the largest cohort with clinical and bio-
chemical parameters available, providing more knowledge on the
drivers of ID in HF patients. However, an important limitation of this
study is its observational character, making it challenging to directly
study aetiological and pathophysiological mechanisms. Nevertheless,
we hope our data encourage more studies on the determinants iden-
tified in our study. As iron indices were only measured at a single
time point, differences in iron status over time could not be studied.
Second, there were no data available on the presence or absence of
recent blood loss (e.g. blood donations, surgery), which could pos-
sibly affect iron status. Third, protein intake was estimated using a for-
mula based on urinary urea and body mass index, and not directly
measured. Finally, the majority of patients in BIOSTAT-CHF is male.
Therefore, we cannot rule out that the prediction models for ID in
males had more statistical power to identify independent determi-
nants of ID compared to the models in female patients.

Supplementary material

Supplementary material is available at European Heart Journal online.

Funding
The BIOSTAT-CHF study was supported by the European Commission
(FP7-242209-BIOSTAT-CHF).

Conflict of interest: The University Medical Center Groningen, which
employs several authors, has received research grants and/or fees from
AstraZeneca, Abbott, Bristol-Myers Squibb, Novartis, Roche Diagnostics,

Trevena, and Thermofisher GmbH. N.G.B. received personal fees from
Vifor Pharma. K.D. received honoraria and/or research support from de-
vice companies Biotronik and Sorin, Boston Scientific St Jude, and
Medtronic, and pharmaceutical companies Abbott, Amgen, Astra
Zeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, GSK, Leo,
Merck, Novartis, Otsuka, Pfizer, Roche, Sanofi, and Servier. S.D.A.
received grants from Abbott Vascular and Vifor Pharma, and consultancy
fees from Bayer, Boehringer Ingelheim, Brahms, Cardiorentis, Janssen,
Novartis, Relypsa, Servier, Stealth Peptides, Vifor Pharma, and ZS
Pharma. C.C.L. received consultancy fees and/or research grants from
Amgen, Astra Zeneca, MSD, Novartis, and Servier. D.J.v.V. received
board membership fees or travel expenses from BioControl,
Cardiorentis, Novartis, Johnson & Johnson, Vifor Pharma, Zoll Medical,
CorviaMedical and Arca. A.A.V. received consultancy fees and/or re-
search grants from Alere, Amgen, Bayer, Boehringer Ingelheim,
Cardio3Biosciences, Celladon, GSK, Merck/MSD, Novartis, Roche
Diagnostics, Servier, Singulex, Sphingotec, Stealth Peptides, Trevana,
Vifor Pharma, and ZS Pharma. P.v.d.M. received consultancy fees and/or
grants from Novartis, Servier, Vifor Pharma, Astra Zeneca, Pfizer and
Ionis. H.H.v.d.W. and L.L.N. have nothing to disclose.

References
1. Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, Lok

DJ, Rosentryt P, Torrens A, Polonski L, van Veldhuisen DJ, van der Meer P,
Jankowska EA. Iron deficiency in chronic heart failure: an international pooled
analysis. Am Heart J 2013;165:575–582.e3.

2. van Veldhuisen DJ, Anker SD, Ponikowski P, Macdougall IC. Anemia and iron de-
ficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol
2011;8:485–493.

3. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska
B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJ,
Anker SD, Ponikowski P. Iron deficiency: an ominous sign in patients with systolic
chronic heart failure. Eur Heart J 2010;31:1872–1880.

4. Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA. Disordered iron
homeostasis in chronic heart failure: prevalence, predictors, and relation to an-
emia, exercise capacity, and survival. J Am Coll Cardiol 2011;58:1241–1251.

5. Jankowska EA, von Haehling S, Anker SD, Macdougall IC, Ponikowski P. Iron defi-
ciency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur
Heart J 2013;34:816–829.

6. Voors AA, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P,
Hillege HL, Lang CC, Ter Maaten JM, Ng L, Ponikowski P, Samani NJ, van
Veldhuisen DJ, Zannad F, Zwinderman AH, Metra M. A systems BIOlogy Study
to TAilored Treatment in Chronic Heart Failure: rationale, design, and baseline
characteristics of BIOSTAT-CHF. Eur J Heart Fail 2016;18:716–726.

7. Ouwerkerk W, Voors AA, Anker SD, Cleland JG, Dickstein K, Filippatos G, van
der Harst P, Hillege HL, Lang CC, Ter Maaten JM, Ng LL, Ponikowski P, Samani
NJ, van Veldhuisen DJ, Zannad F, Metra M, Zwinderman AH. Determinants and
clinical outcome of uptitration of ACE-inhibitors and beta-blockers in patients
with heart failure: a prospective European study. Eur Heart J 2017;38:1883–1890.

8. Voors AA, Ouwerkerk W, Zannad F, van Veldhuisen DJ, Samani NJ, Ponikowski
P, Ng LL, Metra M, Ter Maaten JM, Lang CC, Hillege HL, van der Harst P,
Filippatos G, Dickstein K, Cleland JG, Anker SD, Zwinderman AH. Development
and validation of multivariable models to predict mortality and hospitalization in
patients with heart failure. Eur J Heart Fail 2017;19:627–634.

9. Beilby J, Olynyk J, Ching S, Prins A, Swanson N, Reed W, Harley H, Garcia-
Webb P. Transferrin index: an alternative method for calculating the iron satur-
ation of transferrin. Clin Chem 1992;38:2078–2081.

10. Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N, Pickkers P,
van Ede AE, Peters HP, van Dongen-Lases E, Wetzels JF, Sweep FC, Tjalsma H,
Swinkels DW. Immunochemical and mass-spectrometry-based serum hepcidin
assays for iron metabolism disorders. Clin Chem 2010;56:1570–1579.

11. Assarsson E, Lundberg M, Holmquist G, Bjorkesten J, Thorsen SB, Ekman D, Eriksson
A, Rennel Dickens E, Ohlsson S, Edfeldt G, Andersson AC, Lindstedt P, Stenvang J,
Gullberg M, Fredriksson S. Homogenous 96-plex PEA immunoassay exhibiting high
sensitivity, specificity, and excellent scalability. PLoS One 2014;9:e95192.

12. Nutritional anaemias. Report of a WHO scientific group. World Health Organ
Tech Rep Ser 1968;405:5–37.

13. Grote Beverborg N, Klip IT, Meijers WC, Voors AA, Vegter EL, van der Wal
HH, Swinkels DW, van Pelt J, Mulder AB, Bulstra SK, Vellenga E, Mariani MA, de
Boer RA, van Veldhuisen DJ, van der Meer P. Definition of iron deficiency based

3624 H.H. van der Wal et al.

https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehz680#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
on the gold standard of bone marrow iron staining in heart failure patients. Circ
Heart Fail 2018;11:e004519.

14. Kanno H, Kanda E, Sato A, Sakamoto K, Kanno Y. Estimation of daily protein in-
take based on spot urine urea nitrogen concentration in chronic kidney disease
patients. Clin Exp Nephrol 2016;20:258–264.

15. Yeo TJ, Yeo PS, Ching-Chiew Wong R, Ong HY, Leong KT, Jaufeerally F, Sim D,
Santhanakrishnan R, Lim SL, Chan MY, Chai P, Low AF, Ling LH, Ng TP, Richards
AM, Lam CS. Iron deficiency in a multi-ethnic Asian population with and without
heart failure: prevalence, clinical correlates, functional significance and prognosis.
Eur J Heart Fail 2014;16:1125–1132.

16. Martens P, Nijst P, Verbrugge FH, Smeets K, Dupont M, Mullens W. Impact of
iron deficiency on exercise capacity and outcome in heart failure with reduced,
mid-range and preserved ejection fraction. Acta Cardiol 2018;73:115–123.

17. Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y,
Nishigoori S, Uchiyama S, Asai K, Shimizu W. The prognostic impact of malnutri-
tion in patients with severely decompensated acute heart failure, as assessed
using the Prognostic Nutritional Index (PNI) and Controlling Nutritional Status
(CONUT) score. Heart Vessels 2018;33:134–144.

18. Sze S, Zhang J, Pellicori P, Morgan D, Hoye A, Clark AL. Prognostic value of sim-
ple frailty and malnutrition screening tools in patients with acute heart failure
due to left ventricular systolic dysfunction. Clin Res Cardiol 2017;106:533–541.

19. Honda Y, Nagai T, Iwakami N, Sugano Y, Honda S, Okada A, Asaumi Y, Aiba T,
Noguchi T, Kusano K, Ogawa H, Yasuda S, Anzai T, Investigators N. Usefulness
of geriatric nutritional risk index for assessing nutritional status and its prognostic
impact in patients aged >_65 years with acute heart failure. Am J Cardiol 2016;118:
550–555.

20. Iwakami N, Nagai T, Furukawa TA, Sugano Y, Honda S, Okada A, Asaumi Y, Aiba
T, Noguchi T, Kusano K, Ogawa H, Yasuda S, Anzai T, Investigators N.
Prognostic value of malnutrition assessed by Controlling Nutritional Status score
for long-term mortality in patients with acute heart failure. Int J Cardiol 2017;230:
529–536.

21. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for
Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese,
Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: The National
Academies Press; 2001.

22. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, von Haehling S,
Schroedl W, Karhausen T, Doehner W, Rauchhaus M, Poole-Wilson P, Volk
HD, Lochs H, Anker SD. Altered intestinal function in patients with chronic
heart failure. J Am Coll Cardiol 2007;50:1561–1569.

23. Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, Kalra PR,
Buhner S, Herrmann R, Springer J, Doehner W, von Haehling S, Anker SD,
Rauchhaus M. Studies on bacterial endotoxin and intestinal absorption function
in patients with chronic heart failure. Int J Cardiol 2012;157:80–85.

24. Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner
S, Sliziuk V, Scherbakov N, Murin J, Anker SD, Sandek A. Intestinal congestion
and right ventricular dysfunction: a link with appetite loss, inflammation, and
cachexia in chronic heart failure. Eur Heart J 2016;37:1684–1691.

25. Valentova M, von Haehling S, Krause C, Ebner N, Steinbeck L, Cramer L,
Doehner W, Murin J, Anker SD, Sandek A. Cardiac cachexia is associated with
right ventricular failure and liver dysfunction. Int J Cardiol 2013;169:219–224.

26. Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, de Jong S,
Haubner BJ, Nagengast WB, Lyon AR, van der Vegt B, van Veldhuisen DJ,
Westenbrink BD, van der Meer P, Silljé HHW, de Boer RA. The failing heart
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