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What this study adds
This analysis is among the first to employ inverse probability 
weights in studying a continuous measure of fine particulate 
matter (PM2.5) exposure and the first to do so using data from 
US National Health Interview Surveys. It also employs multiple 
distributions for more flexibility in computing these weights. The 
main findings of this study are statistically significant, causal effect 
estimates of long-term PM2.5 exposure on all-cause and cardio-
pulmonary mortality. These estimates closely mirror the estimates 
yielded in prospective cohort studies using standard Cox propor-
tional hazards models. These results are important and will be of 
interest to the readership of Environmental Epidemiology.
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Introduction

The association between long-term exposure to fine particu-
late matter (PM2.5, or particles less than 2.5 µm in aerodynamic 
diameter) and all-cause and specific cause mortality has been 
the subject of intensive research. PM2.5 concentration in the 
atmosphere results in part from the use of coal, gasoline, and 
biofuels; the widespread use of these materials means that nega-
tive associations between pollution exposure and mortality risk 
have serious implications for public health. Numerous cohort 
studies have analyzed PM2.5–mortality associations in careful 
detail with both representative (constructed to reflect a country 
or region’s demographic characteristics) and nonrepresentative 
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(constructed to reflect a target group within the larger region) 
cohorts in North America,1–17 Europe,18–22 and Asia.23,24 The 
results of these studies indicate associations between mortality 
risk and higher long-term exposure to PM2.5, underscoring the 
importance of an accurate understanding of health consider-
ations related to exposure to ambient air pollution.

The PM2.5–mortality associations reported in the literature 
almost exclusively originate from studies using cohorts that were 
not constructed to study air pollution and are thus susceptible 
to potential bias through both selection bias and confounding 
across exposure levels, even after controlling for key covariates 
in the regression model itself. These studies include cohorts com-
posed of subsets of the population where such confounding is 
intuitively likely, as well as selection bias due to nonrandom selec-
tion of study participants based on their belonging to particular 
subsets of the population.1–6,8,9,13,15 Even nationally representa-
tive data sources used in other cohort studies may be affected by 
these issues—an increased probability of greater exposure may 
be associated with other covariates affecting survival, biasing 
the results through measured confounding. Additionally, cohorts 
constructed to be nationally representative may adequately rep-
resent distributions of key demographic characteristics without 
representing the national distribution of PM2.5 concentrations 
depending on the locations from which study participants were 
sampled. Thus, the associations reported in numerous studies 
may be biased in either direction due to the potential correlations 
of measured exposure and other covariates.

While numerous prospective cohort studies have attempted to 
estimate the association between long-term pollution exposure 
and mortality risk, several other studies—including some using 
cohorts—have employed causal modeling techniques. While not 
strictly necessary in estimating a causal association, causal infer-
ence approaches provide additional causal evidence regarding 
the observed associations. One recent study employed a regres-
sion discontinuity design based on a Chinese policy of provid-
ing free or subsidized coal for indoor heating to areas north 
of the Huai river.25 Wang et al26 introduced a doubly robust 
additive hazards model that allows for the estimation of causal 
effects with a continuous pollution exposure measure through 
controlling for covariate imbalance across exposure levels in a 
cohort of Medicare beneficiaries, and Wu et al27 used a simi-
lar estimator with the purpose of controlling for both exposure 
measurement error and covariate imbalance. Wang et al28 also 
used a difference-in-differences approach to study exposure 
effects on a population in New Jersey, while Kioumourtzoglou 
et al29 employed a similar design to examine trends in mortality 
within cities. Some recent cohort studies have examined pol-
lution–mortality relationships with marginal structural mod-
els and inverse probability weighted logistic regressions.30,31 
Another analysis of health effects of pollution within a cohort 
was limited to binary cases, in which exposure is discretized 
based on being above or below a certain benchmark such as 
12 μg/m3.32 While these studies are informative and supportive 
of standard cohort study results, these cohorts and other study 
populations are somewhat limited either in their geographic 
scope or the age of the individuals included in the study.

This study examines the use of inverse probability of treat-
ment weights with the Cox proportional hazards model, in 
which PM2.5–mortality associations are estimated with PM2.5 
measured as a continuous exposure across a large, nation-
wide sample of US adults. This method primarily accounts for 
selection bias within the cohort, while also controlling for con-
founding bias attributable to measured covariates. Under cer-
tain statistical assumptions, the estimates provided with inverse 
probability weighted regression also have a causal interpreta-
tion. The widespread use of Cox models in survival analysis, 
given their ability to stratify baseline hazard estimates, makes 
them a good candidate to use in causal modeling methods. A 
variety of model specifications and distributional assumptions 

are implemented, allowing for further sensitivity analysis of the 
estimated effects.

Methods

Study population, air pollution data, and data access

The observations used in this study were obtained from the 
National Health Interview Survey (NHIS), an annual cross-sec-
tional household survey administered by the National Center 
for Health Statistics (NCHS). This large, nationally represen-
tative dataset was constructed of publicly available personal 
data, with the addition of restricted-use mortality follow-up 
through 2015 using the National Death Index.33–35 The cohort 
includes 635,539 civilian noninstitutionalized individuals aged 
18 to 84 and living within the contiguous United States at the 
time of their interview between 1986 and 2014; these study par-
ticipants had information available for age, sex, race–ethnicity, 
educational attainment, marital status, income level, urban–ru-
ral designation, census tract, interview date, mortality status, 
smoking status, body mass index (BMI) information, and date 
of death (for the deceased). For all-cause mortality, censoring 
for surviving individuals was set to be the last day of follow-up 
(31 December 2015), whereas in the cardiopulmonary mortal-
ity analysis, deaths to other causes were censored at the date 
of death. Summary statistics are provided in Table 1. Although 
the study population is nationally representative, the weighting 
method as described below generates a pseudo-population in 
which exposure is disassociated from other measured covariates 
(which may or may not be confounders); as such, the statistics 
provided in the table represent the true cohort rather than any 
pseudo-population used in a weighted analysis.

NCHS employees used restricted-use geographic data to 
assign estimated long-term pollution exposure values to respon-
dents based on their census tract of residency at the time of 
interview. Annual pollution exposures were estimated for each 
census block using national regulatory monitoring data from 
1999 to 2015 within a universal kriging model employing 
land-use regression methods and hundreds of variables.36 These 
models include variables such as road density, population den-
sity, land use, land cover, and elevation. Cross-validation of the 
models yielded 10-fold cross-validation R2 between 0.78 and 
0.90. Population-weighted averages of these estimates were esti-
mated at the census tract level to construct a 17-year average 
(1999–2015) for PM2.5 concentration in each census tract to 
be used as an estimate of long-term exposure. A lack of geo-
graphic follow-up data prevented the assignment of pollution 
from varying as study subjects move post-interview. These mod-
eled air pollution data are publicly available at www.caces.us 
(the Center for Air, Climate, and Energy Solutions [CACES]), 
with more detailed descriptions of data estimation and assign-
ment available elsewhere.17,36 A histogram representing esti-
mated exposure for each individual in this study is presented 
in Figure 1, along with fitted probability distribution graphs for 
select distributions.

All analyses were performed at the Research Data Center 
(RDC) in Hyattsville, MD, with all released results having been 
previously reviewed and approved to ensure that NHIS sur-
vey respondents remain deidentified. The NCHS approved all 
methods for informed consent, data collection, linkage of the 
public data to pollution estimates and mortality follow-up, con-
struction of the dataset, and statistical analysis. All information 
contained in this study originates from deidentified publicly 
accessible data and is therefore exempt from federal regulations 
regarding the protection of human research subjects. All find-
ings and conclusions of this study are of the authors alone and 
are not necessarily representative of the views of the RDC, the 
NCHS, the Environmental Protection Agency, or the Centers for 
Disease Control and Prevention.

www.caces.us


Higbee et al.  •  Environmental Epidemiology (2020) 4:e085	 www.environmentalepidemiology.com

3

Statistical methods

Inverse probability weighting

The inverse probability weights (IPWs) used in this analysis 
were generated by taking the inverse of the conditional prob-
ability of exposure to a given value in the continuum of PM2.5 
concentrations and stabilized by multiplying these weights by 
the marginal probability of the level of exposure. Because this 
weighted estimation relies heavily on distributional assump-
tions, several approaches were taken to evaluate the robust-
ness of the results of this analysis. IPWs were generated with 
multiple distributions: homoscedastic normal, Student’s t with 
1 and 5 degrees of freedom, and a gamma distribution (which 
accounts for potential heteroscedasticity through the definition 
of the mean as a function of its variance), as well as with a 
quantile binning approach that does not require distributional 
assumptions, with 10 and 20 distinct bins. Following the analy-
sis by Naimi et al,37 weights were truncated at the 1st and 99th 

percentiles of estimated probability of exposure. The parameters 
of these distributions were estimated from the available data, 
and conditional distributions used the covariates listed above.

If no unmeasured confounders exist, weighting by IPWs yields 
a pseudo-population in which exposure is independent from 
all covariates.38,39 While the weighted cohorts are no longer 
representative of the entire adult civilian noninstitutionalized 
US population, this process allows for estimation of the causal 
effect of increased PM2.5 exposure if there are no unmeasured 
confounders and other assumptions are satisfied, as further dis-
cussed in the supplemental material (S1); http://links.lww.com/
EE/A73 this mimics a randomized controlled trial in which all 
participants are exposed to a continuous treatment rather than a 
common binary one.40 This method also adjusts for selection and 
measured confounding biases, as standard regression adjustment 
cannot.41 Unlike covariate adjustment with the propensity score 
or propensity score matching on discretized variables, regression 
with IPWs allows for direct computation of meaningful, inter-
pretable estimates.42 The extent to which these estimates may be 
viewed as causal relies upon several key assumptions that are 
discussed in further detail in the supplemental material (S1); 
http://links.lww.com/EE/A73. A visualization of the relationship 
of interest may be found in Figure 2, which presents the assumed 
conceptual relationship between outdoor PM2.5 concentrations 
and mortality; potential confounders of the relationship between 
both outdoor PM2.5 concentrations and personal PM2.5 exposure 
have also been indicated.

Model design

Cox proportional hazards models were used to estimate haz-
ard ratios associated with a 10 μg/m3 increase in ambient PM2.5 
exposure. All models were estimated with the PHREG proce-
dure in SAS (SAS Institute, Cary, North Carolina). Individuals of 
each age group (18–24, and subsequent 5-year age groups), sex, 
and race–ethnicity received their own baseline hazard functions, 
while other covariates were included as confounding variables: 
income level, educational attainment, marital status, BMI, smok-
ing status, census region, and urban/rural designation (as defined 
by the US Census Bureau).43 Each of these covariates, including 
age group, sex, and race–ethnicity, were included as confounders 
while constructing the IPWs for weighting the estimated models.

The Cox models used in this analysis are marginal structural 
models, following the definitions of Robins et al.38 A weighted 
model with only PM2.5 exposure (1, hereafter denoted as the 
“IPW model”) and a weighted model that also includes the full 
slate of covariates (2, or “IPW-covariate model”) are both esti-
mated.38,44 The IPW-covariate model is similar to the doubly 
robust estimator for binary exposure, which is robust to mis-
specification in either the weight model or the outcome model, 
but not both.45

Variance estimation

Parametric propensity score weighting requires assumptions 
about the relation between exposure and confounders, such as 
the distributional form of conditional exposure and the linear-
ity and degree of, and interactions between, confounders. It is 
common practice to use bootstrapping methods to estimate stan-
dard errors and associated confidence interval.45 In this study, 
100 bootstrapped datasets are generated and used to estimate a 
95% confidence interval for the true effect estimate. Because the 
weights are empirically generated, robust variance estimators may 
also be used—confidence intervals using this method of variance 
estimation are also provided as a comparison to the bootstrapped 
confidence interval.46,47 For reference, confidence intervals gener-
ated through the use of naive standard errors are likewise listed.

Table 1.

Cohort summary statistics

Variable  

Total number in cohort 635,539
Total deaths 106,385
  Cardiopulmonary 43,195
Gender  
  % Male 44.54
  % Female 55.46
Age at time of survey (yrs, mean) 45.3
Race/ethnicity  
  % Non-Hispanic White 67.51
  % Hispanic 14.08
  % Non-Hispanic Black 14.01
  % All other/unknown 4.40
Income (inflation adjusted to 2015)  
  % $0–35,000 38.04
  % $35–50,000 15.47
  % $50–75,000 18.79
  % $75,000+ 27.71
Marital status  
  % Married 49.57
  % Divorced 14.06
  % Separated 3.59
  % Never married 24.31
  % Widowed 8.47
Education  
  % <High School grad 18.63
  % High School grad 30.37
  % Some College 27.10
  % College grad 15.03
  % >College grad 8.87
Urban/rural  
  % Urban 77.64
  % Rural 22.36
Census region  
  % Northeast 18.08
  % Midwest 23.71
  % South 35.74
  % West 22.46
BMI  
  % <20 7.28
  % 20–25 36.37
  % 25–30 33.80
  % 30–35 14.43
  % >35 8.12
Smoking  
  % Never 53.76
  % Current 23.90
  % Former 22.34
PM

2.5
 (Mean, SD, range) 10.7, 2.4, 2.5–19.2

BMI, body mass index.

http://links.lww.com/EE/A73
http://links.lww.com/EE/A73
http://links.lww.com/EE/A73
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Imbalance in pollution exposure

The pseudo-population generated by the IPW method is 
designed to be balanced across all measured covariates. 
Two methods were implemented to assess the need for 
covariate rebalancing and the degree to which weighting 
improves this balance across the study population. First, an 
unweighted linear model was fitted predicting PM2.5 expo-
sure with all measured confounders. The R2 of this linear 

model is compared with the R2 from linear models weighted 
with each of the generated IPWs. The second, and more 
conventional, method of assessing balance is the testing for 
equality of standardized covariate means across quantiles 
of measured exposure.48,49 This process was adapted for 
the present analysis as follows. First, the observations were 
divided into four quartiles of modeled PM2.5 exposures. An 
indicator variable was generated for each possible category 

Figure 1.  Modeled PM2.5 exposure distribution for study population, with select fitted PDFs.

Figure 2.  Directional acyclic graph (DAG) of causal pathways affecting individual mortality. *Some of the covariates in this study may fall under more than one 
of the three categories. For simplicity, they have been repeated rather than drawing lines from each covariate. **Drawn under the null hypothesis of no effect of 
PM2.5 exposure on mortality. BMI, body mass index.
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of the previously listed categorical covariates, yielding a 
total of 33 numerical variables for quantile balance assess-
ment. A t-test was used to test the equality of the means of 
each indicator variable between two groups—those within 
a given quartile, and those within the other three quar-
tiles combined. Finally, the number of t-statistics greater 
than 1.96 (for large degrees of freedom and α = 0.05)  
for each of the 33 variables and each quartile was totaled for 
each weighting distribution. A reduction in the number of 
statistically significant standardized differences indicates an 
improvement in covariate balance.

Results

Covariate balance

As shown in Table 2, PM2.5 exposure is correlated with the other 
covariates included in the model. The R2 from an unweighted 
linear regression is 0.1462, which is relatively small but nev-
ertheless indicates a potential confounding effect. The R2 from 
each of the weighted linear regressions is smaller than that the 
unweighted regression; in some cases, such as the Student’s t dis-
tribution with 5 degrees of freedom (R2 = 0.0222), the reduction 
is substantial. These reduced values indicate that the stabilized 
IPWs have the intended effect of improving covariate balance 
across treatment groups.

The second approach likewise indicates covariate imbal-
ance among the unweighted population, though it does not 
indicate as significant of an improvement as the first method. 
The number of t-statistics greater than 1.96 are displayed in 
Table  2. Without reweighting the population, 116 differences 
are statistically significant. Using IPWs to test standardized dif-
ferences, the balance improves only slightly—the number of sig-
nificant differences ranges from 106 to 114. This apparent lack 
of improved balance may reflect the discretization of the data, 
though coupled with the low R2 values yielded by first approach 
(even in the unweighted case), it suggests a low degree of varia-
tion in exposures for individuals with high factor levels.

Estimates

Hazard ratios (associated with a 10 μg/m3 increase in PM2.5 expo-
sure) and 95% confidence intervals estimated with naive, robust, 
and bootstrapped standard errors are provided in Tables  3 
and 4 for all-cause and cardiopulmonary mortality, respec-
tively. The estimated hazard ratio for all-cause mortality using 
the unweighted model with only PM2.5 included as a variable 
is 1.178 (robust confidence interval (CI): 1.147, 1.210), while 

estimates generated by the IPW model with various weighting 
distributions range from 1.091 to 1.135. For the full model, with 
all covariates included, the unweighted results yielded a point 
estimate of 1.126 (robust CI: 1.094, 1.159); the IPW-covariate 
model estimates range from 1.111 to 1.121. Robust standard 
errors fall between 0.0143 and 0.0245 for the IPW model and 
between 0.0151 and 0.0231 for the IPW-covariate model, com-
pared with the corresponding unweighted models’ standard 
errors of 0.0137 and 0.0148, respectively. Bootstrapped and 
standard hazard ratios are similar for both unweighted and 
weighted models.

Estimated hazard ratios for cardiopulmonary mortality are 
1.329 (robust CI: 1.274, 1.386) for the unweighted model 
without all covariates, with IPW models producing estimates 
from 1.214 to 1.260. The unweighted model with all covari-
ates yielded an estimate of 1.242 (robust CI: 1.187, 1.299) 
compared with IPW-covariate model hazard ratios of 1.227 
to 1.235. Robust standard errors exhibited a similar trend as 
with the all-cause mortality analysis—the unweighted model 
without covariates included in the regression model yielded a 
standard error of 0.0215, compared with IPW model standard 
errors from 0.0225 to 0.0375. For the models with all covari-
ates included, the unweighted model estimated a smaller stan-
dard error (0.0231) than the IPW-covariate models (from 0.035 
to 0.0352). Although the differences between bootstrapped and 
standard hazard ratios are slightly larger for cardiopulmonary 
mortality than for all-cause mortality, these differences are small.

The three methods of variance estimation yielded different 
standard errors and associated confidence intervals, though 
each was significant at a 95% confidence level. The naive stan-
dard errors are smaller for each of the weighted models than for 
the unweighted models, although the robust and bootstrapped 
standard errors are smallest for the unweighted model in each 
case. The bootstrapped standard errors are generally larger than 
those generated with the robust variance estimator, while the 
robust standard errors are always at least weakly larger than the 
naive standard errors for the corresponding models. A compar-
ison of the standard errors for the log-hazard ratios is provided 
in Tables 3 and 4 for all-cause and cardiopulmonary mortality.

Summary statistics of the various calculated weights are 
presented in Table 5. Certain distributions, such as the normal 
homoscedastic and gamma distributions, yielded more extreme 
values for the estimated weights. To prevent large biases from 
potentially misestimated weights, all weights (including those 
with smaller variance) were truncated at the 1st and 99th per-
centiles. Histograms of the generated weights are presented in 
Figure  2, demonstrating the differences between the distribu-
tions of the untruncated and truncated weights. As can be seen 
in Tables 3 and 4, the differences between estimates vary only 
slightly between the untruncated and truncated weights gener-
ated from the same distributions (Figure 3).

Discussion

Marginal structural Cox proportional hazards models used in 
estimating long-term pollution–mortality associations allow for 
the analysis of exposure to PM2.5 where treatment assignment is 
disassociated from measured covariates, mimicking a random-
ized control trial with a weighted pseudo-population. There is 
evidence of covariate imbalance across quartiles of measured 
covariates, and all measured covariates are weak, but statisti-
cally significant predictors of estimated PM2.5 exposure with an 
unweighted linear regression model (R2 = 0.146). Though the 
degree of measured correlation between PM2.5 exposure and the 
measured covariates is small, it nonetheless decreases when the 
study population is weighted by the generated IPWs; in some 
cases, the R2 decreases to as little as 0.022 (Table 2). Alternatively, 
the high dimensionality and discretization of much of the data 
into binary variables result in significant differences in covariate 

Table 2.

Balance assessment of IPWs

Weight type R2

Significant standardized  
differencesa (out of 132)

Unweighted 0.146 116
Normal 0.059 106
Truncated normal 0.036 113
t, 1 df 0.025 113
Truncated t, 1 df 0.026 113
t, 5 dfs 0.022 114
Truncated t, 5 dfs 0.024 113
Gamma 0.054 109
Truncated gamma 0.033 111
10 quantiles 0.081 112
Truncated 10 quantiles 0.075 110
20 quantiles 0.092 113
Truncated 20 quantiles 0.084 112

aSignificant difference using a difference-of-means test with a 95% confidence level.
df indicates degree of freedom; t, the Student's t distribution.
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Table 3.

All-cause mortality, hazard ratios for 10 μg/m3 increase in PM2.5 exposure

  95% Confidence intervals Standard errors

Unweighted models HRs Bootstrapped HRs Naive Robust Bootstrappeda Naive Robust Bootstrappeda

Without control for covariates 1.178 1.180 1.147–1.210 1.147–1.210 1.150–1.212 0.0136 0.0137 0.0134
With control for covariates 1.126 1.126 1.095–1.158 1.094–1.159 1.096–1.158 0.0144 0.0148 0.0140
IPW models (without control for covariates)       
  Normal 1.094 1.096 1.069–1.120 1.045–1.145 1.053–1.141 0.0119 0.0232 0.0203
  Truncated normal 1.108 1.109 1.080–1.136 1.073–1.144 1.074–1.146 0.0138 0.0164 0.0166
  t, 1 df 1.133 1.135 1.103–1.164 1.102–1.165 1.103–1.167 0.0136 0.0143 0.0144
  Truncated t, 1 df 1.135 1.136 1.105–1.165 1.103–1.167 1.105–1.169 0.0136 0.0143 0.0144
  t, 5 dfs 1.118 1.118 1.090–1.147 1.086–1.152 1.083–1.154 0.0131 0.0151 0.0162
  Truncated t, 5 dfs 1.121 1.121 1.093–1.151 1.089–1.154 1.086–1.157 0.0132 0.0149 0.0160
  Gamma 1.093 1.093 1.068–1.120 1.042–1.147 1.041–1.148 0.0120 0.0245 0.0250
  Truncated gamma 1.104 1.104 1.077–1.133 1.070–1.140 1.067–1.143 0.0129 0.0162 0.0174
  10 quantiles 1.092 1.093 1.065–1.119 1.056–1.129 1.058–1.130 0.0126 0.0171 0.0170
  Truncated 10 quantiles 1.098 1.099 1.070–1.125 1.063–1.133 1.063–1.136 0.0128 0.0164 0.0170
  20 quantiles 1.091 1.092 1.064–1.118 1.054–1.128 1.056–1.130 0.0125 0.0174 0.0172
  Truncated 20 quantiles 1.097 1.098 1.070–1.124 1.062–1.133 1.062–1.136 0.0126 0.0166 0.0172
IPW models (with controls for covariates)       
  Normal 1.112 1.114 1.086–1.140 1.066–1.161 1.073–1.156 0.0124 0.0219 0.0189
  Truncated normal 1.117 1.118 1.089–1.147 1.082–1.154 1.085–1.152 0.0131 0.0165 0.0153
  t, 1 df 1.121 1.121 1.091–1.151 1.088–1.154 1.091–1.153 0.0138 0.0151 0.0141
  Truncated t, 1 df 1.121 1.122 1.091–1.152 1.089–1.155 1.091–1.153 0.0138 0.0151 0.0142
  t, 5 dfs 1.117 1.117 1.088–1.147 1.083–1.152 1.080–1.155 0.0133 0.0156 0.0171
  Truncated t, 5 dfs 1.117 1.117 1.088–1.147 1.084–1.152 1.081–1.155 0.0134 0.0154 0.0168
  Gamma 1.111 1.111 1.085–1.139 1.062–1.163 1.062–1.162 0.0125 0.0231 0.0229
  Truncated gamma 1.112 1.112 1.084–1.142 1.077–1.149 1.074–1.152 0.0132 0.0163 0.0180
  10 quantiles 1.117 1.118 1.088–1.146 1.082–1.154 1.085–1.151 0.0132 0.0165 0.0149
  Truncated 10 quantiles 1.118 1.118 1.089–1.148 1.083–1.154 1.086–1.152 0.0133 0.0162 0.0150
  20 quantiles 1.117 1.117 1.088–1.146 1.081–1.154 1.085–1.151 0.0132 0.0166 0.0151
  Truncated 20 quantiles 1.118 1.118 1.089–1.147 1.083–1.154 1.085–1.152 0.0133 0.0162 0.0152

Bootstrapped confidence intervals are generated by using the standard error from 100 bootstrapped samples. Each model controls for age, sex, and race–ethnicity with a nonparametric baseline hazard function.
aConfidence intervals and standard errors are for the estimated coefficient or log-hazard ratio.
df, degree of freedom; t, the Student's t distribution.

Table 4.

Cardiopulmonary mortality, hazard ratios for 10 μg/m3 increase in PM2.5 exposure

  95% Confidence intervals   Standard errors   

Unweighted models HRs Bootstrapped HRs Naive Robust Bootstrappeda Naive Robust Bootstrappeda

Without control for covariates 1.329 1.328 1.274–1.387 1.274–1.386 1.274–1.386 0.0215 0.0215 0.0213
With control for covariates 1.242 1.242 1.188–1.299 1.187–1.299 1.184–1.302 0.0227 0.0231 0.0242
IPW models (without control for covariates)         
  Normal 1.216 1.215 1.173–1.261 1.134–1.304 1.137–1.297 0.0186 0.0355 0.0336
  Truncated normal 1.234 1.231 1.186–1.284 1.174–1.298 1.167–1.298 0.0202 0.0257 0.0271
  t, 1 df 1.258 1.256 1.206–1.312 1.204–1.315 1.201–1.315 0.0214 0.0225 0.0231
  Truncated t, 1 df 1.260 1.259 1.209–1.315 1.206–1.317 1.203–1.317 0.0215 0.0225 0.0230
  t, 5 dfs 1.243 1.241 1.193–1.294 1.186–1.302 1.184–1.301 0.0207 0.0237 0.0242
  Truncated t, 5 dfs 1.246 1.245 1.197–1.296 1.191–1.305 1.188–1.305 0.0208 0.0234 0.0239
  Gamma 1.214 1.214 1.170–1.260 1.128–1.306 1.135–1.299 0.0188 0.0374 0.0343
  Truncated gamma 1.235 1.232 1.187–1.286 1.175–1.299 1.169–1.299 0.0203 0.0255 0.0268
  10 quantiles 1.214 1.212 1.168–1.262 1.152–1.280 1.148–1.279 0.0199 0.0268 0.0276
  Truncated 10 quantiles 1.221 1.218 1.174–1.270 1.160–1.284 1.156–1.284 0.0201 0.0258 0.0268
  20 quantiles 1.214 1.211 1.168–1.261 1.150–1.280 1.146–1.280 0.0196 0.0273 0.0281
  Truncated 20 quantiles 1.221 1.219 1.175–1.270 1.160–1.286 1.155–1.286 0.0199 0.0262 0.0273
IPW models (with controls for covariates)      
  Normal 1.230 1.229 1.184–1.278 1.152–1.313 1.151–1.312 0.0196 0.0335 0.0334
  Truncated normal 1.235 1.232 1.186–1.286 1.174–1.298 1.164–1.302 0.0207 0.0257 0.0286
  t, 1 df 1.232 1.230 1.180–1.285 1.176–1.290 1.170–1.293 0.0217 0.0236 0.0253
  Truncated t, 1 df 1.232 1.231 1.181–1.286 1.177–1.291 1.171–1.293 0.0217 0.0235 0.0253
  t, 5 dfs 1.232 1.230 1.182–1.283 1.174–1.292 1.167–1.295 0.0210 0.0243 0.0266
  Truncated t, 5 dfs 1.231 1.229 1.181–1.283 1.174–1.291 1.167–1.294 0.0211 0.0241 0.0264
  Gamma 1.227 1.228 1.181–1.276 1.146–1.315 1.149–1.313 0.0197 0.0352 0.0340
  Truncated gamma 1.233 1.230 1.184–1.284 1.173–1.296 1.163–1.300 0.0208 0.0255 0.0284
  10 quantiles 1.230 1.227 1.181–1.281 1.169–1.294 1.161–1.298 0.0209 0.0258 0.0285
  Truncated 10 quantiles 1.229 1.226 1.180–1.281 1.170–1.292 1.161–1.296 0.0210 0.0253 0.0282
  20 quantiles 1.230 1.227 1.181–1.281 1.169–1.294 1.160–1.298 0.0207 0.0261 0.0288
  Truncated 20 quantiles 1.230 1.227 1.180–1.281 1.170–1.292 1.160–1.297 0.0209 0.0254 0.0285

Bootstrapped confidence intervals are generated by using the standard error from 100 bootstrapped samples. Each model controls for age, sex, and race–ethnicity with a nonparametric baseline hazard function.
aConfidence intervals and standard errors are for the estimated coefficient or log-hazard ratio.
df, degree of freedom; t, the Student's t distribution.
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means between exposure groups, regardless of weighting meth-
ods. Such covariate imbalance indicates that there may be some 
degree of bias in the estimated associations between PM2.5 and 
both all-cause and cardiopulmonary mortality risk, which is 
mitigated by the use of IPWs.

The marginal structural models used in this study supported 
the original, unweighted estimates of hazard ratios of 1.126 
(robust CI: 1.094, 1.159) for all-cause mortality and 1.242 
(robust CI: 1.187, 1.299) for cardiopulmonary mortality. All 
full models weighted by various IPWs yielded point estimates 
that were smaller in magnitude than the unweighted model, 
though with universally larger standard errors, as well. IPW 
models, which controlled only for covariates in the denominator 
of the stabilized weights, produced lower estimates than the cor-
responding unweighted models, which only controlled for age 
groups, sex, and race–ethnicity through a nonparametric base-
line hazard function. While IPW models often yielded smaller 
estimates than the weighted full models, there was no significant 

Table 5.

Summary statistics for IPWs

Weight type Mean Min Max

Normal 1.012 0.062 114.538
Truncated normal 0.990 0.274 3.090
t, 1 df 1.031 0.318 3.198
Truncated t, 1 df 1.030 0.462 1.964
t, 5 dfs 1.042 0.223 6.509
Truncated t, 5 dfs 1.039 0.383 2.253
Gamma 1.012 0.065 140.586
Truncated gamma 0.988 0.259 2.979
10 quantiles 1.013 0.176 15.512
Truncated 10 quantiles 1.005 0.249 3.179
20 quantiles 1.018 0.132 17.327
Truncated 20 quantiles 1.009 0.236 3.296

df, degree of freedom.

Figure 3.  (Continued)



Higbee et al.  •  Environmental Epidemiology (2020) 4:e085	 Environmental Epidemiology

8

difference between any of these and the unweighted full model; 
in this setting, the use of IPWs alone provides a reasonable esti-
mate for the PM2.5–mortality associations for both all-cause and 
cardiopulmonary mortality. This similarity is a stark contrast 
to the hazard ratios estimated by the unweighted models with 
no covariates included—the estimated hazard ratio for the IPW-
covariate model was lower than that of the unweighted model 
with no covariates by approximately 5% for all-cause and 9% 
for cardiopulmonary mortality, though the associated confi-
dence intervals overlap for both models’ estimates.

The results of this study are comparable to findings by other 
large cohort studies, such as the hazard ratios for all-cause mor-
tality offered by the Six-cities1,6 (1.14, CI: 1.07–1.22) and the 
American Cancer Society Cancer Prevention Study II2,9,14 (1.07, 
1.06–1.09) studies. Significant effects on all-cause mortality are 

likewise found in the Medicare cohort, though a doubly robust 
additive hazards model was used rather than a proportional 
hazards model.26 The model used in this analysis is similar to 
the doubly robust additive hazards model by using IPWs and 
including covariates in the regression, as well; both methods 
aim to reduce bias in the estimate of the unweighted models. 
However, the same doubly robust property has not yet been 
proven for Cox models following this form.

Though the use of inverse probability weighting requires 
the correct specification of the conditional exposure distribu-
tion, the wide array of both untruncated and truncated weights 
generated from different distributions and quantile binning 
approaches suggests that point estimates of the hazard ratios 
are relatively insensitive to the choice of distribution. Even for 
weights which take on extreme values, such as the normal and 

Figure 3.  Comparisons of IPW histograms. df, degree of freedom; t, Student's t distribution.
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gamma distributions, there is little variation in the point esti-
mates between the truncated and untruncated weights. However, 
the different IPWs, and truncated weights with extreme values, 
do result in markedly different confidence intervals for some 
models; for example, the confidence interval for the IPW-
covariate model estimates for all-cause mortality using the nor-
mal weights (1.112, robust CI: 1.066, 1.161) is larger than that 
of the model estimated with truncated normal weights (1.117, 
robust CI: 1.082, 1.154). Bootstrapped standard errors and 
confidence intervals display a similar pattern. Although there 
is some degree of variation in both estimated hazard ratios and 
standard errors, with their associated confidence intervals, all 
estimated associations are significant at a 95% confidence level. 
This suggests that after controlling for confounders within the 
model itself, there is little residual treatment assignment bias; 
the similarity in estimates—whether confounders are accounted 
for in the weights, model, or both—mirrors the properties of the 
doubly robust model.26

This analysis does not account for copollutants such as 
ozone, that have been included in similar pollution-related 
mortality studies. Several studies have examined models with 
two and three pollutants, consistently reporting an association 
between PM2.5 and early mortality even when controlling for 
other airborne pollutants. A recent analysis by Lefler et al52 
explored one-, two-, and six-pollutant models of early mortal-
ity and pollution exposure using the same NHIS dataset used 
in the present analysis. PM2.5 was consistently associated with 
early mortality even after including PM2.5–10, SO2, NO2, O3, and 
CO both pairwise and all together (respectively, particulate mat-
ter from 2.5 to 10 µm in aerodynamic diameter, sulfur dioxide, 
nitrogen dioxide, ozone, and carbon monoxide). Although SO2 
and PM2.5–10 concentrations were associated with mortality risk 
in the NHIS data, the associations were smaller and less robust 
than the association with PM2.5. The relationship between PM2.5 
exposure and mortality risk was not highly sensitive to con-
trolling for SO2 and PM2.5–10 in multipollutant models.

While the approach used in the present analysis accounts for 
confounding by measured covariates, it fails to adjust for poten-
tial bias due to omitted or insufficiently controlled for factors 
that may be associated with both mortality risk and measured 
PM2.5 exposure. Although the measured covariates included in 
the model span a wide variety of potential confounders, it is 
possible that there remain some unknown and unmeasured con-
founders. The increased hazard ratios in the weighted models 
when moving from an IPW model to an IPW-covariate model 
suggest that the addition of further covariates would have a min-
imal effect, as the most important covariates have been included 
in the models. Furthermore, stepwise sensitivity analyses using 
unweighted Cox models on this data indicated that results for 
unweighted models were not sensitive to the choice of covari-
ates included in the model.17 Another limitation is that direct 
measures of long-term exposure to PM2.5 are not used in this 
study—PM2.5 was only monitored throughout the entire United 
States beginning in 1999, meaning that those who were surveyed 
before may have been exposed to more pollution at the time of 
their survey. Furthermore, each individual’s location at the time 
of their survey was assumed to be their residence over the course 
of the study, as no geographic follow-up or indication of reloca-
tion was provided in the NHIS data. The lack of follow-up for 
other covariates in the NHIS data was also a limitation of this 
study, as it prevented for controls of time-varying information 
for variables such as income. This analysis also assumes that 
the spatial variation of PM2.5 concentrations has been constant 
over time. Additionally, with the exception of geographic and 
temporal terms in the models, only individual-level risk factors 
were included in these models; this weakens the assumption of 
no unmeasured confounders, although several individual-level 
variables such as income and education act as a proxy for con-
founders that have a causal impact on PM2.5 concentrations. The 

extent to which these estimates may be viewed as causal is also 
dependent on the extent to which key assumptions in causal 
inference are satisfied; more details about these assumptions 
and support for their plausibility may be found in the supple-
mental material (S1); http://links.lww.com/EE/A73.

This study furthers the use of propensity score and causal 
modeling methods in examining associations between long-term 
PM2.5 exposure and mortality. The use of a large, nationally rep-
resentative dataset allows for both control and covariate balance 
assessment on a number of variables, including smoking status 
and BMI data. Multiple distributions and weight generation 
techniques, such as quantile binning, were used in this study to 
account for several distributional assumptions, nonparametric 
estimation of propensity scores, potential heteroscedasticity, and 
possible thicker tails in the exposure distributions. The results 
demonstrate the robustness of the unweighted model and rela-
tive insensitivity to the choice of IPW that is used in each model. 
These findings contribute to a growing body of evidence suggest-
ing that the estimated PM2.5–mortality associations are causal in 
nature; given the prevalence of ambient PM2.5 air pollution, these 
results have significant implications for general public health.
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