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Abstract

Modern phylodynamic methods interpret an inferred phylogenetic tree as a partial transmission chain providing infor-
mation about the dynamic process of transmission and removal (where removal may be due to recovery, death, or
behavior change). Birth–death and coalescent processes have been introduced to model the stochastic dynamics of
epidemic spread under common epidemiological models such as the SIS and SIR models and are successfully used to infer
phylogenetic trees together with transmission (birth) and removal (death) rates. These methods either integrate ana-
lytically over past incidence and prevalence to infer rate parameters, and thus cannot explicitly infer past incidence or
prevalence, or allow such inference only in the coalescent limit of large population size. Here, we introduce a particle
filtering framework to explicitly infer prevalence and incidence trajectories along with phylogenies and epidemiological
model parameters from genomic sequences and case count data in a manner consistent with the underlying birth–death
model. After demonstrating the accuracy of this method on simulated data, we use it to assess the prevalence through
time of the early 2014 Ebola outbreak in Sierra Leone.
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Introduction
A primary goal of infectious disease epidemiology is to un-
derstand epidemic dynamics which are most fully described
by the prevalence and incidence of cases through time. Yet
most epidemics are only partially observed so their dynamics
need to be inferred using statistical methods on incomplete
data that can come from a wide variety of sources and over a
wide range of scales. A key tool for summarizing and
understanding epidemic dynamics are compartmental
models—such as the SIR model (Kermack and McKendrick
1927)—which partition the hosts at any time into compart-
ments (e.g., susceptible, infectious, or removed) and describe
how the counts in the compartments change. By estimating
the parameters of a compartmental model, we can calculate
fundamental quantities like the basic reproductive number,
R0, or simulate prevalence and incidence curves to approxi-
mate the true epidemic. However, the reliability of these es-
timated quantities heavily depends on the adequacy of the
model used.

In recent years, several statistical methods have been de-
veloped for epidemiological inference from genomic data.
These methods lie at the intersection of statistical phyloge-
netics and epidemiology and exploit the rapid evolution of
many pathogens that occurs on the same time-scale as their
epidemiological spread. In these cases, pathogens are said to
be measurably evolving (Drummond et al. 2003) and the use
of phylogenetics in this context is termed phylodynamics
(Grenfell et al. 2004).

Early phylodynamic methods used ad hoc methods to in-
fer epidemiological parameters, incidence, and prevalence.
The “skyline plot” (Pybus et al. 2000), based on the mathe-
matical relationship between the effective population size
and the time between coalescent events in phylogenetic trees
(Kingman 1982), was first used to produce nonparametric
estimates of HIV prevalence (Pybus et al. 2000). Later, in
the context of Hepatitis C virus, skyline plots were fitted to
a parametric epidemiological model to estimate the basic
reproduction rate, R0 (Pybus et al. 2001). A subsequent
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approach combined the estimation of the viral phylogeny
and the effective viral population size through time into a
joint Bayesian method known as the Bayesian skyline plot
(Drummond et al. 2005), but this still lacked an explicit model
of the epidemiological process. Another variant of the skyline
plot based on the birth–death process (Stadler 2010) allowed
for piecewise-constant variation in the birth and death rates
(Stadler et al. 2013) from which R0 could be derived. An im-
portant limitation of all of these approaches is that they either
do not directly integrate epidemiological modeling into the
phylogenetic inference method or use piecewise-constant
approximations to changing incidence and prevalence
through time.

There have recently been three approaches to incorporate
compartmental models into phylodynamic inference. First,
Volz et al. (Volz et al. 2009; Volz 2012) showed how to derive
prior probability distributions for viral gene trees in the coa-
lescent limit from arbitrary birth–death processes. This
method gives a theoretical basis for joint Bayesian inference
of epidemic model parameters, prevalence curves, and phy-
logenetic trees. Inference of model parameters and prevalence
curves has been performed using this theory (Rasmussen et al.
2011, 2014; Volz and Siveroni 2018). The coalescent basis of
this method requires epidemic curves to either be
deterministic or be stochastic as long as the epidemic events
are statistically independent from the events that make up
the sampled epidemic transmission tree (Rasmussen et al.
2011). Either assumption is justified in the case of large pop-
ulation size (prevalence). But when prevalence is low, the
coalescent method is known to lead to biased estimates of
the phylogenetic tree and the epidemiological parameters
(Boskova et al. 2014; Stadler et al. 2015). Furthermore, large
sample fractions may lead to violation of statistical indepen-
dence assumption, as in this case the majority of epidemic
events are present on the sampled phylogeny.

Second, Kühnert et al. (2014) used a parametric compart-
mental model—specifically, a stochastic SIR model—to pro-
duce the piecewise-constant rates of the birth–death skyline
plot. Like the coalescent methods of Volz et al. (Volz et al.
2009; Volz 2012), this enables joint inference of epidemiolog-
ical parameters, epidemic curves, and phylogeny which can
be performed using the software package, BDSIR. The sto-
chastic formulation of the epidemiological process does not
rest on the assumption of large population sizes but, like the
coalescent methods, the tree events and the epidemic events
are assumed to be statistically independent.

Third, Leventhal et al. (2014) presented the first inference
approach to employ an approximation-free computation of
the phylogenetic tree probability under a stochastic epidemi-
ological model. The method involves a tailored numerical
algorithm to integrate the master equations of a stochastic
epidemiological process that is conditioned on the phyloge-
netic tree. Although this approach can be extended to full
joint inference of epidemic model parameters and the phy-
logeny, the available implementation assumes a known phy-
logeny and integrates using differential equations over all
possible prevalence curves to infer epidemic model
parameters.

In this article, we introduce a new method that uses the
Particle Marginal Metropolis-Hastings (PMMH) algorithm
(Andrieu et al. 2010) to jointly infer prevalence and incidence
curves, phylogenetic trees, and epidemiological parameters
under stochastic epidemiological models. Our approach
addresses several of the shortcomings of previous methods:
1) It accounts for the dependence of epidemic and tree even-
ts, 2) it incorporates stochastic models of epidemic dynamics,
3) it includes “sampled ancestors,” and 4) it provides a natural
route to the inclusion of additional (nongenetic) incidence
data in full joint phylodynamic analyses. The sampled ances-
tors (Gavryushkina et al. 2014) mentioned in (3) are samples
which appear in the phylogenetic tree as direct ancestors to
other samples, meaning a patient transmitted after the time
of sampling and one or more patients in the downstream
transmission chain were also sampled.

Although particle filtering approaches have been previ-
ously applied to phylodynamic inference (Rasmussen et al.
2011, 2014; Li et al. 2017; Smith et al. 2017), our application is
distinct. In the case of Rasmussen et al. (2011), this approach
has only been used in the diffusion limit where the discrete
nature of the compartment occupancies is ignored. This as-
sumption was relaxed in Rasmussen et al. (2014), however the
tree density was still computed using a coalescent approxi-
mation and inference was conditioned on a known geneal-
ogy. Similarly, Li et al. (2017) employed particle filtering to
estimate the effect of nongeometric distributions of second-
ary infection counts on the estimation of reproductive num-
ber under a coalescent assumption. In contrast, our particle
filter is used to compute the exact probability of a transmis-
sion tree under the full stochastic discrete compartmental
model and used within a joint inference framework. This
distinction is especially important near the start of epidemics
where prevalence is low and diffusion or coalescent limits do
not hold (Stadler et al. 2015). In the case of Smith et al. (2017),
particle filtering is applied to individual-based epidemic mod-
els. Such models offer greater flexibility than the
compartment-based models we use here at the expense of
greater computational complexity and a correspondingly
lower limit on the number of samples that can be realistically
analyzed.

Note that in this article we use prevalence to refer to the
absolute number of infectious individuals, as this connects
concretely to the discrete population models we employ. The
proportion (rather than absolute number) of infected indi-
viduals can also be easily derived using the methods we de-
scribe, as we will demonstrate.

New Approaches
In this section, we derive a flexible and exact inference
method for unstructured stochastic compartmental models.

Stochastic Compartmental Epidemic Models
Compartmental models are the centerpiece of epidemiolog-
ical modeling. They partition individuals in a population into
compartments according to their infection status and de-
scribe how they transition between the compartments. For
example, in an SIS model, individuals are either susceptible (S)
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or infectious (I). Susceptible individuals move to the infec-
tious compartment upon infection, and infectious individuals
move back to the susceptible compartment upon recovery.
The SIR is similar to the SIS model, except that infectious
individuals do not move back to the susceptible
compartment but are removed (R) meaning that these indi-
viduals cannot move back to the infectious compartment.
Removal may be due to, for example, recovery with immu-
nity, or death. Let S½t�; I½t�, and R½t� (or the relevant set for a
given model) represent the number of individuals in the
respective compartments at time t and define A½t� ¼ ðS½t�;
I½t�; R½t�Þ to be the state of the epidemic at time t.

In this article, we consider unstructured compartmental
models: models in which there is only one class of infected
individual, that is, those individuals in the single infectious
compartment. This rules out 1) models that include an ex-
posed compartment, often called E, where an individual can
be infected but not yet infectious (such as SEIR and SEIS) and
2) structuring of the infectious compartment via space, age,
or other factors. The reason for this restriction is that lineages
of the transmission tree we discuss below would, under a
structured model, require labeling to indicate the compart-
ment each part of the lineage occupies thereby greatly in-
creasing the difficulty of the inference problem.

The overall epidemiological model is defined by the set of
compartments, the set of epidemic event types,Q, and their
corresponding rates, faq : q 2 Qg. The transitions of indi-
viduals between compartments via the epidemic events can
be described by a continuous-time Markov process on the
state vector A with master equation:

d

dt
fðA; tÞ ¼

X
q2Q

faqðA� vqÞfðA� vq; tÞ � aqðAÞfðA; tÞg:

(1)

Here, fðA; tÞ � PðA½t� ¼ AjA½0�Þ is the probability
that the system state A½t� at time t has the particular value
A, aqðAÞ is the overall rate at which the epidemiological event
of type q occurs when the epidemic is in state A, and vq is the
effect of event type q on the state: A! Aþ vq.

This formulation encompasses a broad range of models.
For instance, a linear birth–death model consists of just one
compartment: A½t� ¼ I½t�, the number of infectious individ-
uals at time t. Possible events are infections and removals, so
QBD ¼ fInfection; Removalg. The infection event produces
a single new infection as described by vInf ¼ þ1, and the
overall infection rate is aInfðA½t�Þ ¼ bI½t�. Here, b is a con-
stant describing the rate at which infectious individuals pro-
duce subsequent infected individuals. Similarly, the removal
event removes an individual from the infectious compart-
ment, vRem ¼ �1, at overall removal rate
aRemðA½t�Þ ¼ cI½t�. The SIS model, A½t� ¼ ðS½t�; I½t�Þ, has
the same event type set as the linear birth–death process,
QSIS ¼ QBD ¼ fInfection; Removalg, but different
rate functions and event effects. An infection has effect vector
vInf ¼ ð�1; 1Þ and occurs at rate aInfðA½t�Þ ¼ bS½t�I½t�,
whereas a removal event has an effect vector vRem ¼ ð1;�1Þ
and occurs at rate aRemðA½t�Þ ¼ cI½t�. The SIR model,

A½t� ¼ ðS½t�; I½t�; R½t�Þ, is similar to the SIS model, only with
effect vectors vInf ¼ ð�1; 1; 0Þ and vRem ¼ ð0;�1; 1Þ. For
brevity, we combine the set of constants into a single variable
g; gBD ¼ gSIS ¼ gSIR ¼ ðb; cÞ.

A specific realization of an epidemic forward in time—
an epidemic trajectory—up to some predetermined max-
imum time T can be generated as follows: The epidemic
starts at time t0 ¼ 0 in stateA½0�. Typically, I½0� ¼ 1 for the
infectious compartment, but other choices are possible.
This initial state is modified by a series of events with types
e1; e2; . . . ; es at times t1; t2; . . . ; ts, where s is a random
variable indicating the number of events which occurred
before T. The number of the individuals in each compart-
ment after the ith event has occurred at time ti is denoted
byAi ¼ A½ti�. The population trajectory of the epidemic is

then just given by
�
ðt0;A0Þ; ðt1;A1Þ; . . . ; ðts;AsÞ

�
.

Figure 1a shows an example of the infectious compart-
ment occupancy over time. We can then equivalently ex-
pand Ai as a sum of effect vectors:

Ai ¼ A0 þ ve1
þ � � � þ vei

¼ A0 þ
Xi

k¼1

vek

 !
:

An epidemiological trajectory E is thus well defined by the
initial state, A0, the vector of transition events
e ¼ ðe1; e2; . . . ; esÞ, and the corresponding event times,
t ¼ ðt1; t2; . . . ; tsÞ,

E ¼ fA0; E ¼ ðe; tÞg: (2)

As for any time-homogeneous discrete state continuous-time
Markov process, the probability density of a particular trajec-
tory is a product of exponentially distributed waiting times
between the s events with factors representing the probability
density of each event. That is,

PðEjg;A0; TÞ ¼
Ys

i¼1

exp f�ai�1ðti � ti�1Þgaei
ðAi�1Þ

� exp f�asðT � tsÞg;
(3)

where ai ¼
P

q2QaqðAiÞ is the sum of the rates of all pos-
sible transitions in the interval ðti; tiþ1Þ. For example, under
the SIS model, new infections happen at a rate bSiIi and
infected individuals are removed at a rate cIi. By defining I Inf

� I ¼ f1; . . . ; sg to be the indices of infection events, and
IRem � I to be the indices of the removal events, we can
write the probability density for an SIS trajectory as

PSISðEjg;A0; TÞ¼
Y
i2I

exp f�ðbSi�1Ii�1 þ cIi�1Þðti � ti�1ÞgY
i2I Inf

bSi�1Ii�1

Y
i2IRem

cIi�1

� exp f�ðbSsIs þ cIsÞðT � tsÞg:

(4)

Modeling the Sampling Process
Sampling of individuals can be described by expanding Q to
include two additional event types, sampling with and
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without removal. Although the particular form of the ef-
fect vectors depends on the dimension of the compart-
mental model, their effect remains the same: vSampR

removes an individual from the infectious class, whereas
vSampNR leaves A½t� unchanged. We explicitly model
sampling by augmenting the stochastic process with sam-
pling events and times, and their corresponding rates:
aSampRðA½t�Þ ¼ rwIðtÞ and aSampNRðA½t�Þ ¼ ð1� rÞwIðtÞ,
where w is the per-individual sampling rate parameter
and r is the probability of removal following sampling.
Additionally, any remaining infected individuals at time
T, that is, the end of the process, are sampled with prob-
ability q. For convenience, we group all parameters re-
lated to sampling together in the vector r ¼ ðw; r; qÞ.
We then define PðE;mjg; r;A0; TÞ to represent the prob-
ability density of this combined process producing a tra-
jectory E terminated by m contemporaneous samples at
time T. For example, in the case of the SIS model, this
probability density is

PSISðE;mjg; r;A0; TÞ ¼Y
i2I

exp f�ðbSi�1Ii�1 þ ðcþ wÞIi�1Þðti � ti�1Þg

Y
i2I Inf

bSi�1Ii�1

Y
i2IRem

cIi�1

Y
i2I SampR

rwIi�1

Y
i2I SampNR

ð1� rÞwIi�1

� exp f�ðbSsIs þ ðcþ wÞIsÞðT � tsÞg

� Is
m

� �
qmð1� qÞðIs�mÞ:

(5)

From Epidemiological Trajectories to
Transmission Trees
By tracking the identity of who infected whom along an ep-
idemiological trajectory, we obtain the transmission tree of
the epidemic (full tree in fig. 1b). All events ei in the trajectory
(fig. 1a) correspond to nodes in the full tree. The number of
extant lineages in the full tree immediately following the event
time ti is Ii.

The sampled phylogeny, T , is the subset of the full tree
where only the subtree ancestral to sampling events is
retained (red subtree in fig. 1b). We use ki to represent the
number of lineages present in the sampled phylogeny imme-
diately following time ti, so ki � Ii. The number of lineages
remaining in the sampled tree at time T is ks ¼ m.

Because of its relation to the full tree, each node in the
sampled phylogeny must correspond to a compatible event
in the trajectory for the probability of the sampled phylogeny
given the trajectory PðT jE;mÞ to be nonzero. Furthermore,
this distribution is independent of the particular epidemio-
logical model. In particular, conditional on the trajectory, the
sampled phylogeny can be considered a result of a discrete-
time Markov chain proceeding from the most recent sample
to the start of the epidemic process. This can be illustrated by
defining T i to be the portion of the sampled phylogeny T on
the interval ðti; tiþ1�, that is, including the tree node (if any)
which corresponds to the event eiþ1. We assume that lineages
in the tree T i are labeled, such that the correspondence
between lineages in T i and T iþ1 is unambiguous.

For example, an infection event, ei ¼ Infection, in the tra-
jectory only produces a branching event in the sampled tree
when both the infector and the infected correspond to line-
ages in the sampled phylogeny, so

PðT i�1jT i; Ii; ei ¼ InfectionÞ ¼

1

Ii
2

� � for ki ¼ kiþ1 � 1;

1�

ki

2

� �
Ii
2

� � for ki ¼ kiþ1;

0 otherwise;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where Ii is the total number of infected individuals (including

the newly infected individual) and thus Ii
2

� �
is the total

FIG. 1. The true epidemiological trajectory can be inferred from the
reconstructed phylogeny. (a) The trajectory E of an epidemic out-
break consists of a sequence of events (infection, sampling, and re-
covery) ei at times ti that result in a corresponding sequence of
compartment occupancies such as the infectious compartment oc-
cupancies Ii. (b) The full transmission tree contains information on
when infections happened and between which lineages (filled
squares) and when individuals were removed (filled circles). The sam-
pled transmission tree T represents a subset of the full tree (red). The
rest of the transmission tree is unobserved (blue). (c) The time or-
dered observations Oj consist of the events oj seen on the tree (in-
fection, sampling with removal, and sampling without removal) at
times sj, combined with the number of lineages on the sampled tree
in the intervals immediately before each of these events. (d) There is
an ensemble of trajectoriesEð1Þ; Eð2Þ; . . . that are compatible with the
sampled transmission tree. Note that the sampled transmission tree
contains only a subset of the events represented by the full tree and
true trajectory E , and each of these “observed” events must be pre-
sent in every compatible trajectory.
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number of pairs of lineages after the infection event, each of
which could have been the pair of lineages involved in the
event.

Unsampled removal events do not themselves correspond
to any nodes in sampled phylogenies, so if ei ¼ Removal we
have

PðT i�1jT i; Ii; ei ¼ RemovalÞ ¼
1 for ki�1 ¼ ki;

0 otherwise:

(

On the other hand, any sampling with removal event
corresponds to a leaf node at the time of the event in the
sampled phylogeny with probability one:

PðT i�1jT i; Ii; ei ¼ SampRÞ ¼
1 for ki�1 ¼ ki þ 1;

0 otherwise:

(

In the case of samples that do not coincide with removal of
the sampled lineage, there is ambiguity regarding whether the
event is represented by an external leaf node or an internal
sampled ancestor node in the sampled phylogeny, as this
depends on whether or not any descendants of the sample
are subsequently sampled:

PðT i�1jT i; Ii; ei ¼ SampNRÞ ¼

1

Ii
for ki�1 ¼ ki;

1� ki

Ii
for ki�1 ¼ ki þ 1;

0 otherwise:

8>>>>><
>>>>>:

Combining the probabilities above allows us to calculate
the full probability of the sampled phylogeny given a com-
plete compatible trajectory as

PðT jE;mÞ ¼ PðT sjmÞ
Ys

i¼1

PðT i�1jT i; ei; IiÞ

¼ dks;m

Y
i2I Inf

�
dki�1;ki

1� kiðki � 1Þ
IiðIi � 1Þ

� �

þ dki�1;ki�1
2

IiðIi � 1Þ

�

�
Y

i2I SampNR

dki�1;ki

1

Ii
þ dki�1;kiþ1 1� ki

Ii

� �� �
;

(6)

where d is the Kronecker delta, and PðT sjmÞ ¼ 1 pro-
vided ks ¼ m.

Accounting for Unsequenced Samples
We now consider the possibility that samples generated by
the birth–death-sampling process may be absent from the
sampled phylogeny. These samples, which we refer to here as
unsequenced samples, arise naturally in epidemiological set-
tings where a large number of pathogen samples may be
collected at known times but only a subset are subsequently
sequenced. Similarly, doctors’ records can provide evidence

that individuals were carrying a pathogen at a particular time,
but without sequencing there is no information about where
exactly the pathogen lineages ancestral to these samples at-
tach to a sample phylogeny.

It is possible to directly include unsequenced samples in
the phylogeny but their relationship to the rest of the phy-
logeny would not be informed by data and they would con-
tribute nothing to the inference of relationships between the
sequenced samples while increasing the complexity of the
overall inference problem.

Instead, we assume that the set of all sampling event in-
dices I SampNR [ ISampR is arbitrarily partitioned into subsets
I Seq and IUnseq containing indices of sequenced and unse-
quenced sampling events, respectively. (By allowing this par-
titioning to be arbitrary, we are choosing not to explicitly
model the decision to sequence a given sample, but to instead
condition on this decision.) Since this classification then has
no effect on the probability density of the stochastic trajec-
tory, we simply exclude the unsequenced sample indices from
the final product in the tree probability given by equation (6).
This gives the following joint probability for the time tree T
and the unsequenced sample times S:

PðT ;SjE;m; I SeqÞ ¼ dks;m

Y
i2I Inf

�
dki�1;ki

1� kiðki � 1Þ
IiðIi � 1Þ

� �

þ dki�1;ki�1
2

IiðIi � 1Þ

�

�
Y

i2I SampNR\I Seq

dki�1;ki

1

Ii
þ dki�1;kiþ1 1� ki

Ii

� �� �
: (7)

Again, we emphasize that this expression assumes each
event in T and S has a corresponding event in the trajectory
E and that otherwise the joint probability is zero.

Bayesian Inference
One of our goals is to perform asymptotically exact Bayesian
inference of both the prevalence trajectory and the epidemi-
ological parameters using a set of pathogen sample times, a
subset for which genetic sequence data are available, collected
throughout an epidemic. To this end, for a given pathogen
sequence alignment (with a sampling time associated with
each sequence) D and set of times of unsequenced samplesS,
we use Bayes’ rule to express the joint posterior distribution
for the model parameters and the epidemic trajectories in
terms of the conditional distributions composing the full
model:

PðE; T ; l; g; r; TjD;SÞ ¼ 1

PðD;SÞ PðDjT ;lÞ

� PðT ;SjE;m; I SeqÞ

� PðE;mjA0; g; r; TÞPðA0; l; g; r; TÞ:
(8)

Here, PðD;SÞ can be treated as a normalization constant
and PðDjT ; lÞ is the probability of D evolving down the
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sampled transmission tree T under a substitution model
parameterized by l, also known as the phylogenetic likelihood.
PðA0; l; g; r; TÞ represents the joint prior probability distri-
bution for the model parameters.

Several approaches to characterizing this posterior for par-
ticular models already exist in the literature, all of which in-
volve using Markov chain Monte Carlo (MCMC) to sample
(or maximum likelihood to optimize) a marginalized and/or
approximate form of equation (8). For instance, Stadler et al.
(2012) analytically marginalize over the trajectory subspace in
the case of the linear birth–death model and use MCMC to
sample from ðT ; l; g; r; TÞ. Similarly, Leventhal et al. (2014)
express the marginalization of equation (8) over trajectories
for the nonlinear stochastic SIS model as the solution to a
master equation which is then integrated numerically with
parameter inferences being drawn by applying MCMC or
maximum likelihood.

Kühnert et al. (2014) provide an approximation to the
posterior for discretized trajectories under the stochastic
SIR model and use MCMC to sample ðE; T ;l; g; r; TÞ.
Volz et al. (2009) and Volz (2012) present an approximation
to this posterior under the assumption that the relative
amplitude of the stochastic noise in E is negligible and that
PðE;mjg; r;A0;TÞ therefore collapses to a point mass cen-
tered on the approximate deterministic solution of the model.

In contrast to these methods, we use the PMMH algorithm
(Andrieu et al. 2010). This has previously been applied in a
phylodynamic context by Rasmussen et al. (2011, 2014) using
a coalescent approximation to the distribution of sampled
phylogenies, but not to sample directly from the exact phy-
lodynamic posterior as we do in the algorithm described
below.

Particle Filtering Algorithm
We employ the PMMH algorithm described by Andrieu et al.
(2010). In the form presented here, it involves using a boot-
strap particle filter to simulate trajectories E conditional on
both a sampled transmission tree T and the times of unse-
quenced samples S.

We call the union of the sampled phylogeny T and the
temporally distributed unsequenced samples S the observed
process,O, and use oj to represent the jth observation (either
a node of the sampled phylogeny or an unsequenced sample)
when ordered according to the observation times sj, as illus-
trated in figure 1c. The final (Nth) observation represents the
contemporaneous sampling of m lineages in the sampled
phylogeny, although it is possible for m to be zero.

We divide the time into intervals between observations.
The first of these intervals begins at time s0 ¼ t0 ¼ 0,
whereas the last ends at time T. We denote the portion of
the observed process within interval j using Oj, which is un-
derstood to include both the number of tree lineages extant
within the interval and the observation oj at end of the in-
terval. Similarly, we divide the full trajectory E into corre-
sponding partial trajectories E j which contain only the
trajectory events within each observation interval and define

E j
0 to be the partial trajectory excluding the event ej corre-

sponding to the observation oj.
The algorithm involves simulating an ensemble of M tra-

jectories or “particles” in each of the N intervals between s0

and sN ¼ T. The initial condition for each particle is sampled
from the ensemble of finishing states of particles simulated in
the previous interval, weighted according to the probability of
the observation event that divides the intervals.

The algorithm is as follows:

(1) Set the interval index j 1 and define x
ðaÞ
0 ¼ A0 to

be the starting state of particle a.
(2) For each a 2 ½1 . . . M�, use Gillespie’s stochastic simu-

lation algorithm (Gillespie 1976, 1977) or its asymptot-
ically exact equivalent (Gillespie 2001) to sample a

partial trajectory E0ðaÞj from the distribution:

PðE j
0jg;r; sj � sj�1; x

ðaÞ
j�1Þ; (9)

which is a solution to the master equation given in
equation (1) conditioned on the initial state xðaÞ and
the interval time sj � sj�1.

(3) Each sampled partial trajectory EðaÞj , which is defined
as the union of E0ðaÞj and the event corresponding to
the observation oj, is assigned a weight:

xðaÞj ¼ PðOjjEðaÞj ;m;I SeqÞaoj
ðyðaÞj Þ: (10)

The probability on the right-hand side is given by equa-
tion (7) but restricted to include only the epidemic
events within the interval and the observation event
oj. The factor aoj

ðyðaÞj Þ is the transition rate for the
epidemic event corresponding to oj given the final state
of E0ðaÞj , denoted here y

ðaÞ
j . (This factor ensures that the

particle trajectories are constrained to be consistent
with the observation event oj, as inconsistent trajecto-
ries will be assigned a weight of zero.)

(4) The mean of weights Xj ¼ ð
PM

a¼1 xðaÞj Þ=M is

recorded, and a new set of M trajectory states x
ð1Þ
j . . .

x
ðMÞ
j is sampled with replacement from the

weighted distribution of the final states of the partial
trajectories E j.

(5) If j < N, set j jþ 1 and go to step 2.
(6) Compute the product P̂ðT ;SjA0;

g; r; TÞ �
QM

j¼1 Xj which is, as highlighted below, an
estimate of the marginal density PðT ;SjA0; g; r; TÞ,
with the marginalization being over the epidemiolog-
ical trajectories. Also, sample a single final partial tra-
jectory Ê i from the final distribution of weighted
partial trajectories and follow the sequence of events
back through the observation intervals until t ¼ 0,
yielding a single sampled full trajectory Ê.

It can be shown (Del Moral 2004) that the value of P̂ðT ;
SjA0; g;r; TÞ is an unbiased and consistent estimate of the
marginal probability density for the sampled phylogeny and
unsequenced samples PðT ;SjA0; g; r; TÞ. (This probability
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density is sometimes called the phylodynamic likelihood, and
below we simply write “likelihood,” although the implicit clas-
sification of T as “data” should not be understood to mean
that phylogenies are physically observed.) As shown by
Andrieu et al. (2010), this implies that by using this estimate
in place of the terms PðT ;SjE;m; I SeqÞPðE;mjA0; g; r; TÞ
in the posterior given by equation (8), and using the resulting
expression as the target distribution for a MCMC algorithm,
we obtain an algorithm for sampling from the joint posterior
marginalized over the epidemic trajectories. Furthermore, by

recording the sampled trajectories Ê generated by the particle
filter alongside the parameter values and sampled phyloge-
nies visited by the MCMC procedure, the algorithm generates
samples from the full (unmarginalized) joint posterior.

The use of particle filtering to condition the epidemic tra-
jectories on the tree is potentially confusing, due to the (back-
ward-time) correlations between the observations that make
up the sampled phylogeny. Despite these correlations, the
PMMH algorithm remains applicable since the joint probability
of the observations and hidden state, PðT ;S; Ej A0; g; r; TÞ,
can be expressed in precisely the same form as the weighted
sequence of conditional probabilities generated by a standard
hidden Markov model. This is shown in the supplementary
text, Supplementary Material online, along with a simple dem-
onstration that the resulting algorithm does indeed produce
samples from the required marginal density of the observations
given the phylodynamic model parameters.

Results

Implementation and Validation
We have implemented the algorithm described above as a
BEAST 2 (Bouckaert et al. 2014) package. This allows the
algorithm to be used in conjunction with standard phyloge-
netic models such as those describing the nucleotide substi-
tution process as well as existing algorithms for performing
the MCMC sampling of the phylogenetic tree space. The
package is released under the GNU General Public License
and instructions for installing and using it can be found, along
with source code, at http://tgvaughan.github.io/EpiInf.

All of the BEAST 2 input files necessary to reproduce the
results described in this section, together with instructions on
how to use them, may be downloaded from

http://github.com/tgvaughan/ParticleFilterResults.

Direct Likelihood Comparison
We validated our algorithm and its implementation by com-
paring the likelihoods generated by the particle filter with
those computed analytically under the linear birth–death
model (Stadler 2010) and numerically under the nonlinear
stochastic SIS model (Leventhal et al. 2014). These compar-
isons were performed for a variety of parameter combinations
and in all cases yielded perfect agreement (fig. 2).

Comparison of Tree-Based and Incidence-Based Sampling
The joint tree and sample time prior defined in equation (7)
has the property that marginalizing over the time tree yields a
quantity which is independent of which samples are

sequenced and which samples are not. In other words, if
the sequence data from the sampled individuals provide no
information about the phylogenetic tree then the only infor-
mation we have are the sample times: our estimates of the
epidemiological model parameters should therefore not de-
pend on which samples were sequenced. This suggests the
following test for the consistency of the joint posterior:

(1) Fix a set of sampling times.
(2) Assign a fraction f of these times to be associated with

tree leaves (i.e., play the role of “sequenced” sample
times),

(3) Sample from the joint posterior defined in equation (8)
without sequence data (i.e., setting PðDjT ; lÞ to a
constant).

Provided the unsequenced sampling times are being han-
dled consistently by the sampler, the posteriors for model
parameters should be identical regardless of f.

We performed this test using a set of 83 sample times
simulated using a birth–death-sampling process and using
these times, via the procedure above, to produce the poste-
rior for the birth rate parameter b as a function of f. The lack
of variation in this posterior as with respect to f, shown in
figure 3, is strong evidence that our treatment of unse-
quenced samples is indeed consistent with our treatment
of sequenced samples.

Inference from Simulated Data
In order to assess the capability of the sampler to recover
prevalence trajectories, we simulated trajectories under each
of the three models supported by our implementation: linear
birth–death (b ¼ 1:2, c ¼ 0:1; w=ðwþ cÞ ¼ 0:5, T¼ 7.0),
stochastic SIS (b ¼ 0:02; c ¼ 1:0; w=ðwþ cÞ ¼ 0:1, T¼ 5,
S0 ¼ 199), and stochastic SIR
(b ¼ 0:2; c ¼ 1:0; w=ðwþ cÞ ¼ 0:1, T¼ 5, S0 ¼ 199). In
all cases, we fixed the removal probability r¼ 1, the
present-day sampling probability q¼ 0 and set I0 ¼ 1.
Sampled transmission trees were then simulated from each
of these trajectories, which were in turn used to simulate 2-kb
genetic sequence alignments under a simple Jukes–Cantor
model with a substitution rate of 5� 10�3 per site per
unit time. For each of these three alignments, we then used
our algorithm to sample from the joint posterior for the
transmission tree, epidemic trajectory, and the model param-
eters b, c, T, and (in the case of SIS and SIR) S0. (The remaining
parameters w, r, and w were fixed to the truth.) For the
continuous parameters, we employed improper priors PðbÞ
¼ 1=b; PðcÞ ¼ 1=c and PðTÞ ¼ 1=T. For the discrete S0

parameter, we used PðS0Þ ¼ Unifð0; 300Þ.
Figure 4 illustrates the agreement between the posterior

prevalence distributions obtained from each of these analyses
(red lines) and the true prevalence curves (black lines). Also
shown is the distribution of prevalence curves generated di-
rectly from the posterior samples of the model parameters
(blue lines). Prior to our PMMH algorithm, the blue lines were
the best estimates obtained for prevalence under compart-
mental models (unless coalescent approximations were
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appropriate in the particular application). As these blue tra-
jectories are not explicitly conditioned on the corresponding
sampled transmission trees however, there is a significantly
greater variance in their distribution.

Quantitative Validation of Trajectory Inference
Although agreement between simulated and subsequently
inferred trajectories is encouraging, we use a well-calibrated
approach (Dawid 1982) for a more robust quantitative vali-
dation of the inference algorithm. The steps of this approach
are as follows.

(1) Under each model (linear birth–death, SIS and SIR)
and a chosen set of parameters (table 1), we simulate
200 trajectories and sampled trees.

(2) A random DNA sequence is simulated down each
sampled tree, resulting in a unique simulated sequence
alignment.

(3) For each simulated sequence alignment, infer the cor-
responding trajectory conditional on the true model
parameters using our inference algorithm.

(4) We compute the proportion of analyses for which the
true prevalence at a particular time falls within the
100a% highest posterior density (HPD) interval of

the sampled posterior distribution for the prevalence
at this time. This is repeated for a range of times and a
values.

Figure 5 shows, for each model, the perfectly linear rela-
tionship between a and the proportion of analyses for which
the 100a% HPD includes the truth. This relationship provides
strong evidence that our implementation of the algorithm
correctly samples from the true distribution of epidemiolog-
ical trajectories.

Inference of Ebola Prevalence in Sierra Leone
In order to demonstrate the applicability of our method, we
analyzed 101 full Ebola virus (EBOV) genomes collected from
the Kailahun district in eastern Sierra Leone during the 2014
west-African epidemic (Gire et al. 2014; Bell et al. 2015; Carroll
et al. 2015; Park et al. 2015), as curated and aligned by Dudas
et al. (2017). These sequences were analyzed jointly with the
temporal distribution of unsequenced Kailahun cases (World
Health Organization 2016). To assess the degree to which the
inclusion of unsequenced data affected the inferred trajectory
distributions, we conducted a separate analysis based solely
on sequence data collected during the first 4 weeks. Later,
sequences were excluded from the latter analysis to avoid
introducing bias due to the sequencing fraction being skewed
toward earlier weeks (fig. 6f).

We assumed a standard neutral model of sequence evo-
lution allowing for distinct transition/transversion rates and
nonequilibrium base frequencies (Hasegawa et al. 1985), to-
gether with Gamma-distributed rate heterogeneity among
sites (Yang 1994). We further assumed a strict clock rate
whose value was jointly estimated using an informative prior
derived from a recent meta-analysis (Holmes et al. 2016).

We assumed a stochastic SIR epidemiological model in
which each sample (whether sequenced or unsequenced) is
assumed to be generated by a linear sampling process with
fixed rate w between the times of the most recent and earliest
samples. Importantly, although the temporal distribution of
sample collection times is determined by this model, the
choice of which samples to sequence is not. We feel that
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FIG. 2. Comparison between values of the phylodynamic likelihoods computed using the PMMH algorithm with those calculated using other
approaches: (a) likelihood of r under the linear birth–death model from PMMH compared with the analytical result (Stadler 2010) and (b)
likelihood of b under the stochastic SIS model from PMMH compared with a numerical result from ExpoTree (Leventhal et al. 2014).
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FIG. 3. Marginal posteriors for the infection rate as a function of the
fraction f of samples regarded as “sequenced” when no data besides
the sampling times are available. The invariance of this distribution
with respect to f shows that the treatment of unsequenced samples is
consistent with the treatment of sequenced samples.
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this is a sensible decision, given the nonlinear relationship
between the sequenced and unsequenced cases.

The total removal rate c was fixed at 25 removals per
infectious individual per year, corresponding to an expected
infectious period of 	15 days. Similarly, the removal proba-
bility at sampling r was fixed to 0, meaning that sampling was
not assumed to affect infectious potential. All other epidemi-
ological parameters were estimated from the data. The com-
plete list of prior distributions used for these analyses is
presented in the second column of table 2.

For the full analysis and the sequence-only analysis, a total
of 30 independent MCMC chains were run for 2� 107 steps
each and compared with assess convergence. The initial 10%
of each chain was removed to account for burn-in and the
remaining samples combined into two long chains (one for
each analysis type) from which the final results were derived.

The 95% HPD intervals for each of the estimated compart-
mental model parameters are presented in the right-most
columns of table 2. Interestingly, despite the broad uniform
prior, the initial size of the susceptible population is inferred
to be very low: on the order of one or two thousand individ-
uals. This is likely due to the effects of population structure,
with the fitted value representing the effective magnitude of
the susceptible population rather than a demographic count.
Additionally, we find that the overall rate of sampling is com-
parable to the removal rate c, suggesting a relatively high
sampling fraction w=ðwþ cÞ of 39–60% (95%HPD interval)
during the period that sampling was taking place, that is,
between the first and the last sample recorded for this region.

The posterior distributions for the absolute number of
infectious hosts, I(t), and effective reproduction number,
ReðtÞ ¼ bSðtÞ=c, trajectories are shown as the distributions
of red curves in figures 6a and b, respectively. The blue curves
shown alongside are trajectories simulated under the model

using the sampled epidemiological parameter values and not
explicitly conditioned on the observed sample data nor in-
ferred transmission trees, hence their broader variance.

Figure 6c shows the posterior for the prevalence in terms of
the number of infectious hosts per 105 initially susceptible
hosts in the population. Since the SIR model is a constant
population size model, this is also just the proportion of the
population at any time which is inferred to be infected.
Furthermore, since the initial number of susceptible hosts
S0 is jointly estimated, the shape of the estimated curve differs
subtly from the absolute infected host count trajectories
shown in figure 6a due to correlations between this shape
and the susceptible host count.

Figure 6d shows the posterior for the rate of incidence.
Specifically, it shows the inferred rate of new infections per
susceptible host per week, with time measured in weeks.

The comparison between analysis of the full data set and
the sequence-only analysis (fig. 6e) clearly displays the advan-
tage of including the additional unsequenced case count data.
In particular, it is clear that the unsequenced samples (fig. 6f)
provide a wealth of information regarding the peak preva-
lence of the epidemic, a value that is almost completely
unresolved in the sequence-only analysis.

Discussion
The primary strengths of the inference method and associ-
ated software presented here are their versatility and exact-
ness. The method jointly samples from the exact posterior of
transmission trees, epidemic trajectories, and model param-
eters under compartmental models without needing to make
assumptions about the size of the epidemic or the size of the
host population. (In contrast, coalescent methods are usually
only applicable when population sizes are large.) The current
implementation treats SI, SIS, and SIR epidemic models but,
with only minor modifications, it can be used under any
unstructured stochastic compartmental model whose dy-
namics can be described by equation (1).

There is also versatility in the type of data the method
accepts. Many phylodynamic methods have relied solely on
sequence data to inform their models which, while increas-
ingly available, is more costly and scarce than simple case

FIG. 4. Inference of prevalence dynamics from sequence data simulated under (a) linear birth–death, (b) stochastic SIS, and (c) stochastic SIR
model. Samples from the posterior of the prevalence trajectory are shown in red, whereas the black line represents the truth. The blue lines are
prevalence trajectories simulated from the posterior samples of the compartmental model parameters.

Table 1. Fixed Parameter Values Used for Well-Calibrated Trajectory
Inference Validation.

Model b c S0 w r q T

Linear birth–death 0.5 0.1 — 0.25 0.0 0.0 10.0
SIS 0.02 1.0 199 0.1 0.0 0.0 5.0
SIR 0.02 1.0 199 0.1 0.0 0.0 5.0
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reports. Our method can use cases reports and sequences
together. The benefits of including case reports (unsequenced
samples) to improving prevalence estimation are clearly
shown in the Ebola analysis where the time of the epidemic
peak is much more tightly estimated than when the sequen-
ces are analyzed alone. We also expect that including the case
reports could inform the dating of the tree in data sets where
the case reports are numerous and only a small number of
sequences are available.

The method described here is also applicable to the
field of macroevolution where past species richness, that
is, the number of species through time, is a quantity of
much interest. Estimates are typically obtained by using
sequences from extant species to estimate past specia-
tion and extinction rates which are then used to simu-
late unconditioned trajectories (Stadler and Bonhoeffer
2013). As is the case with epidemic trajectories, using our
particle filtering tool to fit conditioned trajectories
should improve these estimates and make quantifica-
tion of species richness more precise. Fossil occurrence
data have been shown to greatly improve macroevolu-
tionary estimates (Gavryushkina et al. 2017) and are
analogous to unsequenced samples, so can be directly
incorporated into analyses with our method.

The sampling model we use is relatively simple, with
infected samples uniformly taken at a constant rate through
the epidemic and the possibility of burst of sampling at the
end. This overly simple approach means that data needed to
be discarded in the Ebola analysis so as not to bias results. It is
feasible to extend the sampling model to more closely reflect
how the data is actually collected, for example, by modeling
changes in collection effort or having multiple bursts of in-
tense sampling and so avoid potential biases introduced by
the current model.

The software implementation of the method within the
Beast 2 framework means that the default is to estimate the
tree along with other parameters, and the full range of stan-
dard phylogenetic models can be used to model sequence
evolution along the tree.

The flexibility and exactness of the inference relies on sim-
ulation to compute Monte Carlo estimates of the probability
density of the transmission tree under the model and so
comes at a heavy computational cost. Although a single den-
sity estimate can be made very quickly, when it is run as part
of a larger MCMC analysis, estimates must be computed
many times for each MCMC step and for hundreds of mil-
lions of steps. The number of simulations run at each step is a
tunable parameter of PMMH and does not, in theory, alter
the accuracy of the result. But there is a trade-off in that
reducing the number of stochastic simulations that make
up a density estimate increases the variance of the estimate
with the result the Markov chain can become “stuck” after an
extreme estimate is made, and the mixing rate of the chain is
drastically reduced to the point that independent draws from
the target posterior are not being produced. There is potential
to parallelize the density estimate by running simulations in
parallel at each step though with overheads the benefit of this
may be marginal. Overall, joint analysis under this method is
currently limited to hundreds of sequences.

Another obvious shortcoming of the present algorithm is
its inability to handle structure in the population. Structure
can originate from spatial segmentation of the host popula-
tion or from the infection having distinct phases, for example,
varying degrees of transmissibility or a noninfectious period
(such as in the SEIR model). This issue is addressed by
Rasmussen et al. (2014), although in an approximate way
that assumes events in the epidemic trajectory are indepen-
dent of the events observed in the phylogeny.

Despite these difficulties, we have presented what is to our
knowledge the first algorithm capable of exactly inferring ep-
idemiological trajectories jointly with compartmental model
parameters using a combination of pathogen sequencing
data and case count records. Our method also enables esti-
mates of species richness through time by combining extant
species data and fossil occurrences. A focus for future work
will be extending this tool to account for population structure
and to allow for the analysis of larger data sets in a mathe-
matically exact framework.
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FIG. 5. Proportion of simulated data analyses which included the true prevalence in their 100a% HPD intervals, for alignments simulated under
each of the (a) linear birth–death, (b) SIS, and (c) SIR models. Colors represent the distinct times at which the coverage fractions were computed,
and the insets indicate where these times fall in relation to the approximate deterministic prevalence curves. The linear relationship between the
relative inclusion frequencies and a indicates that the PMMH algorithm is correctly sampling from the posterior prevalence distribution under
each of these models.
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FIG. 6. (a, b) Jointly inferred posterior distributions (red) and unconditioned simulated distributions (blue) for (a) infected host count and (b)
effective reproduction number during the Kailahun EVD outbreak. (c) Posterior distribution of infected host count per 105 hosts (prevalence). (d)
Expected number of new EVD infections per susceptible host per week (incidence). (e) Comparison of inferred number of infected hosts using all
data (red curves) and only the first 4 weeks of sequence data (brown curves). (f) Temporal distribution of EBOV cases used in the full analysis, both
sequenced (turquoise) and unsequenced (orange). The vertical dashed line in (f) indicates the end of the 4-week period of sequence data used to
infer the brown trajectories in (e).
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Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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