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Abstract

Background: Barbels are integumentary sense organs found in fishes, reptiles and amphibians. The zebrafish, Danio rerio,
develops paired nasal and maxillary barbels approximately one month post fertilization. Small in diameter and optically
clear, these adult appendages offer a window on the development, maintenance and function of multiple cell types
including skin cells, neural-crest derived pigment cells, circulatory vessels, taste buds and sensory nerves. Importantly,
barbels in other otophysan fishes (e.g., catfish) are known to regenerate; however, this capacity has not been tested in
zebrafish.

Methodology/Principal Findings: We describe the development of the maxillary barbel in a staged series of wild type and
transgenic zebrafish using light microscopy, histology and immunohistochemistry. By imaging transgenic zebrafish
containing fluorescently labeled endothelial cells (Tg(fli1a:EGFP)), we demonstrate that the barbel contains a long (,2–
3 mm) closed-end vessel that we interpret as a large lymphatic. The identity of this vessel was further supported by live
imaging of the barbel circulation, extending recent descriptions of the lymphatic system in zebrafish. The maxillary barbel
can be induced to regenerate by proximal amputation. After more than 750 experimental surgeries in which approximately
85% of the barbel’s length was removed, we find that wound healing is complete within hours, followed by blastema
formation (,3 days), epithelial redifferentiation (3–5 days) and appendage elongation. Maximum regrowth occurs within 2
weeks of injury. Although superficially normal, the regenerates are shorter and thicker than the contralateral controls, have
abnormally organized mesenchymal cells and extracellular matrix, and contain prominent connective tissue ‘‘stumps’’ at the
plane of section—a mode of regeneration more typical of mammalian scarring than other zebrafish appendages. Finally, we
show that the maxillary barbel can regenerate after repeated injury and also in senescent fish (.2 years old).

Conclusions/Significance: Although the teleost barbel has no human analog, the cell types it contains are highly conserved.
Thus ‘‘barbology’’ may be a useful system for studying epithelial-mesenchymal interactions, angiogenesis and
lymphangiogenesis, neural pathfinding, wound healing, scar formation and other key processes in vertebrate physiology.

Citation: LeClair EE, Topczewski J (2010) Development and Regeneration of the Zebrafish Maxillary Barbel: A Novel Study System for Vertebrate Tissue Growth
and Repair. PLoS ONE 5(1): e8737. doi:10.1371/journal.pone.0008737

Editor: Bruce Riley, Texas A&M University, United States of America

Received November 16, 2009; Accepted December 15, 2009; Published January 15, 2010

Copyright: � 2010 LeClair, Topczewski. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a paid sabbatical leave to E. E. LeClair from the DePaul University Research Council and an NIH R01(DE016678) to J.
Topczweski. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: eleclair@depaul.edu

Introduction

Development and regeneration are often studied in tandem, and

share much in common. Development requires local coordination

of cell division, distribution, differentiation, and death. Regener-

ation recapitulates these processes after injury or amputation,

restoring some or all of the missing tissue. The ability to regenerate

varies widely among species and organs in ways that defy simple

evolutionary trends [1,2,3]. Within vertebrates, fishes and

amphibians show the greatest regenerative potential [4,5,6,7,8],

making zebrafish and Xenopus intensely studied models of this

phenomenon.

Zebrafish tissues that can regenerate include the optic nerve,

retina, heart, fins, lateral line, axons of the CNS and parts of the

cerebellum [9,10,11,12,13,14]. However, not every organ in this

species has the same regenerative capacity. Solving this puzzle

within the context of the zebrafish genome is an important step

towards more effective regenerative medicine in highly refractory

species, including our own. In this investigation, we explore the

development and regeneration of the zebrafish maxillary barbel,

an adult appendage that has received little research attention.

Anatomically, the term barbel refers to any tentacular sensory

structure in ‘‘lower’’ vertebrates, including fishes, amphibians and

reptiles [15,16]. In fishes, barbels are skin appendages for taste

and/or mechanoreception. Barbel number and construction are

highly variable, with some species having up to 11 paired or

unpaired barbels on multiple areas of the jaws, lips and head.

Within a species, barbels can be sexually dimorphic or

polymorphic among individuals of either sex [17]. According to

anatomical descriptions, a teleost barbel contains at minimum an
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outer epithelium, dermal connective tissue, blood vessels, and

extensions of the facial nerves that innervate numerous taste buds

[16,18,19,20,21]. Variable features include a central rod of

connective tissue or cartilage, and intrinsic and/or extrinsic

muscle groups that allow the barbel some range of motion

[22,23,24]. Although once used as a systematic character to unite

all ‘‘fish with whiskers’’ (e.g., the Barbini), barbels are now thought

to be phylogenetically unreliable, having been gained or lost

repeatedly in many genera, including Danio [25,26,27,28,29].

The zebrafish develops two pairs of barbels: a smaller nasal pair

and a larger maxillary pair [30]. However, the most intensively

studied part of the zebrafish lifecycle, namely the embryonic and

early larval development of the first 7 days, does not include barbel

growth. As a result, developmental information on these structures

remains scant. A current search of the Zebrafish Information

Network (ZFIN; http://zfin.org) retrieves no published or submitted

gene expression data for the barbel primordium at any stage of

development, no mutant/transgenic lines relating to this structure,

and few related publications. One detailed study addresses the

developmental distribution and innervation of barbel taste buds

using light and scanning electron microscopy [31], but not cellular

or molecular methods.

Abundant in the literature, however, are reports that some

barbel structures can partially or completely regenerate after

amputation. Studies of barbel regeneration in catfish are almost

100 years old, and various authors have periodically revisited this

phenomenon [16,32,33,34]. Sato (1966) removed the distal third

of barbels from juvenile Japanese catfish (Parasilurus asotus) and

observed healing of the wound after six hours, differentiating

terminal taste buds after three days, and regrowth of the entire

organ to the original size and length. Shiba (1982) removed the

distal half of the barbel in bronze cory catfish (Corydoras aeneus) and

observed a renewed appendage with taste bud structures in 2–3

weeks. More recently, barbel amputation was attempted as a

mark-recapture technique for juvenile shortnose sturgeon (Acipenser

brevirostrum); however, it was observed that many of the severed

barbels completely or partially regrew, making this approach

inappropriate for long-term studies [35,36]. Although catfish and

sturgeon barbels are not structurally identical to zebrafish barbels,

nor are these structures necessarily homologous, these reports

suggested to us that barbel regeneration might be evolutionarily

conserved. Given the intensive study of other regenerating

zebrafish organs– including the caudal fin, heart and eye– the

absence of any experimental work on barbels seemed to us an

obvious gap, and an opportunity to study simultaneously the

developmental, evolutionary, and regenerative aspects of this

unique appendage in a convenient model organism.

We begin by presenting a detailed study of the anatomy and

histology of the adult zebrafish maxillary barbel. Next, we

document development of the juvenile barbel from the early bud

stage, considering the dermal connective tissues, taste buds,

innervation and vasculature. Finally, we describe the regenerative

response of the maxillary barbel to proximal amputation,

including wound healing, blastema formation and re-differentia-

tion of the major tissue types.

Results

Location and Growth of the Zebrafish Maxillary Barbel
The maxillary barbel is an elongated whisker-like structure

extending from the posterior ventral corner of the zebrafish

maxilla (Fig. 1A). Both pairs emerge as epithelial buds

approximately 30–40 days post-fertilization at 28uC [31] and

grow throughout the lifespan (Fig. 1B). In adult wild type

zebrafish in our facility (2–3 cm standard length, SL) the maxillary

barbel is approximately 200–300 microns wide at the base,

50 microns wide at the tip, and 2–4 millimeters long. Although

both nasal and maxillary barbels contain similar cell types, the

larger maxillary barbel is easier to manipulate and visualize,

making it the focus of our current study. By convention, we

describe the maxillary barbel as though it were oriented

horizontally with the distal end pointing caudally. In this

orientation, the upper surface of the barbel is called dorsal and

the lower surface ventral.

Adult Barbel Anatomy and Histology
Except for a few scattered melanophores and xanthophores, the

adult maxillary barbel is transparent at all stages, making much of

its internal structure visible with light microscopy alone

(Fig. 2A,B). At the core of the barbel is a dense, refractile rod

of connective tissue, hereafter called the central rod. Ventral to the

rod are two small blood vessels closely packed with erythrocytes.

The lumens of these vessels connect at the distal end of the

appendage, establishing a capillary loop (Fig. 2B). Also ventral to

the rod are large bundles of nerves visible as parallel fibers weaving

in and around the blood supply (Fig. 2A). Dorsal to the central

rod is a single, narrow vessel (see asterix in Fig. 2A–D), the lumen

of which appears patent and filled with a clear fluid. This vessel

Figure 1. Position and growth of the paired barbels in zebrafish. A) Location of the nasal and maxillary barbels (nb and mb) on a wild type
adult zebrafish (AB strain). B) Growth curve for the maxillary barbel in a wild type AB strain reared at 28uC. Barbel length (n = 183) was measured in
135 zebrafish of different standard lengths (SL+/20.5 mm). Each data point represents a single barbel (the right and/or left appendage). The growth
curve is similar to that shown in [60].
doi:10.1371/journal.pone.0008737.g001
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has a blind, tapered end and does not appear to connect to the

capillaries (Fig. 2B); thus, we tentatively identified it as a lymph

vessel.

All of the deep barbel tissues– the central rod, nerve bundles

and vasculature– are surrounded by a thick, glandular epidermis.

Individual goblet cells and taste bud structures are easily observed.

Under the dorsal epidermis there is typically a row of large, dark,

and regularly spaced melanophores, though the arrangement of

these cells is highly variable. The ventral epidermis generally lacks

melanophores. Small, rounded xanthophores are scattered

throughout the barbel epithelium; however, this pigmentation

does not interfere with the structure’s overall transparency.

To confirm the cellular features observed in whole mounts, adult

maxillary barbels were embedded in paraffin, serially sectioned and

stained with Alcian Blue/hematoxylin/eosin, Mallory’s trichrome,

or a modified Verhoeff’s-van Gieson elastic stain. Mallory’s stain

proved the most informative for viewing the blood supply, as

erythrocytes stain bright orange on a background of reds, blues and

purples (Fig. 2C,D). For simplicity, only the Mallory’s results are

shown. In cross-section, the central rod was revealed to be largely

acellular, lacking nuclei. This structure also had a slight dorsal-

ventral asymmetry, with a convex dorsal side and a concave ventral

side. In the middle of the rod there were often several small holes or

voids, not noticed in whole-mount preparations, that contained

solitary nucleated cells of uncertain histology. Some teleost barbels

are known to contain a central rod of cartilage [18,37]; however, the

central rod in the maxillary barbel does not have a cartilage or bone

histology, nor does it stain with Alcian Blue or Alizarin Red, two

classic vertebrate skeletal stains (data not shown). This suggests that

the rod is a non-mineralized extracellular matrix, most likely

collagen, keratin or elastin. Whatever its composition, the central

rod is not entirely homogeneous, as different areas show varying

affinity for either the red (Orange G) or blue (aniline blue)

components of Mallory’s stain.

Ventral to the central rod we confirmed the two small capillaries

(Fig. 2C). These were filled with orange-staining erythrocytes and

lined with endothelial cells, which were identified by their elongated

cell bodies and prominent nuclei bulging into the lumen of the vessel.

A dense pad of myelinated nerve fibers surrounded both vessels.

Dorsal to the central rod we observed the putative lymphatic. This

vessel had a circular or oval cross-section and was also lined with

endothelial cells. Smaller patches of nerve fibers, not easily visible in

whole-mount preparations, surrounded this structure.

The epidermis of the maxillary barbel is a stratified cuboidal

epithelium approximately 4–6 cells deep. At the barbel base this

layer is approximately 40 microns thick, while at the distal tip it is

10 microns or less. This is because the individual epithelial cells at

the tip are smaller (Fig. 2C vs. 2D). Embedded within the

epithelium are many large, Alcian Blue-positive goblet cells and,

on the ventral surface, numerous taste bud structures with open

apical pores. Mature barbels also have 10–12 spiny epidermal

projections; in contrast to most areas of the teleost epidermis [38],

these scattered projections appear keratinized (not shown). Finally,

the entire epithelium rests on a thick basement membrane that

stains intensely blue with Mallory’s. Small breaks in this

membrane were observed near the base of the each vase-shaped

taste bud, through which fine nerve fibers projected to the sensory

cells.

Figure 2. Whole-mount and sectional views of the adult maxillary barbel. A) Differential interference contrast (DIC) image of an adult
maxillary barbel shaft fixed and cleared in 50% glycerol. All of the central tissues are visible through the transparent outer epithelium. A putative
lymph vessel (*) lies dorsal to the central rod. All scale bars = 100 mm. B) DIC image of an adult maxillary barbel tip at the same scale as A. The central
rod is reduced to a narrow band of fibers. The ventral vasculature terminates in a capillary loop packed with erythrocytes, while the lymphatic (*)
terminates in a blind, tapered end. The ventral epithelium and distal tip carry numerous taste buds. C) Representative cross-section of an adult
maxillary barbel at the level shown in A. Nuclei are dark red, erythrocytes orange, and basal laminae/connective tissues blue (Mallory’s trichrome). D)
Representative cross-section at the level shown in B. bm = basement membrane; bv = blood vessel; gc = goblet cell; n = nerve fibers; tb = taste bud;
* = putative lymph vessel (for explanation see text).
doi:10.1371/journal.pone.0008737.g002
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Live Imaging of the Adult Maxillary Barbel Circulation
To test the lymphatic identity of the dorsal vessel observed

within the maxillary barbel, we performed short-term live imaging

of barbel blood flow in Tg(fli1a:EGFP) transgenic zebrafish. Fli1a

(friend leukemia integration 1a) is a transcription factor constitu-

tively expressed in the endothelial cells that line adult blood and

lymph vessels [39], and is a frequent marker in studies of zebrafish

angiogenesis and lymphangiogenesis [40,41]. Under transmitted

light (2–3 minutes/fish, n = 3), we observed a constant flow of

erythrocytes along the barbel’s ventral side, consistent with the

location of the capillaries (Movies S1 and S3). Erythrocytes

flowed distally within one arm of the capillary loop, and returned

proximally within the other arm. During the same period of

observation, we saw no bulk flow of cells in the adjacent dorsal

vessel, located deep to the dorsal row of melanophores. UV

illumination of the same barbels, however, showed strong green

fluorescence in all three vessels: the two capillaries ventrally and

the ‘‘empty’’ vessel dorsally (Movies S2 and S4). We infer from

these preliminary observations that the dorsal vessel of the

zebrafish maxillary barbel is both fli1a:EGFP-positive and blood-

flow negative in vivo, a phenotype consistent with a lymphatic

identity.

Development of the Juvenile Maxillary Barbel
Having identified the major features of the adult maxillary

barbel, we next investigated how this appendage develops. By 30–

40 days post fertilization (.10–12.5 mm SL), the maxillary barbel

primordium appears as a small raised bud projecting caudoven-

trally between the maxilla and dentary (Fig. 3A,B). Like a limb

bud, the early barbel bud has two layers: an ectodermal jacket and

a mesodermal core. At this stage the barbel is typically

unpigmented, though the number of melanophores can vary from

zero to two. Within the barbel core, many fine, refractile threads of

matrix appear within the dorsal half of the appendage (Fig. 3C).

As the barbel bud matures (.12.5–15 mm SL; Fig. 3D), it

changes from a rounded to a tapered outgrowth extending past the

caudoventral margin of the maxilla. The refractile matrix in the

mesodermal core becomes denser proximally and extends farther

distally. Eventually, these matrix strands form a loose cone-shaped

structure, wider at the base than at the tip, that corresponds to the

position of the central rod seen in the adult. Ventral to the forming

rod, angiogenesis is underway as indicated by the presence of

endothelial cells in loose tubular aggregations. Two or more

melanophores populate the dorsal epithelium. Multiple taste bud

hillocks protrude from the ventral side and distal tip.

Later stages of barbel development (.15–17.5 mm SL; Fig. 3E)

involve elongation and enlargement of the previous structures.

The central rod becomes thicker and denser proximally, while the

distal end resembles a loose mesh. Upwards of 10 melanophores

are regularly spaced along the dorsal surface. A complete capillary

loop is established, and overt blood flow occurs. The lumen of the

dorsal vessel is still obscure, suggesting that this channel becomes

patent somewhat later than the adjacent circulation.

Development of the Maxillary Barbel Vasculature
To more closely examine the development of the barbel

vasculature, we performed confocal microscopy on a develop-

mental series of juvenile Tg(fli1a:EGFP) zebrafish collected 4–6

weeks post-fertilization (Fig. 4). In this transgenic line the

approximate location of the maxillary barbel can be seen as a

bright green dot on the juvenile lower jaw (Fig. 4A). This

fluorescence is strong even before overt barbel outgrowth, and

comes from a dense knot of endothelial cells immediately under

the surface of the maxilla. We call this accumulation of vessels the

proximal plexus, as it marks a persistent vascular plexus at the

base, or proximal end, of the developing barbel. The plexus can be

seen in vivo under a fluorescent dissecting microscope, providing a

convenient pointer to the maxillary barbel’s future location.

As the early barbel bud emerges, the proximal plexus projects

3–5 small endothelial sprouts distally, invading the mesodermal

core (Fig. 4B). The pattern of sprouting was highly variable

among individuals, and was often difficult to trace because of the

density of vessels in this region. In the absence of dye- or cell-

tracing studies, the connections between the proximal plexus and

the barbel circulation are not well established. Based on its

position, however, we assume that the proximal plexus is both the

Figure 3. Early development of the maxillary barbel bud. A)
Whole-mount confocal microscopy of the lower jaw of a juvenile
membrane–GFP (mGFP) transgenic zebrafish (,10 mm standard
length). Anterior is to the left. The maxillary barbel bud is not yet
visible between the adjacent maxilla (mx) and dentary (d). All scale
bars = 50 mm. B) Corresponding view of a slightly larger mGFP juvenile
(10–12 mm SL). The first sign of the maxillary barbel (mb) is a rounded
bud projecting caudoventrally. C) The early barbel bud has a thick outer
epithelium (e) and a dense mesodermal core. The two layers are
separated by a prominent basement membrane (bm). Fine strands of
birefringent matrix accumulate dorsally where the central rod (cr) will
form. D) As the barbel grows, the central rod becomes denser and
projects farther distally. Isolated melanophores (m) appear along the
dorsal epithelium. Ventrally, the blood vessel loop (bv) is forming. The
ventral epithelium and distal tip carry numerous taste buds (tb). E)
Later stages of barbel development involve expansion of the earlier
structures. The central rod becomes longer and denser, the capillary
loop extends, multiple melanophores become spaced along the dorsal
surface, and numerous taste buds are added. The lymph vessel is not
yet patent. bm = basement membrane; bv = blood vessel; cr = central
rod; d = dentary; e = epithelium; m = melanophore; mb = maxillary
barbel bud; ms = mesenchyme; mx = maxilla; o = orbit; tb = taste bud.
doi:10.1371/journal.pone.0008737.g003
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source of endothelial cells for the developing barbel and a likely

reservoir for fluid flowing to and/or from the appendage.

By the stage of barbel growth beyond the margin of the maxilla,

the endothelial cells within the barbel shaft are organized into two

streams: a large ventral stream and a small dorsal stream (Fig. 4C).

Consistent with the adult vasculature previously described, we

infer that the ventral stream contains the capillary progenitors and

the dorsal stream the lymphatic progenitors, respectively. The cells

are not yet fully organized into tubes, and appear to be

individually migrating through the surrounding tissue.

When the barbel has reached several hundred microns in

length, the endothelial cells have formed several overt vessels,

indicated by continuous tubes of flattened cell bodies with few

spaces present between adjacent cells (Fig. 4D). The dorsal stream

forms one narrow vessel, while the ventral streams form two

closely apposed, larger vessels. As observed in the adult, the dorsal

and ventral vessels appear separated along their entire length,

Only at the distal end of the developing vessels did we observe

widely spaced endothelial cells with prominent filipodia, suggesting

active migration.

When the maxillary barbel is approximately one millimeter

long, its vasculature is a smaller version of the adult organization

(Fig. 4E). Both ventral vessels are tightly organized along their

entire lengths, and their lumens are connected distally, forming a

complete capillary loop. The dorsal vessel is also well defined and

has a blind, closed end with its lumen separate from the adjacent

capillaries. The mesodermal tissue around these vessels contains

few or no solitary endothelial cells.

Maxillary Barbel Innervation and Taste Buds
As a taste organ, the maxillary barbel is well supplied with

nerves. To trace the ontogeny of barbel innervation, we performed

whole-mount immunohistochemistry using an antibody against

acetylated tubulin [42,43] to label the neurons in a developmental

series of wild types. In juveniles of the smallest size class (.10–

12.5 mm SL), a small tubulin-positive branch projects into the

mesodermal core of the maxillary barbel bud, apparently

innervating a ventral cluster of incipient taste buds (Fig. 5A).

We also observed a nerve net of small, sinuous fibers throughout

the barbel’s epidermal sheath.

In the next size class (.12.5–15 mm SL), this pattern of barbel

innervation is maintained and enlarged. The nerve trunk entering

the barbel is thicker and brighter, and clearly composed of several

roughly parallel fascicles (Fig. 5B). From these fascicles, dozens of

smaller fibers descend ventrally, densely innervating the ventral

epithelium. The epidermal nerve net appears more distinct and is

evenly spread throughout the barbel surface. In the largest

juveniles observed (.15–17.5 mm SL), the number of nerve

fascicles in the barbel core increases (Fig. 5C); some fascicles stop

short of the distal tip, while others extend the entire length. Also at

this stage we observed a secondary innervation of the barbel,

consisting of a large dorsal nerve fiber extending approximately

half the length of the appendage. The origins and connections of

this dorsal nerve are unclear.

Serial cross-sections of mature barbel tissue stained with the

same antibody against anti-acetylated tubulin confirmed the

pattern of innervation seen in whole mounts (Fig. 5D). In the

Figure 4. Development of the maxillary barbel vasculature in Tg(fli1a:EGFP) transgenic zebrafish. A) In vivo image of a juvenile
Tg(fli1a:EGFP) zebrafish (10–12 mm standard length), in which all endothelial cells fluoresce green. The base of the future maxillary barbel is visible
externally as a bright green confluence of blood vessels on the posterior ventral corner of the maxilla (arrowhead). B) 75 mm barbel. Confocal
reconstruction of the early barbel bud circulation; anterior is to the left. A confluence of green vessels is visible at the base of the barbel (arrowhead).
Smaller endothelial sprouts invade the bud proper (within the dotted line). Nuclei are counterstained blue (DAPI). C) 125 mm barbel. Two streams of
endothelial cells are visible; a larger ventral stream (arrow), which will form the capillary loop, and a smaller dorsal stream (asterisk), which will form
the putative lymphatic. In this focal plane, the proximal plexus of vessels is not visible. D) 300 mm barbel. The proximal ends of the ventral and dorsal
vessels appear patent and lined with flattened endothelial cells. The distal ends of the vessels are composed of loose amoeboid cells with filipodia
projecting into the surrounding tissue. The outline of the barbel is dashed blue. E) 600 mm barbel. The circulation at this stage consists of a closed
capillary loop ventrally and a single, blind-end vessel dorsally. The proximal vascular plexus is greatly enlarged. Nuclei are counterstained blue (DAPI).
Arrowhead = proximal vascular plexus; arrow = ventral vessels; asterisk = dorsal vessel (putative lymphatic).
doi:10.1371/journal.pone.0008737.g004
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adult barbel there are typically 1–2 dorsal nerve fascicles and 4–6

ventral ones. More fascicles are found in the thicker, proximal part

of the barbel than at the narrow, distal tip. From these central

nerve trunks we observed smaller fibers running radially towards

the epithelial surface, penetrating gaps in the basement membrane

and terminating near the bases of the vase-shaped taste buds. In

sections, we saw scattered nerve fibers in the epithelium proper,

but very bright signals from a sub-epithelial ring of immunoreac-

tive punctae (Fig. 5D). Finally, by confocal imaging of small fish

(,10–12 mm SL) stained in whole-mount, we were able to

confirm the barbel’s connection to the surrounding nerve supply

(Fig. 5E,F). As previously described by other workers, a large

trunk of cranial nerve VII, also called the facial nerve, descends

from a trigeminal-facial nerve complex immediately ventral to the

zebrafish orbit [44,45]. This trunk sends a smaller branch, the

ramus mandibularis, ventrally towards the jaw region. A

secondary branch from this ramus innervates the maxillary barbel.

The early taste buds on the zebrafish larval head (3–5 dpf) and

on the budding maxillary barbel have been previously described

using light, scanning and transmission electron microscopy [31].

To examine the distribution of maxillary barbel taste buds in older

juveniles and adults, we used whole-mount immunohistochemistry

against the calcium-binding protein calretinin. This antibody

labels a subset of differentiated taste bud cells in zebrafish, among

other neuronal subtypes [46,47,48]. It also reacts with taste buds in

other teleosts [49,50,51,52].

The maxillary barbel bud appears well supplied with taste cells

from the earliest stages of outgrowth, having numerous calretinin-

positive cells on the ventral side and distal tip (Fig. 6A). As the

barbel extends, these areas remain closely packed with onion-

shaped clusters of immunoreactive cells (Fig. 6B,C); dorsally, few

or no calretinin-positive cells are seen. In ventral view, the taste

bud clusters of the maxillary barbel have a roughly paired

arrangement (Fig. 6D), similar to the pattern of taste buds on

catfish barbels [20]. At higher magnifications, two types of

calretinin-positive cells are visible; cells arranged in clusters, but

also the finger-like projections of solitary chemosensory cells

(SCCs) [53].

Maxillary Barbel Regeneration after Proximal Amputation
Having established the normal morphology, histology, and

development of the maxillary barbel, we next tested whether this

organ could regenerate after surgical removal. We initially tried

several sites of amputation, including the distal tip, mid-shaft and

proximally near the base. All cut sites produced similar results

(data not shown); however, because the proximal amputation

produced the most dramatic regrowth and the greatest amount of

regenerated tissue per fish, we eventually performed this operation

exclusively. Another advantage of this location was that the

amputation plane could be standardized by cutting the barbel

shaft approximately where it crossed the margin of the maxilla,

establishing an anatomical landmark for the original plane of

section (Fig. 7A).

Wound healing and blastema formation in early

maxillary barbel regenerates. Immediately after

amputation, the barbel stump had a blunt end, exposing the

deep tissues and central rod (Fig. 7B). 24 hours after surgery, this

wound was well healed with a clear epithelial cap and an

Figure 5. Innervation of the maxillary barbel. A) 75 mm barbel. In all panels, anterior is to the left. Whole-mount immunohistochemistry (anti-
acetylated tubulin) shows a central tract of nerve fibers (arrow) within the early barbel bud (dotted white line). Smaller nerve projections are
concentrated in the ventral half of the appendage. B) 200 mm barbel. Multiple fascicles of nerve fibers project distally, innervating the barbel’s ventral
side and distal tip. No large tracts are visible dorsally. Scale bar = 100 mm. C) 1 mm barbel. Secondary nerve fibers appear within the dorsal half of the
barbel. D) Section of an adult barbel at the approximate level shown by the dotted line in C. Innervation is visible as two deep nerve tracts (dn and
vn) and a ring of sub-epithelial immunoreactive punctae (p). E,F) Schematic reconstructions of maxillary barbel bud innervation based on confocal
tracing of whole-mount acetylated tubulin immunostaining in multiple zebrafish juveniles. F is an enlargement of the jaw region in E.
doi:10.1371/journal.pone.0008737.g005
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accumulation of small, rounded cells immediately underneath

(Fig. 7C). Under the cap we occasionally observed small blood

clots or patches of cloudy, presumably necrotic cells. These lesions

cleared quickly and were not observed after the first few days.

Blood flow in the severed capillaries was halted or irregular.

Seventy-two hours after surgery, the wound epithelium was

thickened and the underlying mesodermal layer was enlarged, giving

the distal end the profile of a slightly swollen bulb (Fig. 7D). A

prominent basement membrane was reestablished, under which were

numerous small, rounded mesenchymal cells forming a presumptive

regeneration blastema. At this stage we observed the first

differentiated cells in the regenerated portion– a few melanophores

and xanthophores distal to the plane of section. Small capillary

sprouts were carrying a few red blood cells into the swollen distal

bulb, but a complete circulation was not yet established.

The early events of barbel regeneration were further examined

by scanning electron microscopy (SEM) of the regenerating

stumps. By collecting the regenerates at rather close intervals (0,

1, 3 and 6 hours post surgery), we hoped to capture ‘‘snapshots’’ of

epithelial cell behavior during wound healing. At later time points

(1, 3 and 7 days post surgery), we sought to establish when the

regenerating maxillary barbel reestablishes its superficial sensory

structures, particularly taste buds.

Barbels fixed immediately after surgery showed a ragged, cut

surface exposing blood-filled sinuses and the central rod

(Fig. 8A,B). After 3 hours, however, these wounds were

completely closed although covered with dead or dying epithelial

cells, scattered erythrocytes and cell debris (Fig. 8C,D). Sheets of

skin appeared to converge medially and pucker over the wound,

suggesting a ‘‘purse-string’’ action similar to that observed in

SEMs of Xenopus wound closure [54]. One day after surgery, the

distal surface of the regenerate was smooth and rounded, with no

dead cells or surface debris (not shown). The length of the barbel

was not increased, and the skin at the distal end showed no special

epithelial characteristics. By 3 days post surgery the distal end of

the barbel shaft became enlarged and bulbous, with several

incipient taste bud hillocks at the distal tip (Fig. 8E). Each hillock

was formed by the elevation of 3–4 epithelial cells topped by a

crown of apical cilia (Fig. 8F). Seven days after surgery,

regenerated barbels showed significant increases in length, having

grown well past the original plane of section. Each carried at its

distal end a cluster of 8–10 differentiated taste buds (Fig. 8G,H).

Figure 7. Proximal amputation of the maxillary barbel induces wound healing and blastema formation. A) Procedure for a unilateral
‘‘barbectomy’’. The left maxillary barbel (mb) is amputated at the posterior margin of the maxilla. The contralateral barbel (not shown) is left as a non-
surgical control. B–D) Fixed, unstained barbel regenerates collected immediately post surgery (B, 0 hps), or after 24 and 72 hours, respectively (C, D).
Wound healing is followed by an accumulation of small, rounded mesenchymal cells underneath the epithelium (e) and around the central rod (cr).
doi:10.1371/journal.pone.0008737.g007

Figure 6. Maxillary barbel taste bud development. A) 150 mm barbel. Whole-mount immunohistochemistry (anti-calretinin) shows numerous
differentiated taste buds (red) on the ventral surface and distal tip of the early barbel bud. Nuclei are counterstained blue (DAPI stain). B) 400 mm
barbel. Teardrop-shaped clusters of calretinin positive cells line the ventral surface. C) Magnification of the maxillary barbel tip. D) Ventral view of the
mature maxillary barbel. Teardrop-shaped taste buds (white dots) are arranged in pairs along the ventral surface. Scattered solitary chemosensory
cells (SCCs, white arrows) are visible between the taste bud clusters.
doi:10.1371/journal.pone.0008737.g006
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Later stages of maxillary barbel regeneration. By 7 days

post surgery the regenerated barbels appeared to be smaller

versions of the originals, although shorter and thicker than their

contralateral controls. A complete capillary loop was re-

established, with vigorous erythrocyte flow. A regularly spaced

line of melanophores extended from the base into the regenerated

region, approximating the original pigment pattern. At 14 and 28

days after surgery, the regenerated barbel was externally similar to

a seven-day regenerate, but longer. Further growth was

accompanied by progressive blood vessel elongation and

melanophore migration, making the boundary between old and

new tissue less distinct.

Proximal amputation of the maxillary barbel produces a

permanent internal scar. Although the regenerated maxillary

barbels appeared grossly normal in vivo, in fixed and cleared

specimens we saw persistent differences between the regenerated

appendages and their contralateral controls (Fig. 9A). Specifically,

regenerated barbels were thicker and had abnormally organized

mesodermal cores. We call this phenomenon the ‘‘internal scar’’

because the center of the regenerate, not the surface, is most affected.

As the barbel regrows, the central rod is not replaced, but ends in a

blunt stump within the epidermal sheath (Fig. 9B,C). Distal to the

stump the barbel is filled with dense, wavy strands of birefringent

matrix, intermixed with abundant nucleated cells (Fig. 9G). This

morphology affects the entire shaft of the barbel distal to the

amputation plane, extending several millimeters. The disordered

matrix and scattered cells cause the core of the regenerates to appear

‘‘cloudy’’ under transmitted light, yet this does not interfere with

confocal microscopy of the regenerated tissue.

We initially assumed that this dramatic scarring of the barbel

would heal over time, and tested this by observing barbel

regenerates and their contralateral controls at 1, 3 and 6 months

after surgery. All of these older regenerates, however, had internal

scars and matrix morphologies similar to those of recently

operated specimens (Fig. 9D–F). We conclude that internal

scarring of the zebrafish maxillary barbel is an acute and

permanent reaction to amputation injury.

Regeneration of maxillary barbel vasculature, taste buds

and nerves. Given the disruption of the maxillary barbel’s

central matrix, we wondered how other barbel tissues would

regenerate in this context. Specifically, would the barbel

vasculature, taste buds and nerves be patterned normally in the

regenerates, or would these be altered by the unusual extracellular

environment? To examine the regeneration of the barbel

vasculature in more detail, we performed an independent set of

regeneration experiments on adult zebrafish strongly expressing

the fli1a:EGFP transgene. Three days after surgery, there was no

overt blood flow in the barbel blastema (Fig. 10A), but two sets of

endothelial sprouts (dorsal and ventral) were observed in this area.

These projected distal to the amputation plane and at times

crossed dorso-ventrally across the central rod (Fig. 10B,C). Most

sprouts appeared to follow the reformed basal lamina, migrating

along the inner surface of the epithelium covering the wound.

Within the blastema we also observed isolated GFP-positive cells

with extended filipodia (Fig. 10C), similar to those observed in

barbel development (Fig. 4D).

At later stages of regeneration (5–7 dps), dorsal and ventral

vessels were extending distally, but with a modified morphology.

Specifically, we observed larger diameters on some vessels,

multiple vessels replacing single ones, and more bends and loops

in the courses of the vessels. The single dorsal vessel, for example,

might be replaced by two smaller, closely conjoined vessels or a

complex series of anastomosing loops (Fig. 10D,E). The ventral

vessels might be expanded from a simple capillary loop to a

Figure 8. Scanning electron microscopy of early barbel
regenerates. A, B) Immediately after amputation (zero hours post
surgery, or 0 hps), the barbel stump is an open wound exposing the
central core. A) Barbel stump in lateral view; proximal is to the left. B)
End-on view of the same specimen. C, D) Two separate specimens
collected at three hours post surgery (3 dps). The adjacent epithelium
has closed the wound completely. Note the ‘‘purse string’’ lines of
contraction within the epithelial sheet (C). Erythrocytes, dying cells, and
matrix debris adhere to the distal surface (D). E,F) After 72 hours, the
barbel stump swells distally, becoming bulbous (E). The tip epithelium
carries newly differentiating taste bud hillocks, complete with
protruding apical villi (F, magnified from E). G,H) By 7 days post
surgery (7 dps), the maxillary barbel is a smaller version of the original
appendage. Several millimeters long, it has a tapered distal end that
carries a dense cluster of taste buds (H, magnified from G).
doi:10.1371/journal.pone.0008737.g008
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torturous set of conjoined lumens, all of which carried blood cells.

The regenerated vasculature was thus highly variable; however,

the dorsal and ventral populations remained separate, consistent

with the hypothesis of distinct lymph and blood compartments.

Barbels allowed to regenerate for longer than 7 days also had

altered vessel morphologies, but did not depart from this basic

regenerative pattern.

To examine the number, location, and pattern of regenerated taste

buds, we stained barbel regenerates in whole-mount with an antibody

against calretinin. Calretinin-positive cells were observed in the distal

epidermis as early as 3 days post surgery (Fig. 10F), consistent with

our scanning electron observations of the same interval (Fig. 8E,F).

After one week, the distribution of taste buds on the regenerate was

similar to the original, having large, differentiated buds concentrated

on the ventral side and distal tip (Fig. 10G). The regenerated buds

were arranged ventrally in a rough double row (Fig. 10H), restoring

both taste bud patterning and appendage asymmetry. We also

observed both types of calretinin-positive cells described previously,

including onion-shaped taste bud clusters as well as solitary

chemosensory cells (SCCs).

Finally, whole-mount immunostaining of barbel regenerates

with an anti-acetylated tubulin antibody showed regrowth of a

nerve supply very similar to that of the original appendage.

Superficially, there were numerous small, torturous nerve fibers

throughout the epidermis. Within the core, the regenerated

portions of the barbel contained multiple axons projecting to the

ventral side and distal tip, approaching the bases of newly formed

taste buds (Fig. 10I,J). No taste buds were observed without nerve

fibers, suggesting that the regenerated nerve fibers successfully

found their sensory targets.

Although all of the regenerates accomplished this nervous

rewiring, in some cases the locations of the central nerve trunks

were abnormal. As previously described, a mature maxillary barbel

has two principal regions of nerve fibers– a ventral region, adjacent

to the capillaries, and a dorsal region, adjacent to the putative

lymphatic (Fig. 5D). However, in several regenerates we observed

only a single nerve tract ventrally, the dorsal fibers having shifted in

this direction distal to the amputation plane (Figure S1). This

outcome was rare, and its significance remains unclear. In general,

we can conclude that the disorganized core of the maxillary barbel

may alter, but does not preclude, the regrowth and repatterning of

the deep tissues such as vasculature and nerves.

Measurements of regenerate growth. In addition to their

internal scarring and disorganized cores, regenerated maxillary

barbels were consistently shorter than their contralateral controls.

To measure this more precisely, we collected 40 matched pairs of

barbels (regenerate and control) 1–4 weeks after surgery,

embedded them in agar, and photographed them for digital

morphometry (Fig. 11A). We measured the total length of each

barbel (Fig. 11B) and, in the regenerated barbel, the length of the

stump and the length of the portion that was regenerated

(Fig. 11C). Assuming that both barbels had the same length

initially, these measurements allowed us to express the regrowth of

each regenerate as a percentage of the length of its contralateral

control, allowing for differences in the stump length, which varied

among surgeries. On average, the operated barbels were

2.9 millimeters long before surgery and 0.4 millimeters long

after surgery, indicating that approximately 85% of the

appendage was removed (Table 1).

Most regrowth occurred between 7 and 14 days, during which

time the regenerates increased their average post-surgical length

nearly sevenfold (Fig. 11D, Table 1). However the percent

regenerated relative to controls was at 14 days highly variable (48–

85%), with an average of just 62.7% of the missing length

replaced. After 21 and 28 days this percentage was not

significantly greater (72.6 vs. 67.8%, respectively) and the

variability had not changed (45–85%). There was no effect of

time on mean percent length regenerated for all comparisons

among 14, 21 and 28 days (Kruskal-Wallis nonparametric

ANOVA; H = 5.25, df = 2, p.0.07). We conclude that the

Figure 9. Internal scarring of maxillary barbel regenerates. A) Gross morphology of matched maxillary barbels (cntl = control;
regen = regenerate) collected 7 days post surgery (dps). Note that the regenerate is thicker than the contralateral control and contains a central
rod ‘‘stump.’’ B) Magnification of the control barbel in A. C) Magnification of the regenerated barbel in A. Note the absence of the central rod and
the presence of wavy strands of matrix distal to the original amputation plane (arrow). The epithelial surface, pigment cell patterning and capillary
loop are largely normal. D–F) Three regenerated barbels collected at 1–6 months post surgery (mps). All show disorganized mesodermal cores distal
to the plane of section (arrow). G) Longitudinal histological section of a maxillary barbel regenerate (10 dps) showing disorganization of mesodermal
cells and extracellular matrix distal to the amputation plane (arrow). Proximal is to the left. Hematoxylin/eosin stain.
doi:10.1371/journal.pone.0008737.g009
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maxillary barbel, although capable of restoring the majority of its

missing tissue, does not replace its pre-surgical length. What halts

the growth of the regenerate at this point is unknown.

The Maxillary Barbel Can Regenerate after Repeated
Amputation

Having established that the maxillary barbel could regenerate after

an initial trauma, we wished to know if the regenerated tissue had any

further regenerative capacity. Specifically, we sought to test if the

disorganized cells filling the barbel core were ‘‘stem-like’’, capable of

further proliferation and differentiation, or ‘‘scar-like’’, similar to

pathological cells filling up a wound. We also wished to test if the

presence of the barbel stump– specifically, the blunt end of the central

rod– was necessary to organize a second round of regeneration.

78 adult fish (3–6 months post-fertilization) were anaesthetized

and each had the left maxillary barbel removed. The regenerates

were observed weekly to confirm that the first round of

regeneration was typical. Approximately 4–6 weeks after the

initial surgery, the first or ‘‘primary’’ regenerate was removed

again, this time slightly distal to the first plane of section. The

original, or primary amputation plane was located in vivo by

illuminating the regenerate with strong transmitted light, making

the internal scar more visible. The primary regenerate was fixed

and stored while secondary regeneration was allowed to occur for

an additional 4–6 weeks. At this point, all of the fish were

euthanized to compare the primary and secondary regenerates

with the unoperated controls using light microscopy with

Nomarski illumination.

Of the 78 fish challenged to undergo secondary regeneration, 66%

(57/78) grew back a secondary maxillary barbel. Large secondary

regenerates were patterned normally in terms of pigment cells, gross

organization of the vasculature and taste bud distribution, and could

be of comparable size to the primary regenerates (Fig. 12A). Notably,

the internal scarring seen in primary regenerates was repeated in the

Figure 10. Regeneration of the barbel vasculature, taste buds, and sensory nerves. A) Transmitted light image of a Tg(fli1a:EGFP) maxillary
barbel stump 3 days post surgery (dps). The distal end projects right. B) Confocal image of the vasculature in A. Endothelial sprouts (green) project
distally past the plane of section and appear to bridge the dorsal (top) and ventral (bottom) vessels. Nuclei are counterstained blue (DAPI). C)
Confocal reconstruction of a second regenerating barbel (3 dps). Similar sprouting is visible, as well as several isolated endothelial cells migrating
underneath the wound epithelium. D–E) Regeneration of the vasculature at 5 and 7 days post surgery. Two streams of endothelial cells are visible; a
dorsal stream (top) and a ventral stream (bottom). Both sets of vessels are more torturous than those of the original barbel (e.g., Fig. 4E). F–H)
Regeneration of the taste buds 3–14 days post surgery (dps). Calretinin-positive cells appear at the tip within 3 days (F). By 7 dps, the distribution of
taste buds on the ventral side and distal tip resembles the normal adult pattern (G). The ventral taste buds of a 14-day regenerate (H) are arranged in
a typical double row (compare to Fig. 6D). I, J) Regenerating maxillary barbels are densely innervated with long axons (anti-acetylated tubulin,
green) projecting to the bases of the taste buds (anti-calretinin, red).
doi:10.1371/journal.pone.0008737.g010
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secondary regenerates. In most cases, two separate scars were

observed, one distal to the first (Fig. 12 B,C).

All of the secondary barbels deemed to regrow (n = 57) were

scored semi-quantitatively for the amount of growth using values

of 3 (growth of more than half the length of the contralateral

control; Fig. 12A–C), 2 (growth .1 mm but less than half the

length of the contralateral control; Fig. 12D) or 1 (growth ,1mm;

Fig. 12E). These secondary regeneration scores were strongly

skewed towards ‘‘better’’ regeneration (score 3 = 32/57; score

2 = 18/57; score 1 = 7/57); however, the overall response was

much worse than that of primary regeneration. Recall that in

primary regeneration, 100% of regenerating barbels grew back

45–85% of the contralateral length (Fig. 11D). In secondary

regeneration, less than half of the barbels grew more than half as

long as the control appendage (32/78, or 41%), and nearly a

quarter of the secondary surgeries induced no regenerative

response at all (21/78, or 21%; Fig. 12E). We infer that, unlike

the zebrafish caudal fin, the regenerative response of the maxillary

barbel is diminished by repeated trauma.

Maxillary Barbel Regeneration Occurs in Senescent Fish
Although most zebrafish in our study were 3–6 months old, we

also tested the regenerative capacity of senescent fish over 2 years

of age. 10 adult fish were anaesthetized and each had the left

Figure 11. Barbel regeneration does not restore appendage length. A) Four matched pairs of maxillary barbels collected 7–28 days post
surgery and embedded in the wells of a DNA electrophoresis gel. R = right barbel (unoperated control); L = left barbel (regenerate). All regenerates
are shorter than the contralateral appendages. Each panel is shown at the same magnification. B) Measurement of total length (TL). The total length
of each barbel (segmented line) was measured from the base of the central rod to the distal tip of the appendage. C) Measurement of stump length
(SL) and regenerate length (RL). Within each regenerating barbel, the stump was measured from the base of the central rod to the amputation plane.
The regenerate length was measured from the amputation plane to the distal tip. Stump length + regenerate length = total length of the
regenerating barbel (SL + RL = TL). D) The regrowth of each regenerate was calculated as a percent of the control (% of length
regenerated = (regenerate length/(control length – stump length))*100). Most lengthening occurred 7–14 days post surgery. Longer periods of
regeneration (21–28 days) did not yield statistically significant differences in length.
doi:10.1371/journal.pone.0008737.g011

Table 1. Barbel lengths pre- and post-amputation and during regeneration (7–28 days).

mean value median range standard deviation sample size (n)

control barbel length (mm) 2.9 2.5 [2.2–2.8] 0.1 40

post-surgical stump length (mm) 0.4 0.4 [0.2–1.0] 0.1 40

percent length removed (%) 86.3 87.5 [72.2–92.7] 4.2 40

percent length regrown at:

7 days post surgery (dps) 9.7 9.6 [7.1–12.7] 1.8 6

14 dps 62.7 61.0 [48.4–84.7] 9.1 14

21 dps 72.6 76.4 [44.0–85.6] 12.1 12

28 dps 67.8 66.6 [45.2–90.2] 14.4 8

doi:10.1371/journal.pone.0008737.t001
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maxillary barbel removed. The fish were re-anaesthetized on the

3rd, 7th and 14th day after amputation to compare the gross

morphology of the regenerate to that of the contralateral maxillary

barbel. 80% of these fish responded with a normal progress of

regeneration, completing extension and re-differentiation of the

regenerate within two weeks. Although we did not examine the

histology of these regenerates in detail, it appears that the ability of

barbel tissue to regenerate, in most individuals, is life long.

Discussion

In this report we have introduced the zebrafish maxillary barbel

as a system for studying epithelial-mesenchymal development,

wound repair, and regenerative cell biology. The maxillary barbel

contains a simple cylindrical assemblage of ectodermal, mesoder-

mal and neural crest derivatives, including skin, glands, pigment

cells, taste buds, sensory neurons, blood vessels and a putative

lymphatic. Barbels are optically clear, easily manipulated, and

regenerate rapidly. In particular, the zebrafish system offers the

ability to manipulate the genome, transcriptome and proteome of

this unique appendage, which should prove beneficial in future

studies of its molecular regulation.

The Maxillary Barbel Contains a Putative Lymphatic
The zebrafish lymphatic system is of particular interest as its

existence has only recently been described [41]. In the zebrafish

embryo, lymph vessels are studied most commonly in the trunk or

tail. However, these lymphatics are relatively short, deep, and

often visually obscured by the adjacent segmental vasculature. In

contrast, the maxillary barbel lymphatic has a straight path, a

relatively large diameter, and can be several millimeters long.

Assuming that this lymphatic compartment is further confirmed by

molecular and functional assays, the maxillary barbel offers

excellent visibility and access to isolated blood and lymph vessels

in close proximity to each other. This arrangement could be used

to study how these tissues coordinate their development and

regrow into traumatized tissue after injury. Also intriguing is the

ability of both vascular components to penetrate the complex

mesodermal scar that forms after proximal amputation.

The Maxillary Barbel Regenerates Some, but Not All
Aspects of Its Original Structure

One definition of regeneration is the capacity to perfectly

replace damaged structures. If the distal portion of the zebrafish

caudal fin is severed, the appendage that regenerates is well

integrated with the stump left behind. This includes both the

internal fin rays (lepidotrichia) as well as the skin and

pigmentation, making it a useful model of ‘‘perfect’’ or seamless

integration. The zebrafish maxillary barbel, however, does not

regenerate in this idealized way. Interestingly, it has an

intermediate capacity for regeneration, achieving completeness

in some tissues but not others.

The barbel is similar to the caudal fin in that its regenerative

response to amputation is both consistent and rapid. At standard

zebrafish rearing temperatures (28.5uC), overt regrowth ends

approximately 2 weeks after injury. Barbel regenerates are grossly

similar to the original appendages in both proportion and

pigmentation. Histologically, the epithelial layer of the barbel is

restored, including polysaccharide-secreting goblet cells and

calretinin-positive taste buds in their expected anatomical

locations. The vasculature and nerves also regrow, suggesting

restoration of both circulatory and sensory physiology.

Figure 12. Repeated amputation can induce secondary regeneration. A) Two maxillary barbels regenerated from the same stump. The
original barbel (not shown) was amputated at site 1 and the stump allowed to regenerate for one month. The resulting appendage (primary
regenerate, top) was then amputated again slightly distal to the first amputation plane (site 2). A secondary regenerate (bottom) grew that was
similar in size, shape and pigmentation to the primary regenerate. B) A magnification of the two surgical sites in A. Primary and secondary scars are
visible approximately 0.5 mm apart. Note that the epithelial surface and melanophore patterning are largely normal. C) A secondary regenerate with
more extreme scarring and swelling at the primary (1) and secondary (2) surgical sites. D–E) Failure of secondary regeneration. Secondary
regenerates often failed to grow, elongating either slightly (D) or not at all (E) past the secondary surgical site (2).
doi:10.1371/journal.pone.0008737.g012
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Unlike the caudal fin, however, the regenerated maxillary

barbel fails to perfectly restore its original length or histological

organization. The most striking difference between regenerated

and control barbels is that the central rod of connective tissue is

not replaced by a similar structure, but by an accumulation of

rounded mesenchymal cells embedded within tangled strands of

extracellular matrix– an arrangement resembling scar tissue. It

was thus always possible to tell the regenerates apart from the

controls, and to locate unambiguously the original plane of

section. This internal disruption was correlated with abnormal

pathfinding of endothelial cells and nerve axons, though these

could still extend through the scarred tissue and establish grossly

normal circulatory and sensory structures. Even after long periods

of healing (3–6 months), the proximal parts of the regenerated

barbels remained disorganized; however, the distal parts appeared

more normal (not shown). We attribute this to new growth at the

distal end of the appendage, as distinct from regeneration per se.

However, as most of our anatomical observations are based on

point samples, not longitudinal data, we cannot rule out

morphological improvement in a single barbel over time through

matrix remodeling, cellular turnover, or other long-term physio-

logical processes.

Most currently studied vertebrate regeneration systems are

remarkable for their rapid and largely seamless response to injury.

Yet these systems are the least like our own physiology, in which

the regenerative process is often tentative or aborted. This has

been called the ‘‘experimental dilemma’’ of perfect regeneration

[55]. Although perfectly regenerating systems can reveal in great

detail how regeneration works, by definition they are less useful for

testing therapeutic interventions. Thus we are faced with taking

mechanisms gleaned from species that regenerate well (e.g., fish

and amphibians) and spanning a large phylogenetic gap to treat

species that regenerate poorly (e.g., most mammals).

If a zebrafish is capable of perfectly regenerating a severed tail

fin, why not a severed maxillary barbel? Either barbel stump cells

are not capable of the coordinated behaviors required for seamless

integration, or they are capable of such behaviors but other

constraints apply. It would be informative to discover, through a

comparative study, what constraints are present in the barbel that

are not present in the fin. The regenerating maxillary barbel might

be developed as a therapeutic project within zebrafish, attempting

to apply what is known about caudal fin regeneration to improve

barbel ‘‘performance.’’ This represents a smaller, but still

significant, biological gap to be crossed. For example, after

amputation the barbel stump could be treated locally or

systemically in ways that restore normal length and minimize

scarring. In this way, the objective of manipulating the cellular

environment from a more restrictive state to a more permissive

one might be achieved.

Origin and Replication of Cells in the Regenerate
A chronic problem in regeneration studies is to identify the

source of cells making up the new tissue. New cells can come from

the de-differentiation of surviving cells at the cut site, recruitment

of pluripotent or ‘‘set-aside’’ cells previously contained within the

stump, or recruitment of competent cells from distant parts of the

organism. In the maxillary barbel, it seems likely that the

epithelium regenerates by proliferation and expansion of the sheet

that covers the wound. The nerves and vasculature presumably

regrow by division and/or distal extension of surviving cells at the

cut surfaces of these structures. The most unusual cells in the

maxillary barbel are the disorganized matrix-secreting cells that

replace the central rod. These are likely ‘‘fibroblast’’ or ‘‘stromal’’

cells of mesodermal origin. In the absence of lineage-tracing

studies, however, a contribution from different or more distant cell

types, perhaps entering through the capillaries, cannot be ruled

out.

Barbel Cells Are Pluripotent and Capable of Repeated
Regrowth

A well-known feature of metazoan regeneration is that the

differentiated tissues remaining at the injury site provide signaling

molecules that direct the behavior of cells in the regenerate. In

amphibian limb or zebrafish fin regeneration, this signaling is in

part responsible for the seamless integration of the new growth

with the old. The restored tissue, if amputated again, can

repeatedly direct a new regenerate, allowing accurate regrowth

even after several removals.

In regenerated maxillary barbels, the central core is dramati-

cally reorganized. It contains more cells, more tangled strands of

matrix, and, based on histological staining, perhaps an altered

composition of matrix molecules. Secondary amputations through

this core produced, in most cases, the regrowth of a secondary

barbel similar to the first, or primary regenerate. We conclude that

the regenerated central mesenchyme, although disorganized, can

still support the growth of epithelial tissues and the distal extension

of the vasculature and nerves. However, the regenerative response

to the second round of injury was diminished, both in the number

of individuals responding and the length of the structures

produced. The reason for this variability is not known. Although

the surgical technique was standardized as much as possible, it was

more difficult to locate the secondary cut site in this operation.

The distance between the primary and secondary cut site varied,

which may have affected the results. We note that the variability of

barbel regeneration after repeated injury is radically different than

the response of the caudal fin, which can be removed many times

and still replaces a full-sized, integrated tail. This is another way in

which the caudal fin and barbel might be studied in parallel, to

understand why one appendage retains and one loses regenerative

capacity after repeated trauma.

Fish with and without Whiskers: Development and
Evolution of a Teleost Taste Organ

Although the mechanisms of barbel development and regener-

ation are most conveniently investigated in zebrafish, the study of

these appendages has wider evolutionary implications for the

Cyprinidae, the clade to which zebrafish belong. Historically,

barbels have been used to classify cyprinid species into Linnaean

groups; however, subsequent studies have discouraged this

practice. Fox [16], citing the variable position and composition

of teleost barbels, argued against any taxonomic usefulness or

phylogenetic signal for these organs. Current trees for the family

Cyprinidae show barbels evolving independently and repeatedly in

many genera, including Danio [25,26]. One ecological hypothesis

for the frequent convergent evolution of this character is that

barbel extension increases sensory sensitivity in low-visibility

aquatic environments.

The demise of barbels as a systematic character is perhaps a

gain for evolutionary developmental biology. Specifically, it opens

up the study of the molecular factors controlling barbel placement

and extension, and how these have evolved in various species of

fishes. The fact that barbels have arisen independently in many

cyprinids suggests that the mechanisms of barbel development are

not so complex as to be rare; rather, like a switch, a barbel can be

turned ‘‘on’’ or ‘‘off’’ rather frequently in evolutionary time.

Assuming that the barbel develops by evolutionarily conserved

epithelial-mesenchymal interactions, the initial signal for out-
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growth is likely to come from one of a few gene families already

well investigated in birds and mammals [56]. These signals could

be tested in zebrafish juveniles. There also may be more than one

way to build a barbel, in which case the underlying signaling

pathways could themselves serve as characters in teleost

phylogeny. Future investigations of these appendages might

productively combine molecular biology, development, ecology

and evolution in both barbeled and non-barbeled fishes.

Potential Applications of the Maxillary Barbel System
In conclusion, the zebrafish maxillary barbel offers many of the

advantages common to other vertebrate models of regeneration:

speed, simplicity, transparency and easy access. Although the

barbel has no human analog, the cell types it contains are critical

for our development and maintenance, including skin, pigment

cells, taste buds, nerves and vascular components. Most impor-

tantly, the techniques already available for zebrafish embryology

and genetics can be immediately applied to this adult organ, which

is similar to an embryo in shape and size.

Potential applications of the maxillary barbel system include

studying the gene networks involved in skin appendage outgrowth

and epithelial-mesenchymal responses to injury. The abnormal

cell proliferation and matrix deposition that occurs during barbel

regeneration may be relevant to vertebrate wound healing

pathologies such as keloids or hypertrophic scars. The ability of

barbel nerves to regrow to their taste bud targets may suggest

approaches to restore peripheral nerve function to traumatized

tissues. Finally, the availability within the barbel of both a capillary

loop and a large lymphatic may be an attractive system to test the

physiological and pathological functions of the adult circulation,

including fluid balance and tumor metastasis.

Materials and Methods

Animal Care
All animal protocols were approved by the IACUC of

Children’s Memorial Research Center, (Chicago, IL) an AA-

LAC-accredited facility. All strains were crossed and reared at

28.5uC using standard husbandry techniques. Five days post

fertilization, larval fish were returned to flow-through tanks and

fed a diet of powdered food and homogenized brine shrimp for

two weeks. Surviving fry were then transferred to larger tanks at a

density of not more than 1 fish/200 mL. All fish were fed live

brine shrimp and commercial fish flakes twice daily for the

remainder of the study.

Strains, Developmental Staging and Sampling
For the wild type developmental series, we collected approxi-

mately 200 juveniles between 4 to 6 weeks post-fertilization from

an inbred wild type AB strain (ZDB-GENO-960809-7;

NU#1643). After fixation, the juvenile fish were sorted into three

body size classes based on standard length (SL): .10–12.5 mm,

.12.5–15 mm, and .15–17.5 mm. Of the several ichthyological

definitions of standard length [57], we used the straight-line

distance from the anteriormost point of the lower jaw to the base

of the caudal fin (posterior limit of the hypural plate) measured to

the nearest 0.5 mm. Fish ,10 mm SL typically had no barbel

outgrowths. Fish .17.5 mm SL had barbels that were longer

than, but not structurally different from, the smaller size classes.

Our developmental description is based on at least 30 individuals

of each strain in each size class. Individual barbels were also

‘‘staged’’ during microscopy by measuring the length of the barbel

from the proximal end of the central rod to the distal tip of the

appendage. Because maxillary barbel length strongly correlates

with fish standard length over a wide range of body sizes (Fig. 1B),

either measure can be used to estimate developmental stage. For

the examination of the vasculature in the (Tg(fli1a:EGFP))

developmental series (ZDB-GENE-980526-426), we examined

more than 100 selected larvae in the three size classes with at least

30 individuals per class.

Paraffin Histology
Fish were euthanized in ice water and the desired tissues were

fixed in cold 4% paraformaldehyde/phosphate-buffered saline

(PF-PBS) overnight at 4uC. Fixed specimens were embedded in

2% agar and re-fixed in PF-PBS for 1–2 hours at room

temperature. The agar blocks were then rinsed in PBS, dehydrated

to absolute ethanol, cleared in Histoclear and embedded in

Paraplast Xtra following standard histological schedules. At the

95% dehydration step, a brief wash in 1% alcoholic eosin:99%

95% ethanol stained the block light pink and the barbel tissue dark

pink, improving visibility during later embedding. Wax sections

were cut on a rotary microtome at 5–8 microns, briefly floated on

warm (42–45uC) distilled water and mounted on Colorfrost Plus

glass slides to dry overnight. For general histology we used an

Alcian Blue/hematoxylin/eosin triple stain; for connective tissue, a

modified Mallory’s trichrome; and for nerves and elastic fibers a

modified Verhoeff’s-van Gieson elastic stain [58].

Barbel Immunohistochemistry
The early barbel buds of juvenile zebrafish (approximately 10–

15 mm SL) could be effectively stained as whole mounts. On the

day of staining, freshly fixed tissues (PF-PBS for 2 hrs at room

temperature or overnight at 4uC) were transferred to 1.5 mL

Eppendorf tubes, adding no more than 100 mL of tissue volume

per tube. Unless otherwise noted, each wash volume was 500 mL

and the specimens were gently agitated at each step. After 5

washes in PBS+0.1% Triton-X (PBST, 5 min each), the barbels

were permeabilized for 2–7 minutes in a 1:10 dilution of 0.25%

trypsin/2 mM EDTA (Mediatech, Inc. #25-053-CI) in PBST.

Longer digestion times did not improve staining and pitted the

epithelial surface. After 5 rinses in PBST, the barbels were blocked

in 300 mL of PBST +10% goat serum for 1–2 hours.

Primary antibodies (mouse anti-acetylated tubulin; Sigma

Chemical; rabbit anti-calretinin, Millipore) were diluted 1:2,000

in PBST+1% goat serum. 300 mL of this solution was added to

each tube for overnight incubation at 4uC. Control tissues were

incubated in PBST+1% goat serum only. The next day, the

barbels were washed in six changes of PBST (15 min each),

followed by a 2-hour light-protected incubation at room

temperature with a corresponding fluorescent secondary antibody

(rabbit anti-mouse Cy3 or goat anti-rabbit Cy3; Jackson Labs)

diluted 1:200 in PBST+1% goat serum. After six more changes of

PBST (15 min. each), the tissues were mounted in a 50:50 solution

of glycerol:PBST and stored in the dark at 4uC until imaging.

Double-labeling of nerves and taste buds in the same specimen was

accomplished by first applying the anti-calretinin and detecting it

with red, followed by an overnight wash, and then applying the

anti-acetylated tubulin and detecting it with green (e.g., goat anti-

mouse FITC). If desired, DAPI was added to the mounting

medium as a counterstain (final concentration = 0.0025 mg/mL).

Brightfield and fluorescent images were captured on a Zeiss

Axioscope and/or a Zeiss 510 META laser scanning confocal at

10–256magnification.

To confirm that the staining patterns seen in whole-mounts of

early barbels were valid, and to assure adequate penetration of

antibodies into more mature barbel tissues, we repeated our

immunostaining protocols on paraffin sections. Sections were
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prepared as above, dewaxed, rehydrated to PBST and processed

without digestion using the same immunohistochemical solutions

as described. After the final washes, the slides were coverslipped in

50% glycerol/PBS + DAPI and stored in the dark until imaging.

Live Imaging of the Barbel Circulation
We crossed several pairs of (Tg(fli1a:EGFP)) transgenic parents

and screened the progeny at 3–4 dpf for strong GFP expression in

the trunk and tail vasculature. Selected larvae were then raised to

maturity (3–6 months). Most of the selected fish were used for the

visualization experiments; others were set aside as founders for the

next generation, with the goal of establishing a line with

consistently high GFP expression in adult maxillary barbel

endothelial cells.

For live imaging, each fish was deeply anaesthetized with

buffered 0.015% Tricaine (MS-222, Sigma Chemical, pH 7.0) in

system water and then placed right side up on a microscope slide.

Two pieces of cellulose sponge glued to the slide held the midbody

of the fish in gentle compression; the sponges were saturated with

anesthetic solution and periodically rewetted throughout the

procedure. The maxillary barbel was gently retracted from the

lower (left) side of the head and extended over the glass surface. A

drop of anesthetic water was placed on top of the barbel to keep it

hydrated, and the barbel was brought into focus on the stage of a

compound fluorescent microscope. Short video clips (10–30 sec-

onds) of the barbel were recorded with differential interference

contrast (for erythrocyte flow) and/or UV illumination (for the

endothelially-expressed fli1a:EGFP marker). After 2–5 minutes, the

fish was released to recover in system water. Video files were

exported into Apple Quicktime Movie format and adjusted for

brightness and contrast.

Barbel Regeneration Experiments
To document the regeneration of barbel tissue, we surgically

removed the maxillary barbel and observed the progress of the

regenerates at various intervals. Our description is based on more

than 750 repetitions of this procedure, each of which removed

more than 85% of barbel tissue on the operated side. To minimize

genetic variation, most of the fish in this part of the study were the

offspring of random incrosses from 10–12 wild type AB parents.

To control for the age and condition of the regenerating animals,

most of the fish were raised at controlled densities (1 adult fish/

200 mL water) on a standard lab diet and operated on between 3–

6 months post fertilization. Males and females were reared in

communal tanks, but never removed for crossing. The senescent

fish (.2 yrs old) were adults from the same inbred line, but of

different parents; their rearing densities and reproductive histories

were unknown.

A video tutorial on maxillary barbel surgery and specimen

collection is available at [59]. On the day of surgery, individual fish

were lightly anesthetized in system water containing 0.015%

buffered Tricaine. Each animal was transferred left lateral side up

to a wet paper towel in a shallow Petri dish. Under magnification,

a sterile fine forceps was used to elevate the left maxillary barbel,

grasping it just distal to the posterior margin of the maxilla. A fine,

sterile iris scissors was then inserted immediately proximal to the

forceps to make a single cut roughly perpendicular to the barbel

shaft. The right maxillary barbel was left unaltered as a control.

After 2–5 minutes of recovery in fresh system water, fish were held

overnight in an anti-infection tank containing 500 mL of system

water plus one drop of methylene blue (Drs. Foster & Smith). The

following morning, fish were returned to the rearing system. There

were no complications and no fatalities. Tissues were collected for

analysis either immediately after the surgery (0 hours post

surgery = 0 hps) or at 1, 3, 6 or 24 hps. Later stages were

collected at 3, 7, 14, 21 and 28 days post surgery (dps). Some fish

were allowed to regenerate for even longer intervals, from 3–6

months. For regeneration experiments following the vasculature

we used Tg(fli1a:EGFP) fish, at least 20 per time point, and

collected the regenerates at 0, 1, 3, 7 and 14 dps.

Scanning Electron Microscopy
Barbel tissues were fixed in 2.5% glutaraldehyde in 0.1 M

sodium cacodylate buffer (Electron Microscopy Sciences, pH 7.4)

at 4uC overnight. After 3 10-minute rinses in buffer, some

specimens were then postfixed for 1 hour in 0.1 M sodium

cacodylate containing 1% osmium tetroxide; others were exposed

to buffer only. All specimens were then gradually dehydrated to

70% ethanol and stored at 4uC for several weeks. The day before

imaging, the tissues were immersed in 80%, 90%, and 100%

ethanol for 1 hour each, followed by 100% electron-microscopy

grade ethanol overnight. On the day of imaging, specimens were

either critical-point dried in liquid CO2 or air-dried on a paper

towel. Once dry, all were mounted on stubs and sputter coated

with gold. Images were obtained on the AMRAY 1810 scanning

electron microscope at the Field Museum of Natural History in

Chicago. Although all methods of tissue preparation produced

acceptable results, postfixation in osmium followed by critical-

point drying gave the best surface detail with the fewest artifacts.

Linear Measurements of Developing and Regenerating
Maxillary Barbels

For the developmental growth curve (Fig. 1B), maxillary

barbels still attached to their maxillae were dissected from a series

of 135 wild type zebrafish that had been previously measured for

standard length (SL). From 48 specimens we collected both

maxillary barbels and from 87 specimens we collected only the left

barbel, for a total of 183 barbels measured. Each barbel was

photographed next to a calibration scale in a Petri dish of buffered

saline. Using the segmented line tool in ImageJ (http://rsbweb.nih.

gov/ij/), we measured barbel length along the midline of the

structure from the proximal end of the central rod to the distal tip

of the barbel epithelium. Each barbel was graphed as a single data

point.

For the measurement of regenerates and controls, matched

pairs of maxillary barbels were rinsed in PBS and embedded in 2%

DNA grade agarose/distilled water using a standard gel

electrophoresis rig as an embedding mold [59]. Small-toothed

combs were used to make shallow rectangular wells in the agarose.

Under magnification, each pair of barbels was inserted into an

empty well. The barbels were oriented parallel to each other with

their proximal ends aligned. The moist agarose held the tissue in

place by surface tension. After tissue positioning, excess fluid was

removed from the well with a fine pipette tip or laboratory wipe.

Fresh warm agarose was used to fill the well. A uniquely numbered

paper label was inserted beside each well and covered with more

agarose; for image calibration, a small plastic millimeter scale was

embedded in the bottom of an empty well.

Once solidified, the gel slabs were wrapped in paper towels

soaked in 16PBS and stored in sealed plastic bags at 4uC until

analyzed. Each pair of agar-embedded barbels was individually

photographed on the stage of a dissecting microscope. The

embedded calibration scale was photographed at the same

magnification. Barbel lengths were measured in ImageJ using

the segmented line tool to place points along the midline of the

structure. For each pair of barbels, three measurements were

taken: 1) total length (TL), from the proximal end of the central

rod to the distal tip of the barbel epithelium (on control barbels), 2)
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stump length (SL), the distance from the proximal end of the

central rod to the plane of section (on regenerating barbels only)

and 3) post-surgical length (PSL), from the plane of section to the

distal tip of the barbel epithelium (on regenerating barbels only).

These measurements are diagrammed in Fig. 11.

To quantify the regenerative growth of the operated side, we

made the simplifying assumption that the paired maxillary barbels

were originally of the same total length. We further assumed, on

the regenerating side, that all regrowth occurred distal to the

amputation plane. Finally, we took into account the level of this

plane, which varied, being slightly closer to or farther from the

barbel base. Our calculation was thus (post-surgical length of the

regenerate/(total length of the control - stump length of the

regenerate)) = (PSL/(TL-SL)) = % length regrown. Thus, if the

total length of the control barbel were 10 units and the

regenerating barbel had been cut 1 unit from its base, we assumed

that this regenerate had the potential to grow 9 units more,

repairing 100% of the missing distance. If the total length of the

control barbel were 10 units and the regenerating barbel had been

cut 2 units from its base, this regenerate had the potential to grow

8 more units, also 100% of the missing distance. Calculations were

performed in Microsoft Excel and exported to GraphPad Prism

for graphing and statistical analysis.

Supporting Information

Figure S1 Abnormal regrowth of maxillary barbel nerve tracts

A) Whole-mount immunohistochemistry of a regenerated barbel (7

dps). Nerves = white (acetylated tubulin). The red star indicates the

amputation plane. Proximal to this level (1), there are two major

nerves tracts, dorsal and ventral. Distal to this level (2), there is

only one. dn = dorsal nerves; vn = ventral nerves. B) Section of the

specimen at level 2, showing all nerve tracts displaced ventrally

(vn).

Found at: doi:10.1371/journal.pone.0008737.s001 (5.49 MB EPS)

Movie S1 Blood flow in the shaft of a normal adult maxillary

barbel (fli1a:EGFP transgenic line). The base (proximal end) of the

barbel is to the left.

Found at: doi:10.1371/journal.pone.0008737.s002 (1.71 MB

MOV)

Movie S2 Blood flow in the tip of a normal adult zebrafish

maxillary barbel (fli1a:EGFP transgenic line).

Found at: doi:10.1371/journal.pone.0008737.s003 (2.56 MB

MOV)

Movie S3 Fluorescent endothelial cells in the shaft of a normal

adult zebrafish maxillary barbel (fli1a:EGFP transgenic line). The

dorsal endothelial vessel that lacks blood flow (see Movie S1) is a

putative lymphatic. The base (proximal end) of the barbel is to the

left.

Found at: doi:10.1371/journal.pone.0008737.s004 (2.39 MB

MOV)

Movie S4 Fluorescent endothelial cells in the tip of a normal

adult zebrafish maxillary barbel (fli1a:EGFP transgenic line). The

narrow dorsal vessel that lacks blood flow (see Movie S2) is a

putative lymphatic.

Found at: doi:10.1371/journal.pone.0008737.s005 (2.27 MB

MOV)
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