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Advances in our understanding of cancer biology have contributed to generating different
treatments to improve the survival of cancer patients. However, although initially most of
the therapies are effective, relapse and recurrence occur in a large percentage of these
cases after the treatment, and patients then die subsequently due to the development of
therapy resistance in residual cancer cells. A large spectrum of molecular and cellular
mechanisms have been identified as important contributors to therapy resistance, and
more recently the inflammatory tumor microenvironment (TME) has been ascribed an
important function as a source of signals generated by the TME that modulate cellular
processes in the tumor cells, such as to favor the acquisition of therapy resistance.
Currently, extracellular vesicles (EVs) are considered one of the main means of
communication between cells of the TME and have emerged as crucial modulators of
cancer drug resistance. Important in this context is, also, the inflammatory TME that can
be caused by several conditions, including hypoxia and following chemotherapy, among
others. These inflammatory conditions modulate the release and composition of EVs
within the TME, which in turn alters the responses of the tumor cells to cancer therapies.
The TME has been ascribed an important function as a source of signals that modulate
cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance.
Although generally the main cellular components considered to participate in generating a
pro-inflammatory TME are from the immune system (for instance, macrophages), more
recently other types of cells of the TME have also been shown to participate in this
process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer
stem cells, as well as the tumor cells. In this review, we focus on summarizing available
information relating to the impact of a pro-inflammatory tumor microenvironment on the
release of EVs derived from both cancer cells and cells of the TME, and how these EVs
contribute to resistance to cancer therapies.
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INTRODUCTION

Due to its high prevalence and mortality, cancer is now
considered as the leading cause of death worldwide as defined
by the World Health Organization (WHO) in 2019 (1). This
multifactorial disease is characterized by the presence of cells that
constantly proliferate in a rapid and uncontrolled manner (2).
Currently, several methods exist for the treatment of cancer,
including radiation therapy, surgery, immunotherapy, endocrine
therapy, gene therapy and chemotherapy, the latter being the
most commonly employed therapeutic approach (3).

While cancer treatments are initially quite successful, the
long-term of success of such interventions is often limited by the
development of drug resistance. As an example, in
chemotherapy, 90% of cancer patient mortality is attributable
to drug resistance (3). Processes leading to resistance can be
segregated into two major categories, referred to as intrinsic or
extrinsic, depending on whether the resistance was pre-existing
in cancer cells, or subsequently acquired in response to
treatment, respectively (4). Nevertheless, both types of
resistance share common mechanisms that permit escaping
cancer therapy, such as enhanced drug efflux, changes in drug
targets, metabolic adaptations, dysregulation of the DNA
damage repair machinery, defective apoptotic signaling,
activation of pro-survival signaling, and other adaptive cellular
responses (3, 5, 6).

Solid tumors display great cell heterogeneity and, together
with non-cellular components, are referred to as the tumor
mic roenv i ronment (TME) (7 ) . The b id i r e c t i ona l
communication between tumor cells and the surrounding
stromal components plays a critical role in the regulation of
tumor progression by favoring processes, such as metastasis and
therapeutic resistance (8). The TME consists of non-cellular
components, such as the extracellular matrix, and stromal cells,
including cancer-associated fibroblasts (CAFs), mesenchymal
cells, endothelial cells, adipocytes, and immune cells like the
tumor associated macrophages (TAMs) (8). The TME is
described as a pro-inflammatory microenvironment given that
many of the cells present are inflammatory cells, and many cells
of the TME have the ability to secrete pro-inflammatory
molecules in response to different conditions including, but not
limited to, hypoxia or chemotherapy (9–13). Pro-inflammatory
processes also contribute to tumor progression, making the
ability to suppress such events highly desirable for the
successful outcome of treatments (9, 14). Thus, although
cancer therapy has focused for many years primarily on tumor
cells as the targets, the importance of the TME and interactions
between tumor cells and the stromal components in promoting
tumor development and progression, makes targeting these
interactions an increasingly interesting option for cancer
treatment (7, 15).

Intercellular communication in the TME is mediated by
soluble factors such as cytokines, chemokines, growth factors,
and extracellular vesicles (EVs) (16). EVs are a heterogeneous
group of cell-derived membranous structures that are released to
the extracellular space and are involved in multiple physiological
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and pathological processes, given that they represent vehicles for
the transfer of a large variety of molecules to recipient cells,
including DNAs, mRNAs, proteins, microRNAs (miRNA), long
non-coding RNAs (LncRNAs), lipids, and metabolites. These
days, the release and uptake of EVs is considered an important
mechanism of intercellular communication and EVs are
classified into two main groups according to their origin,
namely exosomes that are of endosomal origin (30–150 nm in
diameter), and microvesicles that are liberated directly from the
plasma membrane (MVs, 50–500 nm in diameter), including
apoptotic bodies (17). The content of the EVs is decisive in
determining the phenotypic changes that may be triggered in
recipient cells, and this in turn depends on the origin and the
state of the cell when the vesicles are generated (18). For instance,
EVs control several physiologically important functions such as
immune surveillance, blood coagulation, stem cell maintenance
and tissue repair. On the other hand, in some contexts, EVs have
a pathological role. For example, EVs can favor the development
o f cance r , au to immune d i s ea se s , p r ion d i s ea se s ,
neurodegeneration and HIV infection (19). Furthermore, EVs
have been implicated in the acquisition of the hallmarks of
cancer and driving tumor progression by promoting
communication between cancer cells and the tumor
microenvironment (20).

To contextualize the concept of EVs, the International Society
for Extracellular Vesicles (ISEV) suggests minimal requirements
to define vesicles as EVs (21). In general, EVs are structures with
a lipid bilayer that are unable to replicate and lack a functional
nucleus. In terms of specific markers, there is no consensus that
permits clearly defining EVs of endosomal origin (exosomes) or
those derived from the plasma membrane (ectosomes,
microparticles, or microvesicles). Moreover, experimental
limitations generally do not allow separating the different EV
subpopulations. However, the ISEV recommends the use of size
to define such subpopulations, and following those guidelines
they can be separated into two main groups, small EVs (sEVs)
(<200 nm in diameter, and medium/large EVs (m/lEVs) (>200
nm in diameter). Besides size, EVs also should be characterized
by the presence of at least three positive protein markers of EVs
and one negative marker to evaluate contamination by vesicles
from other subcellular compartments. If an EV preparation does
not meet these minimal requirements, the use of the term
extracellular particles (EPs) is recommended. Therefore, the
processing of samples, depending on the source of the EVs
(conditioned medium or biological fluids), the experimental
conditions (hypoxia or serum concentration for example), and
the methods used to separate and concentrate the EVs
(ultracentrifugation, size exclusion chromatography, among
others) are crucial to achieve the minimal requirements to
obtain vesicles considered as EVs. In this context, there are
several methods to separate and concentrate EVs, but each one is
different in terms of recovery and specificity. Therefore, to
evaluate a biological effect of EVs, such as transfer of therapy
resistance, it is important to consider which method is used. In
this review, we summarize the main results of several articles
which isolate, characterize and describe the role of vesicles in
May 2022 | Volume 12 | Article 897205
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therapy resistance. In most, but not all cases these can be defined
as EVs by the aforementioned criteria.

The important role of EVs in the communication between
cancer cells and the TME, and their contribution to the
development of different hallmarks that drive tumor
progression is well established (20). Moreover, the biogenesis
of EVs and their content are modulated by the different stimuli
and conditions present in the TME. In this context of note is the
ability of pro-inflammatory conditions to promote the release of
EVs, which endow cancer cells with traits that permit developing
resistance to anti-cancer therapies (22). With this in mind, we
will focus in this review on summarizing how the pro-
inflammatory tumor microenvironment and EVs generated in
this milieu contribute to the acquisit ion of cancer
therapy resistance.
EVS IN CANCER THERAPY RESISTANCE
INDUCED BY HYPOXIA AND GLYCOLYSIS

Hypoxia generates a pro-inflammatory TME that promotes
resistance to cancer therapy (23). Several cell types are affected
by hypoxic conditions that promote tumor cell survival,
migration, invasion, and metastasis (24). Glycolysis appears as
an important mechanism in this context. Indeed, a well-
established hallmark of cancer that enhances tumor cell
aggressiveness is metabolic reprogramming (25). Cancer cells
impair mitochondrial respiration and convert to a glycolytic
metabolism to obtain energy and intermediate metabolites
required for tumor growth and metastasis (26). Consistent
with the relevance of this switch, some drugs that prevent
hypoxia-induced therapy resistance, like dichloroacetate,
wogonin and baicalein, also inhibit glycolytic enzymes such as
HKII, PDHK1, and LDHA (27–29). Moreover, inhibiting glucose
uptake or the glycolytic pathway prevents hypoxia-induced
therapy resistance (27, 30) due to HIF-1a downregulation
mediated by the PTEN/PI3K/Akt/mTOR signaling pathway
(28, 29, 31).

On the other hand, there is evidence suggesting that hypoxia-
induced therapy resistance is independent of HIF-1a (32).
Indeed, STAT3, rather than HIF-1a, appears as a key regulator
in this process (33, 34). Circular RNA AKT3 (CircAKT3) is
upregulated in cancer and inhibits miR-516b-5p, an inhibitor of
STAT3, thereby promoting STAT3 activation and therapy
resistance (35). One of the effects of the STAT3 activation is
the downregulation of PTEN (36). Indeed, some authors have
observed that activation of STAT3/Akt/MAP2K and PKM2/
glycolysis are relevant in drug-resistant cells (35, 37). In
addition to these cell intrinsic pathways, it has more recently
become clear that cell extrinsic events involving EVs are
important in events leading to therapy resistance.

Since hypoxia promotes EV production, several studies
suggest that the hypoxia-related effects may be dependent on
the delivery of proteins and nucleic acids present in EVs, which
induce therapy resistance in recipient cells. Indeed, therapy-
resistant cells are known to deliver EVs to therapy-sensitive cells
Frontiers in Oncology | www.frontiersin.org 3
and induce therapy resistance under hypoxic conditions
(Supplementary Table 1). For instance, ovarian cancer cells
exposed to hypoxia increase EV release by upregulating Rab27a
and downregulating Rab7, LAMP1/2 and NEU-1. In this way,
cisplatin-resistant cells deliver EVs containing STAT3 and FAS
to sensitive cells and promote invasion through MMP2
expression and chemotherapy resistance under hypoxic
conditions (38). Another mechanism observed in cancer cells
exposed to hypoxia is the release of PKM2-containing EVs,
which promote therapy resistance by stimulating glycolysis,
ROS production and inhibiting apoptosis (39). In addition,
EVs from oxaliplatin-resistant cancer cells deliver circR-122 to
drug-sensitive cells. Here, circR-122 acts as a sponge for miR-
122, the inhibitor of PKM2, thereby promoting PKM2
expression, glycolysis, and therapy-resistance (40). Moreover,
other glycolytic enzymes, such as ALDOA and ALDH3A1, are
detected in EVs of radiation-resistant cells. The transfer of these
enzymes promotes glycolysis and aggressiveness in recipient
cells (41).

HSP70 and Osteopontin are stress proteins that participate in
hypoxia-induced radio- and chemotherapy resistance. HSP70 is
present at the plasma membrane and naturally released in EVs.
As hypoxia stimulates EV production, an increment in HSP70
levels in plasma is observed that promotes therapy resistance.
Osteopontin expression also increases under hypoxic conditions.
In fact, increases in HSP70 and Osteopontin are associated with
decreased overall patient survival (42). Furthermore, small EVs
from adriamycin-resistant cells contain HSP70 which directly
targets mitochondria in recipient cells. In this way, HSP70
impairs mitochondrial function, promotes glycolysis, and
induces therapy resistance in recipient cells (43). Taken
together, these data suggest that therapy-resistant cells release
EVs which promote glycolysis and therapy resistance in therapy-
sensitive cells under hypoxic conditions. In this way, controlling
EV content and/or glycolysis may represent a possible novel
approach to target resistant tumor cells.
EV RELEASE IN RESPONSE TO
CHEMOTHERAPY AND ACQUISITION OF
THERAPY RESISTANCE

Chemotherapy is another factor that contributes to generating an
inflammatory TME by increasing the production of
inflammatory cytokines or modulating cellular components of
the TME, including the immune system (12). To date,
chemotherapy remains the most frequently employed
treatment for cancer. However although initially effective in a
large percentage of patients, relapse often occurs within a few
years following the treatment and patients die due to the
development of drug resistance (44). A wide range of
molecular and cellular mechanisms have been identified as
important in contr ibut ing to the deve lopment of
chemoresistance: 1) increased rates of drug efflux; 2) activation
of survival signaling and inactivation of death signaling
pathways; 3) epigenetic changes and 4) effects of the local
May 2022 | Volume 12 | Article 897205
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tumor microenvironment (6). In this context, inflammation of
the TME enhanced by chemotherapy also can contribute to the
failure of therapy (13). Moreover, this microenvironment can
promote the release of EVs from tumor cells that contribute to
therapy resistance. Indeed, several reports show that
chemotherapeutic agents induce the biogenesis and release of
EVs from tumor cells with pro-tumorigenic activity, including
the ability to transfer chemoresistance (45–49).

For example, cisplatin and paclitaxel based chemotherapy is
widely used as first-line therapy in several cancers and leads to a
significant reduction in the tumor size (50–52). However, the use
of cisplatin for the treatment of ovarian cancer (OC) promotes
the release of EVs that induce drug resistance in bystander cells
by modulating the p38 and JNK signaling pathways to increase
cisplatin resistance (53). Furthermore, EVs released from
chemosensitive bladder cancer cells, in particular the non-stem
cancer cell (NSCCs) population, in response to cisplatin or
gemcitabine, another chemotherapeutic agent, also promote
therapy resistance and additionally favor cancer stem cell
(CSC) survival in response to chemotherapy (54). A proteomic
analysis of the EV cargo implicated the transfer from NSCCs to
CSCs present in the TME of protein synthesis/degradation
machinery components, which are critical for CSC survival,
maintenance, and plasticity. Even though, the large majority of
NSCCs die in response to chemotherapy, they release EVs
containing ribosomal proteins that are taken up by CSCs and
induce protein synthesis, aiding CSCs in adapting to the post-
therapy TME, ultimately resulting in resistance and disease (54).

Chemotherapy with paclitaxel also modulates EV biogenesis,
thereby contributing to therapy resistance in recipient cells. In
breast cancer cells, treatment with paclitaxel induces the release of
exosomes highly enriched in the protein Survivin, a member of the
inhibitor of apoptosis (IAP) protein family that blocks cell death
(55), and the transfer of these exosomes to breast cancer cells
promotes cell survival in a Survivin-dependent manner (56).
Recent studies show that paclitaxel and doxorubicin
chemotherapy increases the levels of miR-378a-3p and miR-
378d, microRNAs associated with chemoresistance, in EVs
derived from patients and preclinical models. The uptake of
such EVs by recipient breast cancer cell promotes cancer
stemness and chemoresistance via enhanced EZH2/STAT3
signaling (57). Paclitaxel and doxorubicin also promote the
secretion of EVs from breast cancer cells, which contain several
microRNAs that target the transcription factor One Cut
Homeobox 2 (ONECUT2), a protein involved in the induction
of CSC-like properties that allows cancer cells to survive in
response to cytotoxic treatment and therefore contributes to
chemoresistance (58). Doxorubicin also has been described to
promote the release of EVs by another mechanism. Cancer cells
treatedwithDoxorubicin stimulate the secretion of EVs enriched in
the proteinATP-binding cassette sub-familyBmember 1 (ABCB1),
a transporter involved in promoting the efflux of chemotherapeutic
drugs (59), by the upregulation of Rab8B and downregulation of
Rab5 proteins. Moreover, these EVs transfer ABCB1 to sensitive
cancer cells and confer a transient drug-resistant phenotype by
downregulation of Rab5 in the recipient cell (46).
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In pancreatic cancer cells, following treatment with
gemcitabine the acquisition of chemoresistance mediated by
EVs has been described. In response to drug treatment,
exosomes transfer to neighboring cells superoxide dismutase 2
(SOD2) and catalase (CAT) transcripts, which encode ROS-
detoxifying enzymes, that improve cell viability in response to
the chemotherapy (60). Furthermore, downregulation of the
gemcitabine-metabolizing enzyme, deoxycytidine kinase (DCK)
is in part responsible of chemoresistance acquisition via an
indirect mechanism involving the transfer of its targeting
miRNA (miR-155). Indeed, when pancreatic cells stimulated
with the exosomes containing miR-155 were treated with anti-
miR-155 to block the effect, the cells became more sensitive to
gemcitabine. These findings show that DCK downregulation
mediated by exosomes from gemcitabine treated cells provides
a survival advantage to gemcitabine-treated pancreatic cells (60).
Thus, chemotherapy has two major EV-related effects, on the one
hand increasing EV production and on the other hand including
pro-tumorigenic cargos, which when transferred to sensitive cells
promote chemoresistance (Supplementary Table 2).
MACROPHAGE-DERIVED
EXTRACELLULAR VESICLES IN
CANCER DRUG RESISTANCE

Tumor-associated macrophages (TAMs) are the major cellular
component from the immune system in the TME (61) and key
mediators of inflammation that contributes to many of the
hallmarks of cancer (25). In fact, the high presence of TAMs
in the tumor stroma is associated with tumor progression and
poor prognosis, since they participate in tumor angiogenesis,
matrix remodeling, invasion, metastasis, immunosuppression,
and drug resistance (62–65).

As the main participants in the inflammatory response in the
TME, macrophages mediate drug resistance in cancer cells
through various molecular mechanisms. One of them involves
the polarization of macrophages, whereby TAMs acquire
characteristics similar to those of M2 macrophages. In breast
cancer cells, SGLT1 overexpression drives glucose uptake and
lactic acid secretion, which promotes macrophage polarization to
M2-like TAMs that then activate the EGFR/PI3K/Akt/SGLT1
signaling pathway in the tumor cells to induce resistance to
tamoxifen (66). Likewise, M2 macrophage polarization induces
resistance to fluorouracil (5FU) treatment in gastric cancer cells
by promoting cell survival via the PI3K/Akt/NF-kB pathway and
inducing cell invasion through increasing the expression of
integrin b3, FAK, and cofilin (67). Another report describes a
similar mechanism whereby M2-polarized TAMs secrete CC
chemokine ligand 2 [CCL2 also known as MCP-1)], which
activates the PI3K/Akt/mTOR signaling pathway and promotes
tamoxifen resistance in endocrine‐resistant breast cancer cells
(68). Moreover, it has been observed that TAMs might be able to
induce epithelial to mesenchymal transition (EMT) and
consequently decrease sensitivity to the chemotherapeutic
May 2022 | Volume 12 | Article 897205
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agent gemcitabine in pancreatic cancer cells (69). In addition, M2
macrophages induce the release of pyrimidine nucleosides, such
as deoxycytidine, that confer resistance to gemcitabine in
pancreatic cancer cells, by a mechanism of molecular
competition at the level of drug uptake and metabolism (70).

However, the mechanisms responsible for cancer progression
and drug resistance are currently being re-evaluated with the
discovery of EVs as new players in this process. One of the
principal mechanisms described is the exosomal transfer of
miRNA from macrophages to tumor cells. For instance, it has
been reported that TAM-derived EVs containing miR-365
induce resistance to gemcitabine in pancreatic adenocarcinoma
cells, through a mechanism that involves an alteration in the
metabolism of pyrimidine and an increase in cytidine-
deaminase, the enzyme responsible for the inactivation of
gemcitabine in humans (71). Similarly, EVs derived from a
population of anti-inflammatory human macrophages contain
proteins such as chitinase 3-like-1 and fibronectin, which
decrease the sensitivity of pancreatic adenocarcinoma cells to
gemcitabine by activating ERK (72). In oral squamous cell
carcinoma (OSCC), EVs released by macrophages attenuate
the susceptibility of cells to chemotherapeutic drugs, like 5-
fluorouracil and cis-diaminedichloroplatinum, by activating the
AKT/GSK−3b pathway (73). A similar mechanism has been
reported in gastric cancer cells, where exosomal miR-21 is
delivered by macrophages to cancer cells and prevents
cisplatin-triggered apoptosis via inhibition of PTEN and
subsequent activation of the PI3K/AKT pathway (74).
Similarly, EVs shed from hypoxic macrophages transfer miR-
223 to ovarian cancer cells to elicit a chemoresistant phenotype
through the down-regulation of PTEN and activation of PI3K/
AKT (75). Finally, crosstalk between neuroblastoma cells and
human monocytes induces resistance to cisplatin through two
exosomal signaling pathways involving the miR-21/TLR8-NF-кB
and miR-155/TERF1 pathways (76).

Interestingly, the EV-mediated crosstalk between cancer cells
and macrophages is bidirectional. EVs derived from ovarian
cancer cells abundantly express exosomal miR-1246, which
confers resistance to paclitaxel through inhibition of Caveolin-
1 (CAV-1) and increased levels of multidrug resistance protein 1
(MDR1). Furthermore, ovarian cancer cells can also transfer
their exosomal miR-1246 selectively to M2-type macrophages,
which then produce lower CAV-1 mRNA levels. These results
suggest that TAMs may indirectly play an important role in drug
resistance mechanisms (77). Additionally, umbilical cord blood-
derived M1macrophage exosomes could be employed as vehicles
for the administration of drugs in the treatment of platinum-
resistant ovarian cancer cells (78). Taken together, these
observations identify macrophages as important players in
contributing to drug resistance. Furthermore, they uncover
multiple signaling pathways involving the interaction between
TAMs and cancer cells, whereby the pathway of choice appears
to vary depending on the type of cancer cell and antitumor
therapy (Supplementary Table 3). Importantly, they identify
macrophage-derived EVs within the TME as promising
molecular targets for restoring drug sensitivity, identifying
Frontiers in Oncology | www.frontiersin.org 5
potential drug response biomarkers and improving the efficacy
of cancer therapies.
ADIPOCYTE-DERIVED EXTRACELLULAR
VESICLES IN DRUG RESISTANCE

Obesity-associated adipose tissue dysfunction is characterized by
several local and systemic changes, such as elevated levels of pro-
inflammatory factors, sex hormones, lipid metabolites and
altered levels of adipokines, which are implicated in
carcinogenesis, tumor progression, metastasis, and alterations
in therapy responses (79).

Several studies have reported on the mechanisms by which
adipocytes contribute to resistance to anticancer drugs. For
instance, adipocytes induce FABP4 expression by promoting
metastasis and mediating Carboplatin resistance in ovarian
cancer cells. Alternatively, the inhibition of FABP4 leads to
increased levels of DNA demethylation, impairs metastasis and
sensitizes cancer cells to Carboplatin chemotherapy (80). Also,
adipocyte-conditioned medium reduces the sensitivity of HER2+
breast cancer cells to the cytotoxic activity of Lapatinib and other
tyrosine kinase inhibitors. Soluble factors released from
adipocyte lipolysis are likely to be responsible for the reduced
activity of Lapatinib on breast cancer cells exposed to the
adipocyte-conditioned medium (81). Similarly, it has been
reported that the conditioned media from adipocytes
contr ibute to the res istance of melanoma cel ls to
chemotherapeutic drugs (Cisplatin and Docetaxel) and
therapeutic agents targeting the PI3K/Akt and MEK/ERK
pathways (82). Along the same line, another study shows that
adipocytes secrete soluble factors that increase resistance to
chemotherapeutic drugs in ovarian cancer cells by activating
the Akt pathway (83). Interestingly, adipocytes reportedly
protect acute lymphoblastic leukemia (ALL) cells from
chemotherapy drugs (84) and even sequester and metabolize
Daunorubicin (DNR) to an inactive form, allowing nearby ALL
cells to avoid DNR-induced cytotoxicity (85).

While the effects of adipocytes are well-documented, studies
implicating adipocyte-derived EVs in drug resistance are limited.
One study reported that EVs from cancer-associated adipocytes
(CAAs) delivered the miR21 to ovarian cancer cells, where it
suppresses apoptosis and induces Paclitaxel resistance, as well as
an aggressive phenotype by binding directly to a novel target
APAF1 (86). Also, crosstalk mediated by EVs between multiple
myeloma (MM) cells and adipocytes has been described,
whereby exosomal adipocyte LncRNAs contribute to MM
therapy resistance and in turn, MM cells educate adipocytes
through the EZH2/METTL7A/LncRNA axis (87). Finally,
adipocytes confer a multidrug resistance phenotype to breast
cancer cells by increasing the nuclear efflux of Doxorubicin
(DOX) through a major vault protein (MVP)-dependent
process and its expulsion from breast cancer cells via EVs (88).
In summary (Supplementary Table 4), multiple mechanisms
have been shown to be involved in adipocyte-mediated drug
resistance in various cancers. However, less is known about the
May 2022 | Volume 12 | Article 897205
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role of adipocyte-derived EVs in the mechanisms leading to drug
resistance. One may anticipate that greater insight in this respect
could contribute to the development of new strategies to prevent
the development of drug resistance.
EVS FROM CAFS IN CANCER
THERAPY RESISTANCE

Cancer-associated fibroblasts (CAFs) are naturally resistant to
cancer therapy. Moreover, CAFs contribute to therapy resistance
through their crosstalk with cancer cells in several ways. Soluble
compounds, such as cytokines and growth factors, have been
implicated in this type of intercellular communication. For
instance, therapy resistant CAFs produce and secrete IL-6,
which has paracrine effects in cancer cells, thereby promoting
chemotherapy resistance. Indeed, IL-6 upregulation is associated
with poor prognosis in gastric cancer patients (89). IL-6 activates
the JAK1/STAT3 signaling pathway in cancer cells (89, 90), and
increases MDM2 expression, thereby promoting p53
polyubiquitination and degradation, which enhances cancer
cell survival following drug treatment (91). In addition, IFN-b1
expression by CAFs is induced after the chemotherapy, leading
to paracrine effects in breast cancer cells. The expression of IFN-
b1 is related to reduce survival after chemotherapy (92).
Furthermore, IL-1, in association with TGF-b1, induces the
recruitment and transformation of normal fibroblasts to CAFs,
which subsequently secrete pro-inflammatory factors that
activate JAK/STAT and PI3K/Akt pathways in cancer cells,
finally promoting therapy resistance (93). Moreover, patient-
derived xenografts (PDX) resistant to cetuximab express higher
levels of TGF-b1 in CAFs than xenografts sensitive to drug
treatment (94). TGF-b1 secreted by CAFs upregulates the
expression of ATF4 in cancer cells via the SMAD2/3 pathway.
ATF4 promotes the expression of ABCC1 which favors the
development of multiple drug resistance in cancer cells by
extrusion of chemotherapy drugs (95). Also, CAFs secrete IGF-
1 and HGF, as well as induce ANXA2 expression, which is
required for CAF-induced EMT and therapy resistance (96).
Also, CAFs secrete stromal cell-derived factor 1 (SDF-1 also
known as CXCL12) which induces cancer cell drug resistance via
a CXCR4, NF-kB and Bcl-xL-mediated signaling pathway (97).
Finally, BDNF released from CAFs promotes therapy resistance
via the TrkB/Keap1-Nrf2 pathway. Cancer cell-derived lactate
upregulates BDNF expression in CAFs via the NF-kB pathway,
thereby promoting a feedback amplification loop (98).

Soluble factors are however not the only components released
by CAFs. Indeed, many molecules implicated in conferring drug
resistance are transferred from CAFs to cancer cells in EVs.
Moreover, there is strong evidence highlighting the relevance of
EVs derived from CAFs in promoting cancer cell survival,
proliferation, and subsequently drug resistance. Furthermore,
the transfer of miRNAs in EVs from CAFs to cancer cells is
commonly observed in connection with therapy resistance.
Indeed, controlling the expression of pumilio homolog 2
protein (PUM2), an RNA-binding protein, appears to
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represent a novel mechanism to prevent therapy resistance.
This protein is responsible for the packaging of miRNA-130a
into exosomes, which are delivered from CAFs to lung cancer
cells and promote cisplatin resistance (99). Another miRNA
delivered by CAFs to cancer cells is miR-196a, which targets
CDKN1B and ING5 in head and neck cancer cells and also
confers cisplatin resistance (100). Moreover, gemcitabine
resistant CAFs transfer miR-106b-containing EVs to pancreatic
cancer cells, thereby promoting therapy resistance by targeting
TP53INP1 (101), also known to be implicated in inducing drug-
resistance in GC and BC (102, 103). In OC, paclitaxel-resistant
CAFs transfer miR-21 containing EVs to cancer cells targeting
APAF1 and apoptosis, thereby promoting therapy resistance
(86). The latter mechanism has also been shown to be relevant
in melanoma (104). Another miRNA delivered from CAFs to
cancer cells related with paclitaxel resistance is miR-148b-3p,
which induces the PTEN/Wnt/b-catenin pathway (105). This
signaling pathway is also targeted by miR-92a-3p-containing
EVs from CAFs in chemoresistant colorectal cancer cells (106).
Also, miR-24-3p is transferred from CAFs to colon cancer cells
targeting CDX2 and HEPH and promoting methotrexate
resistance (107). Finally, prostate cancer cells acquire therapy
resistance after miR-423-5p transfer in EVs from CAFs, which
activates the TGF-b signaling pathway and controls Gremlin-2
expression (108).

However, miRNAs are not the only molecules relevant in
therapy resistance delivered from CAFs to cancer cells. EVs
containing Annexin-6 are transferred from CAFs to gastric
cancer cells, thereby promoting therapy resistance though b1
Integrin/FAK-YAP activation (109). Moreover, lncRNA are
delivered from CAFs to cancer cells. In fact, the lnc-RNA
AFAP1-AS1 is present in CAF EVs and enhances the
translation of ERBB2 mRNA by binding to AUF1, to induce
the upregulation of HER-2 protein levels and subsequently
trastuzumab resistance in breast cancer cells (110). Also,
colorectal cancer associated lncRNA is transferred from CAFs
to cancer cells through EVs and interacts with the mRNA
stabilizing protein HuR (human antigen R) to increase b-
catenin mRNA and protein levels, thereby promoting
oxaliplatin resistance (111).

In summary (Supplementary Table 5), CAFs are resistant to
therapy, and transfer proteins, miRNAs and lncRNAs in EVs to
cancer cells. In doing so, CAFs induce therapy resistance. Thus,
modulating either EV production by CAFs or their content could
represent a novel therapeutic option for the treatment of non-
sensitive tumors.
CSC-DERIVED EVS IN THERAPY
RESISTANCE

In the TME, there are different types of cells that contribute to
tumor progression, and specifically within tumors there is a small
population with referred to as cancer stem cells (CSCs), which
display the capacity of self-renewal, the ability to differentiate to
other cell types and thereby to initiate, as well as maintain tumor
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growth (112). These cells are held responsible for generating
drug resistance in many types of tumors because they display
several properties that permit escaping from the consequences of
chemotherapy. Moreover, they also can convert into many cell
types associated with drug resistance, as mentioned previously
(6, 112–114). Consistent with the relevance of the TME, CSCs
are considered a component of this pro-inflammatory network
because CSCs express different cytokine receptors, which bind to
inflammatory cytokines, such as interleukin (IL)-1, IL-6, and IL-
8, present in the TME (115). Since drug resistance is one of the
main properties of CSCs, EVs released by these cells can transfer
therapy resistance to sensitive tumor cells by delivering specific
molecules that activate a drug resistance phenotype in the
recipient cells.

For example, in a hepatocellular carcinoma (HCC) model,
CSCs were found to release larger amounts of exosomes, a sub-
type of EVs, in comparison with the non-CSC population of the
tumor cells, and the secretion was mediated by Rab27a (116).
Interestingly, the exosomes derived from the CSCs upregulate
the expression of Nanog in recipient tumor cells and the
acquisition of regorafenib resistance (116). To identify cells
with CSC properties in the TME, several markers have been
identified. A protein typically identified in several types of
cancers is the transmembrane glycoprotein CD133 (117). For
instance, Kang et al. reported that colon cancer cells release EVs
containing CD133 in response to epidermal growth factor (EGF).
In addition to activating the NF-kB signaling pathway, these EVs
transfer the oncogenic protein KRAS to the recipient cells,
thereby promoting the development of resistance against anti-
EGF receptor (EGFR) drugs (118).

The CSCs are commonly found in hypoxic niches in tumors
and hypoxia promotes CSC survival (119). In this context, Yin
and colleagues observed that EVs derived from hypoxic glioma
stem cells (GSCs) transfer temozolomide resistance to
glioblastoma cells by delivering the miR-30b-3p, which targets
RHOB to avoid apoptosis induced by the drug (120). Another
study suggested that exosomes secreted by hypoxic glioma cells,
which are enriched in CSCs, transfer the miR-301a and activate
the Wnt/b-catenin signaling pathway by targeting TCEAL7 in
glioblastoma cells , thereby promoting radiotherapy
resistance (121).

A study in pancreatic cancer (PC) identified another miRNA
responsible for therapy resistance mediated by CSC-EVs. Yang
et al. reported that exosomes derived from pancreatic CSCs,
which are resistant to gemcitabine, have high levels of miR-210.
Transfer of this miRNA in exosomes to sensitive cells activates
the mammalian target of rapamycin (mTOR) signaling pathway
conferring resistance to gemcitabine-sensitive pancreatic cancer
cells (122). In addition, CSC-EVs derived from OSCC contain
miR-21-5p, another microRNA that activates mTOR. Such EV-
mediated delivery of miR-21-5p and activation of the PI3K/
mTOR/STAT3 signaling pathway in OSCC cells, leads to
cisplatin resistance, increased clonogenicity and tumor sphere
formation potential (123).

Another mechanism favoring the development of tumor cell
resistance to anti-cancer therapies is activation of the EMT,
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because cells which activate this process acquire CSC
properties (124). In this context, the role of exosomes as
regulators of EMT has been investigated in many studies (125).
Thus, by triggering this mechanism in recipient tumor cells,
CSC-EVs also could transfer resistance to therapy. For example,
it has been reported that miR-155 is an important regulator of
EMT (126). Therefore, horizontal transfer of this miRNA
mediated by EVs could confer resistance to therapy. Santos
et al. demonstrated that exosomes derived from breast CSCs
contain high levels of miR-155, and transfer of this miRNA to
sensitive breast cancer cells reduces c/EBP-b activity,
downregulate TGF-b and targets directly FOXO3a genes,
resulting in the activation of EMT and acquisition of a
chemoresistance phenotype against doxorubicin- and paclitaxel
(127). In glioblastoma there is subtype of GSC called proneural
(PN)-GSC and a more aggressive subtype called mesenchymal
(MES)-GSC which display increased radio and chemoresistance.
EVs derived from such MES-GSC cells increase stemness of
normal PN cells, as well as therapeutic resistance to
temozolomide, by inducing EMT through activation of the NF-
kB/STAT3 signaling axis (128). Another example in which EMT
is triggered by exposure to CSC-EVs has been reported for colon
CSC-derived exosomes. These EVs contain Claudin-7, which
induces EMT in low metastatic recipient cells, and likely also
therapy resistance (129). Like CD133 in pancreatic cancer,
CD44v6 is a marker of CSCs that promotes EV secretion. The
transfer of such exosomes promotes resistance to apoptosis, as
well as EMT in recipient cells by G protein-coupled receptor
(GPCR) and integrin activation, transcription of EMT factors,
and reduction of miRNA which target mRNAs from genes that
contribute to self-renewal potential and migratory activity (130).

Finally, therapy resistance can be promoted indirectly by
modulating the TME (131). CSC-derived EVs potentially
modify the phenotype of many different types of cells in the
TME and contribute thereby to therapy resistance. For instance,
EVs liberated by renal CSCs promote in vitro the formation of
capillary-like structures in matrigel (a proxy for vasculogenesis)
and prevent doxorubicin-induced apoptosis in endothelial cells,
which are required for tumor growth (132). In summary
(Supplementary Table 6), CSCs display intrinsic properties
that permit escaping from different types of anti-cancer
treatments. Moreover, and quite importantly, they can transfer
these properties via EVs to different cells present in the TME,
which thereby become therapy resistant and this contributes to
tumor progression.
EVS IN ANTIBODY-BASED CANCER
THERAPY RESISTANCE

Several soluble pro-inflammatory factors released from cellular
components of the TME activate signaling pathways in target
cells that contribute to the tumor progression. Therefore,
different therapies which block the interaction between such
soluble factors and their receptors in cells have been developed.
Antibody-based cancer therapy is one of the technologies used to
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block such interactions. The antibodies either bind specifically to
the soluble factor neutralizing its effect or can target the surface
receptor of the soluble factor and block its interaction with the
ligand, therefore precluding triggering pro-tumorigenic signals
(133). Among the different antibody-based cancer therapies,
antibodies are commonly employed which block signaling
pathways that promote development of the pro-inflammatory
TME, such as those against vascular endothelial growth factor
(VEGF), epidermal growth factor receptor (EGFR) or human
epidermal growth factor receptor 2 (HER2) (134). Unfortunately,
although antibody-based cancer therapy has proven to be
successful, some patients also develop resistance to these types
of treatment by different mechanisms (135, 136).

In this context, there is evidence demonstrating that EVs also
participate in the development of resistance to antibody-based
cancer therapy (Supplementary Table 7). One example is the
antibody therapy against HER2, a receptor of the EGFR family,
that promotes pro-tumorigenic properties by triggering different
signaling pathways and is overexpressed in the 25-30% of BC (137,
138). HER2 triggers the IL-1a pro-inflammatory signaling pathway,
which is important for maintenance of the CSC phenotype in
HER2-positive breast cancers (139). Trastuzumab is a monoclonal
antibody against HER2 which has yielded positive results in the
treatment of metastatic breast cancer in patients with tumors
overexpressing HER2 (140). Ciravolo et al. observed in the serum
of HER2 breast cancer patients and in conditioned medium of
HER2-overexpressing breast cancer cells the presence of exosomes
containing functional HER2 protein. Importantly, release of these
exosomes is modulated by the activation of HER2 in response to
two different ligands (141). Moreover, these exosomes containing
HER2 have the capability to bind trastuzumab in vitro, suggesting
they act as antibody sponges and contributing therapy resistance by
reducing trastuzumab availability for therapeutic purposes (141).
Another way in which EVs can contribute to antibody-based cancer
therapy resistance was observed using EGFR as a target. In cancer,
EGFR activity drives tumorigenesis in different types of cancer since
sustained activation triggers signaling pathways favoring cell
survival, proliferation and migration that all contribute to tumor
progression (142). Like HER2, the EGFR promotes CSC-like activity
and tumor progression by activation of pro-inflammatory signaling
(143). For this reason, the EGFR is considered a good candidate for
targeted therapy. At least four EGFR-specific antibodies are used in
clinical settings, namely cetuximab, panitumumab, nimotuzumab
and necitumumab (144). Unfortunately, here too cases have been
reported where cancer patients develop resistance to the treatments
involving these antibodies (145, 146). For instance, OSCC is one of
the cancers typically treated with the anti-EGFR antibody
cetuximab; however resistance to this drug has been observed,
since OSCC release EVs containing EGFR in response to EGF or
cetuximab. These EVs can bind to and sequester cetuximab
providing thereby a mechanism to explain how resistance against
therapeutic anti-EGFR antibodies can develop (147).

Tumor progression depends on multiple cellular process, but
angiogenesis is considered one of the most important due to its
relevance in supplying the primary tumor with oxygen and
nutrients that promote growth, facilitate the dissemination of
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tumor cells to generate metastasis, and contribute to
inflammation in cancer (148, 149). Therefore pro-angiogenic
factors are excellent therapeutic targets for antibody-based
cancer therapy. Particularly VEGF and its receptor are the
most common angiogenic signaling molecules used as targets
in the treatment of several types of cancer (150). Again, although
such antibody-based treatments have a favorable impact on
cancer patient survival, the effects are not permanent due to
the development of resistance (151). In this context, EVs also
contribute to the acquisition of resistance to therapies that target
VEGF signaling. Bevacizumab is a humanized monoclonal anti-
VEGF antibody used to treat several solid tumors (152). In
glioblastoma, bevacizumab is used as a therapeutic agent to
block angiogenesis (153). However, glioblastoma cells have the
ability to internalize and sort the antibody to the surface of the
EVs produced by these cells, as well as change the proteome of
the EVs released, which in combination is associated with
therapeutic resistance (154). VEGF also can be sorted to the
surface of tumor cell EVs. An isoform of VEGF (VEGF189) is
preferentially found on the surface of the EVs, where in
conjunction with heparin, it can sequester bevacizumab,
thereby contributing to therapy resistance (155). Recently,
other EV-specific mechanisms relating to anti-VEGF therapy
resistance have been described. VEGF produced by tumor cells is
captured by the protein CD63 present on the surface of EVs and
packaged within the EVs in response to anti-VEGF therapy. This
process reduces the accessibility of bevacizumab to the VEGF
(156). On the other hand, the VEGF loaded inside the EVs can be
internalized by endothelial cells where it triggers intracellular
signaling events that promote angiogenesis and therefore
generate resistance to the anti-VEGF therapy (156).
CONCLUSIONS

During the past decades our understanding of the mechanisms
leading to therapy resistance has evolved from focusing exclusively
on intrinsic properties of tumor cells to implicating also the
inflammatory TME. Indeed, cells of the inflammatory TME are
resistant to therapy and transfer this ability to tumor cells. EVs are
relevant mediators of signaling between cells. In different contexts,
EVs participate in physiological and pathological events. In cancer,
EVs have been implicated in transformation, progression and
metastasis, due to their ability to communicate between cancer
cells and the tumor microenvironment. However, the role of EVs in
transferring therapy resistance from stromal to tumor cells has only
become apparent in more recent years. In this review, we
summarized the studies describing the relevance of vesicles
(generally defined as EVs following the ISEV guideline) in the
development of therapy resistance following chemotherapy. In this
context, EVs have been shown to transfer protein/miRNA/lncRNA
cargos from the TME to tumor cells, to modulate survival,
metabolism and EMT in these recipient cells (Figure 1).

After cancer therapy, the resulting inflammatory
microenvironment contains tumor-resistant cells, hypoxic cells,
CSCs, macrophages, adipocytes, and fibroblasts, which transfer
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FIGURE 1 | Role of Extracellular Vesicles in Cancer Therapy Resistance. The tumor microenvironment (TME) is involved in the initiation and maintenance of
resistance to therapies by multiple molecular mechanisms. Specifically, extracellular vesicles derived from TME cells (e.g., cancer-associated fibroblasts, endothelial
cells, cancer stem cells, immune cells, and adipocytes) transfer a variety of bioactive molecules, including mRNA, miR, lncRNA and proteins, which all play important
roles in the communication between stromal components and tumor cells, activating in the latter signaling pathways that lead to cancer therapy resistance. In
addition, resistance to therapy can be triggered by an inflammatory TME caused by conditions, such as hypoxia, or following chemotherapy, which modulate the
content and release of EVs and alter the responses of tumor cells to cancer therapies. EVs also participate in resistance to antibody-based cancer therapy where
cancer-derived extracellular vesicles package elevated amounts of validated targets for cancer treatment (e.g., VEGF, EGFR, and HER2), which are recognized by
therapeutic antibodies and compromise the response of cancer cells to these therapies. TP53INP1: tumor protein p53 inducible nuclear protein 1; CDKN1B: cyclin-
dependent kinase inhibitor 1B; ING5: inhibitor of growth family 5; FAK: focal adhesion kinase; YAP: yes-associated protein 1; PUM2: pumilio homolog 2 protein;
AUF1: AU-binding factor 1; HER2: human epidermal growth factor receptor 2; CDX2: caudal‐related homeobox 2; HEPH: hephaestin; TGF-b: transforming growth
factor b; GREM2: gremlin 2; APAF-1: apoptotic peptidase activator factor 1; RHOB: ras homolog family member B; TCEAL7: transcription elongation factor A-like 7;
mTOR: mammalian target of rapamycin; PI3K: phosphoinositide-3-kinase; STAT3: signal transducer and activator of transcription 3; c/EBP-b: CCAAT enhancer
binding protein-b; FOXO3a: forkhead box O3a; EMT: epithelial-mesenchymal transition; AFAP1-AS1: actin filament associated protein 1 antisense RNA 1; EZH2:
enhancer of zeste homolog 2; METTL7A: methyltransferase like 7A; LncRNA: long noncoding RNA; SNHG1: small nucleolar RNA host gene 1; NTP: triphosphate-
nucleotide; CDA: cytidine-deaminase; TERF: telomeric repeat-binding factor 1; GSK3b: glycogen synthase kinase 3 b; ROS: reactive oxygen species; FAS: fatty acid
synthase; HSP70: heat shock 70 kDa protein; ONECUT2: factor One Cut Homeobox 2; ABCB1: ATP-binding cassette sub-family B member 1; CAT: catalase;
SOD2: superoxide dismutase 2; DCK: deoxycytidine kinase; EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth factor; ALDH3A1: aldehyde
dehydrogenase 3 family member A1; ALDOA: aldolase A; CHI3L1: chitinase 3-like-1. The figure was created with BioRender.com.
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EVs to treatment-sensitive cells and promote therapy resistance.
Several proteins (such as STAT3, fibronectin, Survivin), miRNAs
(such as miR21, miR155, miR210), LncRNAs and circRNAs are
common cargos of EVs involved in conveying resistance. These
cargos activate signaling pathways (such as PI3K/Akt, ERK, RAS,
FAK) in tumor cells, thereby inducing changes in metabolism,
survival, metastatic potential, and subsequently therapy resistance.
Moreover, another direct mechanism involved in therapy resistance
is the transfer of the protein ABCB1 in EVs from therapy-resistant
to sensitive cells. Uptake of ABCB1 by recipient cells enhances drug
efflux and the acquisition of resistance to the cancer treatment. In
addition, EVs can act as sponges that sequester antibodies used in
antibody-based cancer therapy. An example here is the recruitment
of trastuzumab which reduces its effects on cancer cells (Figure 1).

Taken together, this review highlights the relevance of EVs in
the acquisition of therapy resistance after the development of an
inflammatory tumor microenvironment following cancer
treatment. By summarizing this literature, we hope to
encourage the search for novel cancer treatments that also
consider controlling EV production in the TME.
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