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Abstract: Inherited retinal dystrophies are characterized by photoreceptor death. Oxidative stress
usually occurs, increasing vision loss, and oxidative damage is often reported in retinitis pigmentosa
(RP). More than 300 genes have been reported as RP causing. In contrast, choroidal neovascularization
(CNV) only occasionally develops in the late stages of RP. We herein study the regulation of
RP causative genes that are likely linked to CNV onset under oxidative conditions. We studied
how the endogenous adduct N-retinylidene-N-retinylethanolamine (A2E) affects the expression of
angiogenic markers in human retinal pigment epithelium (H-RPE) cells and a possible correlation with
RP-causing genes. H-RPE cells were exposed to A2E and blue light for 3 and 6h. By transcriptome
analysis, genes differentially expressed between A2E-treated cells and untreated ones were detected.
The quantification of differential gene expression was performed by the Limma R package.
Enrichment pathway analysis by the FunRich tool and gene prioritization by ToppGene allowed us
to identify dysregulated genes involved in angiogenesis and linked to RP development. Two RP
causative genes, AHR and ROM1, can be associated with an increased risk of CNV development.
Genetic analysis of RP patients affected by CNV will confirm this hypothesis.

Keywords: oxidative stress; retinitis pigmentosa; angiogenesis; choroidal neovascularization;
biomarkers

1. Introduction

The normal retina is organized in several tightly interconnected layers forming a unique
structural and functional complex. The retinal pigment epithelium (RPE) is the basal layer and
separates photoreceptors from the choriocapillaris vascular bed. RPE is a monolayer of polarized
neural-crista-derived pigmented epithelial cells. On the apical side, it interacts with the outer segments
of the photoreceptors, while on the basolateral surface it makes contact with Bruch’s membrane and
choriocapillaris [1]. Although RPE provides nutrients for photoreceptors, it also takes part in the
phototransduction process, being the site of visual pigment turn-over [2]. Moreover, RPE mediates
metabolite transport between choriocapillaris and photoreceptors. Together with endothelial cells,
it forms the blood–retinal barrier (BRB), a highly selective structure that regulates molecule passage
from blood to retina [3]. By pumping fluid out from the subretinal space, RPE contributes to
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maintaining the negative hydrostatic pressure required for adhesion between RPE and photoreceptors.
Cl− ions enter RPE cells at the apical membrane by Na+/K+ ATPase and exit the basolateral one
by Cl− channels. Water transport from subretinal space to choriocapillaris is associated to this ion
flow [4–6]. RPE also secretes several growth factors involved in the regulation of vascular endothelium
homeostasis. Among these, the pigment epithelium-derived factor (PEDF, encoded by the SERPINF1
gene) acts as an antiangiogenic molecule on choriocapillaris and exerts a neuroprotective function
against hypoxia-induced apoptosis [7]. Surprisingly, somatostatin, erythropoietin (EPO) and ApoA1
are also secreted by RPE cells. In the retina, somatostatin regulates Ca2+ signaling, glutamate release,
ions and water transport, and nitric oxide function, and acts as an antiangiogenic factor on endothelial
cells [8]. EPO protects retinal cells from light-induced damage and oxidative stress by inhibiting
caspase and preventing apoptosis, and up-regulates the expression of pro-angiogenic factors, such as
vascular endothelial growth factor (VEGF) [9]. Other vasoactive molecules produced by RPE include
thrombospondin 1, which is highly represented in Bruch’s membrane [10]. Retinal angiogenesis
dysfunction can arise following oxidative stress stimuli and inflammatory cascade activation often
resulting in photoreceptor degeneration [11,12]. Visual cycle reactions endogenously generate reactive
oxygen species (ROS) together with lipofuscin that accumulates within RPE cells. The bis-retinoid
N-retinylidene-N-retinylethanolamine (A2E) is one of the major components of lipofuscin and
is synthetized from all-trans-retinal and phosphatidylethanolamine. Following light exposure,
A2E contributes to increase ROS levels, becoming toxic to RPE. Light exposure also induces retinal
neovascularization mediated by the upregulation of VEGF. Neo-vessels probably create anastomosis
with the choroid leading to retinal atrophy due to photoreceptor degeneration [13]. Although vessel
formation is enhanced in certain eye diseases, such as age-related macular degeneration (AMD)
or diabetic retinopathy [14], loss of choriocapillaris is observed in the late stages of retinitis pigmentosa
(RP) [15]. RP comprises a wide spectrum of retinal dystrophies characterized by progressive peripheral
vision loss and night blindness due to rod degeneration and impaired RPE. Cone death and loss of
central vision occur during disease progression as a consequence of both the cytotoxic activity of
the degenerated rods and reduced rod-derived cone viability factors. In addition, retinal vascular
attenuation and choriocapillaris atrophy occur later, following photoreceptor degeneration due to
reduced metabolic demand during retinal atrophy [16]. In this context, increased levels of plasma
endothelin-1 (ET-1) have been found in RP patients [17]. ET-1 is produced in RPE and its expression is
stimulated by thrombin treatment [18]. Reduced oxygen demand in RP retina directly determines the
increase in extracellular oxygen concentration, enhancing RPE migration [19,20]. However, RP patients
occasionally develop choroidal neovascularization (CNV), an abnormal intravasation of choroidal
vasculature into the RPE or subretinal tissue [21]. To date, more than 300 genes have been identified
as causative of retinal dystrophies. However, molecular mechanisms leading to CNV onset have not
yet been elucidated. It is well known that it may be resolved by intravitreal injection of bevacizumab,
a monoclonal antibody that blocks VEGF activity [22], suggesting that CNV can arise due to an
imbalance between pro-angiogenic and anti-angiogenic factors. However, there is little literature
available on RP causative genes and their role in CNV development. The aim of the present study
is to clarify if, following A2E and blue light exposure, CNV can be documented in specific RPE
subtypes linked to specific causative gene(s). In other words, the main idea is to provide preliminary
findings on the evidence that not all RP causative genes can predispose to CNV onset under stressed
conditions from A2E. Therefore, we studied the expression of angiogenetic markers in RPE cells treated
with A2E and prioritized dysregulated genes with those that cause RP. Although RP is an inherited
disease, an increase in ROS levels due to rod death seems to play a crucial role in disease progression,
promoting cone degeneration and RPE dysfunction [23].
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2. Materials and Methods

2.1. Human Retinal Pigment Epithelial Cell Culture Maintenance

Human primary RPE-derived cells (H-RPE—Human Retinal Pigment Epithelial Cells, 2nd passage,
Clonetics™, Lonza, Walkersville, MD, USA) were cultured in T-75 flasks with RtEGM™Retinal Pigment
Epithelial Cell Growth Medium BulletKit® (Clonetics™, Lonza, Walkersville, MD, USA), with added
2% v/v fetal bovine serum (FBS), 1% penicillin/streptomycin. Maintenance conditions were set at
37 ◦C with 5% CO2. Before treatment, 4 × 104 H-RPE cells/well were transferred into 96-well plates
(3rd passage). Three wells were considered for each condition. A2E was added to cells, after they
reached confluence. The final A2E concentration was 20 µM. H-RPE cells were then transferred to
phosphate-buffered saline (PBS) supplemented with calcium, magnesium and glucose (PBS-CMG).
Exposure to a tungsten-halogen source (470 ± 20 nm; 0.4 mW/mm2) allowed for A2E activation,
mimicking cytotoxicity induced by blue light. The exposure time was 30 min. Then, cells were
incubated at 37 ◦C up to three different time points, 3, 6 and 9 h. To compare gene expression, a negative
control was obtained by irradiating H-RPE cells with blue light but not treating them with A2E
(0 h_untreated). This choice was driven by the evidence that, without A2E, blue light is not sufficient
to trigger oxidative damage, as is required for A2E activation.

2.2. Methylthiazolyldiphenyl-Tetrazolium Bromide Assay to Test Cell Viability

The methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay allows one to assess cell viability by
measurement of the mitochondrial-dependent reduction of MTT (Sigma-Aldrich, St. Louis, MO, USA)
to formazan insoluble crystals. Following A2E treatment, 10 µL of 5 mg/mL of MTT was diluted in
PBS and added to the cell medium. H-RPE cells were incubated at 37 ◦C for 2 h before adding 100 µL
10% SDS (sodium dodecyl sulfate) in 0.01 mol/L HCl. Cultures were incubated for 16 h and then read
in a Dynatech microplate reader set to 570 nm absorbance. Untreated H-RPE cells were exposed to
blue light, but A2E-untreated H-RPE cells were considered a negative control. The experiment was
repeated three times.

2.3. RNA Extraction and Whole Transcriptome Analysis

TRIzolTM reagent (InvitrogenTM, ThermoFisher Scientific, Waltham, MA, USA) was used to purify
total RNA from H-RPE cells. RNA extraction yield was assessed at the Qubit 2.0 fluorimeter by the
Qubit® RNA assay kit (InvitrogenTM, ThermoFisher Scientific, Waltham, MA, USA). Following A2E
treatment, two different time points were considered at 3 and 6 h, respectively. A2E-untreated H-RPE
cells, exposed to blue light, were used as a negative control (time point: 0 h). Each time point was
processed three times, obtaining nine libraries in total. A total of 1 µg of total RNA was used to
generate paired-end libraries by the TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero
H/M/R (Illumina, San Diego, CA, USA). Following amplification, libraries were run on a HiSeq 2500
Sequencer (Illumina, San Diego, CA, USA), using the HiSeq SBS Kit v4 (Illumina, San Diego, CA, USA).

2.4. FASTQ Data Quality Control and Read Mapping

The quality check of FASTQ data generated by sequencing run was assessed by the FastQC
(v.0.11.9) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and the QualiMap (v.2.2.1)
tools [24]. Reads having a Phred quality score < 30 were removed by the Trimmomatic (v.0.39)
tool [25]. Filtered reads were mapped to the GRCh38 Human Reference Genome and the Ensembl
RNA database v.99, by the Qiagen CLC Genomics Workbench v.20.0 software package (Qiagen,
Hilden, Germany) (https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/

qiagen-clc-genomics-workbench/).

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/
https://digitalinsights.qiagen.com/products-overview/analysis-and-visualization/qiagen-clc-genomics-workbench/


Antioxidants 2020, 9, 1154 4 of 17

2.5. Gene Expression Quantification, Differential Gene Expression (DGE) and Statistical Analysis

Aligned reads were quantified by the mapping-dependent expectation-maximization (EM)
algorithm [26]. Differential gene expression (DGE) analysis was performed by the Limma R package [27].
The three different conditions were compared as described: (i) 0 h_untreated vs. 3 h_treated,
(ii) 0 h_untreated vs. 6 h_treated, (iii) 3 h_treated vs. 6 h_treated. DGE was expressed as log2 fold
change (log2 FC) of the gene abundance.

2.6. Functional Gene Annotation, Enrichment Analysis and Gene Prioritization

Differentially expressed genes (DEGs) were annotated based on the InterPro [28], Reactome [29],
Human Protein Atlas [30], UniProt [31], IntAct [32], Ensembl [33] and HGNC [34] databases.
Functional enrichment and gene clustering analysis were performed by the FunRich: Functional
Enrichment analysis tool, according to the biological pathways [35]. A full list of dysregulated genes
was inputted. Only pathways showing the Bonferroni-adjusted p-value < 0.05 were considered.

To identify RP causative genes that might enhance angiogenesis, prioritization analysis with
the ToppGene tool [36] was performed. In detail, genes related to retinal vascular development,
dysregulated in A2E-treated H-RPE cells (VEGFA, PDGFB, CCN1, LRP5, FZD4), were used as the
“training gene set”. As the “Test gene set”, all those reported in the RetNet database (https://sph.uth.
edu/retnet/home.htm) were inputted. Considered annotation terms included: “GO: Biological Process”,
“Human phenotype”, “Mouse phenotype”, “Pathway”, “PubMed” and “Disease”. Only results
showing the Bonferroni-adjusted p-value < 0.05 were considered significant.

2.7. Quantitative RT-PCR Data Validation

To validate observed FC values from RNA-Sequencing, quantitative real-time polymerase chain
reaction (qRT-PCR) was performed. Six genes were selected and quantified at both time points
(3 h_vs._0 h, 6 h_vs._0 h) (Table 1). Retrotranscription was carried out by the High-Capacity cDNA
Reverse Transcription Kit with RNase Inhibitor (Applied Biosystems™, Fisher Scientific, Loughborough,
Leicestershire, UK) using 1 µg total RNA for 20 µL of reaction volume. Within the reaction mix, 50 ng
of cDNA, 200 nM of each specific primer and 10 µL SYBR™ Select Master Mix (Applied Biosystems™,
Fisher Scientific, Loughborough, Leicestershire, UK) were added. Each reaction was repeated thrice
and gene expression was measured by an Applied Biosystems® 7500 Fast Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA) by calculating the average threshold cycle (Ct) from the
values obtained for each reaction. Relative gene expression was quantified using the 2−∆∆Ct method.
The expression level of β-actin was used for data normalization.

2.8. Statistical Analysis

In MTT assay, the cell viability of H-RPE cells was expressed as average percentage values from
three replicates for each condition, and the standard deviation was calculated.

RNA-seq runs were also replicated three times. Differential gene expression was reported
as log2 FC, and statistical significance was assessed by the multiple t-test, considering the
Bonferroni-adjusted p-value < 0.05 as significance threshold.

Quantitative RT-PCR reactions were repeated three times and the average threshold cycle (Ct)
by the values obtained for each reaction was calculated. Expression values are reported as mean of
log2 FC. Correlation analysis between qRT-PCR and RNA-Seq gene expression values was obtained by
linear regression with IBM SPSS 26.0 software (https://www.ibm.com/analytics/us/en/technology/spss/).

https://sph.uth.edu/retnet/home.htm
https://sph.uth.edu/retnet/home.htm
https://www.ibm.com/analytics/us/en/technology/spss/
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Table 1. Transcripts selected for RNA-seq data validation by quantitative real-time polymerase chain
reaction (qRT-PCR). Regarding the data discussed in the text, 3 down-expressed and 3 up-regulated
coding genes were chosen for data validation. For each gene, the HUGO (Human Genome Organization)
Gene Nomenclature Committee (HGNC) name, the Ensembl-specific transcript ID, the log2 fold change
detected by RNAseq at both 3 and 6 h after N-retinylidene-N-retinylethanolamine (A2E) treatment,
the primer pair and the specific length of the amplicon are reported. FC: fold change; bp: base-pairs.

HGNC Gene
Name (ID)

Ensembl
Transcript ID

3 h_vs._0 h RNAseq
log2 FC

6 h_vs._0 h RNAseq
log2 FC Primer Pair Fragment

Length (bp)

OCLN (8104) ENST00000355237.2 −0.873423348 −1.391662424 ACTTCGCCTGTGGATGACTT
GACCTTCCTGCTCTTCCCTT 101

RICTOR
(28611) ENST00000357387.8 −0.940830609 −0.705087984 GCTCTCTGAAGAACCTCCGA

CCTGCAATCTGGCCACATTT 126

TJP1 (11827) ENST00000356107.10 −0.694212076 −1.059176648 TCTTCGCAGCTCCAAGAGAA
AGGCCTCAGAAATCCAGCTT 121

FZD4 (4042) ENST00000531380.2 0.37699785 0.532274651 GGTTTGGTGGCCTTGTTCAA
ATCACACACGTTGCAGGAAC 131

KIFC3 (6326) ENST00000445690.7 0.995878391 1.422298598 GACCCTCACCAACGACTACA
TTGCTGTTGACCTCCTCGAT 123

VEGFA (12628) ENST00000372055.8 0.137384927 1.016674127 CTGTCTTGGGTGCATTGGAG
TGATGATTCTGCCCTCCTCC 101

3. Results

3.1. A2E Affects H-RPE Cell Viability

The cytotoxic effect of A2E and light exposure were tested in H-RPE cells. Induced cytotoxicity
increased in a time-dependent manner, as shown by the cell viability trend seen in Figure 1.
Cell viability was drastically decreased after 9 h of A2E and thus this time point was not considered for
subsequent analysis.

Antioxidants 2020, 9, x FOR PEER REVIEW 5 of 17 

RNA-seq runs were also replicated three times. Differential gene expression was reported as log2 
FC, and statistical significance was assessed by the multiple t-test, considering the Bonferroni-
adjusted p-value < 0.05 as significance threshold. 

Quantitative RT-PCR reactions were repeated three times and the average threshold cycle (Ct) 
by the values obtained for each reaction was calculated. Expression values are reported as mean of 
log2 FC. Correlation analysis between qRT-PCR and RNA-Seq gene expression values was obtained 
by linear regression with IBM SPSS 26.0 software 
(https://www.ibm.com/analytics/us/en/technology/spss/). 

3. Results 

3.1. A2E Affects H-RPE Cell Viability 

The cytotoxic effect of A2E and light exposure were tested in H-RPE cells. Induced cytotoxicity 
increased in a time-dependent manner, as shown by the cell viability trend seen in Figure 1. Cell 
viability was drastically decreased after 9 h of A2E and thus this time point was not considered for 
subsequent analysis. 

 
Figure 1. Methylthiazolyldiphenyl-tetrazolium bromide (MTT)-viability assay results. N-
retinylidene-N-retinylethanolamine (A2E) had a cytotoxic effect on human retinal pigment 
epithelium (H-RPE) cells in a time-dependent manner. The viability of untreated (0 h) H-RPE cells 
and 3, 6 and 9 h A2E-exposed H-RPE cells is expressed as a percentage, as the mean ± SD (n = 3). 
Statistical significance was assessed by multiple t-tests (p-values < 0.05). Due to markedly decreased 
cell viability at 9 h with A2E, this time point was excluded in further analysis. 

3.2. Transcriptome Analysis and Differential Gene Expression 

Bulk RNA sequencing generated about 100,000,000 reads showing a mean mapping Phred 
quality score ≥ 30. Unique mapped reads amounted to 67.8%. DEGs were divided according to the 
comparison between the different time points. In detail, 3878 and 4526 genes were differentially 
expressed between treated and untreated H-RPE cells, respectively, 3 and 6 h after A2E and light 
exposure. From a comparison between the two time points after treatment (6 h vs. 3 h), 956 genes 
showed significative change in expression level (Figure 2) (Table S1). 

Figure 1. Methylthiazolyldiphenyl-tetrazolium bromide (MTT)-viability assay results. N-retinylidene-
N-retinylethanolamine (A2E) had a cytotoxic effect on human retinal pigment epithelium (H-RPE) cells
in a time-dependent manner. The viability of untreated (0 h) H-RPE cells and 3, 6 and 9 h A2E-exposed
H-RPE cells is expressed as a percentage, as the mean ± SD (n = 3). Statistical significance was assessed
by multiple t-tests (p-values < 0.05). Due to markedly decreased cell viability at 9 h with A2E, this time
point was excluded in further analysis.
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3.2. Transcriptome Analysis and Differential Gene Expression

Bulk RNA sequencing generated about 100,000,000 reads showing a mean mapping Phred quality
score ≥ 30. Unique mapped reads amounted to 67.8%. DEGs were divided according to the comparison
between the different time points. In detail, 3878 and 4526 genes were differentially expressed between
treated and untreated H-RPE cells, respectively, 3 and 6 h after A2E and light exposure. From a
comparison between the two time points after treatment (6 h vs. 3 h), 956 genes showed significative
change in expression level (Figure 2) (Table S1).Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 17 

 
Figure 2. Differentially Expressed Genes (DEGs) in A2E-treated RPE cells. The histogram shows DEGs 
detected in RPE cells treated with A2E when compared to untreated cultures. Values are expressed 
in percentage. For each time point considered, blue bars indicate the down-expressed genes, while 
red ones refer to up-regulated genes. Both A2E-treated cells and control H-RPE cells were exposed to 
a blue light period. 

3.3. Functional Pathway Analysis 

Functional enrichment analysis clustered dysregulated genes in 1309 and 1349 pathways at 3 
and 6 h after A2E treatment, respectively (Tables S2–S4). Regarding the first time point (3 h_vs._0 h), 
141 pathways showed statistical significance and, of these, 19 were related to angiogenesis. Six hours 
after treatment (6 h_vs._0 h), the number of enriched pathways increased to 1349. However, of these, 
only 18 regarded the regulation of vessel morphogenesis (Tables S2–S4). Moreover, the comparison 
of expression values observed 6 and 3 h (6 h_vs._3 h) after A2E treatment allowed us to identify how 
the dysregulation of several pathways occurred in a time-dependent manner (Table 2). These include 
pathways related to the maintenance of endothelial cell property, such as cytoskeleton regulation and 
cell junction stabilization. Nevertheless, A2E treatment resulted in extra-cellular matrix (ECM) 
impairment by affecting β-integrin and proteoglycan signaling. 

Figure 2. Differentially Expressed Genes (DEGs) in A2E-treated RPE cells. The histogram shows DEGs
detected in RPE cells treated with A2E when compared to untreated cultures. Values are expressed in
percentage. For each time point considered, blue bars indicate the down-expressed genes, while red
ones refer to up-regulated genes. Both A2E-treated cells and control H-RPE cells were exposed to a
blue light period.

3.3. Functional Pathway Analysis

Functional enrichment analysis clustered dysregulated genes in 1309 and 1349 pathways at 3
and 6 h after A2E treatment, respectively (Tables S2–S4). Regarding the first time point (3 h_vs._0 h),
141 pathways showed statistical significance and, of these, 19 were related to angiogenesis. Six hours
after treatment (6 h_vs._0 h), the number of enriched pathways increased to 1349. However, of these,
only 18 regarded the regulation of vessel morphogenesis (Tables S2–S4). Moreover, the comparison of
expression values observed 6 and 3 h (6 h_vs._3 h) after A2E treatment allowed us to identify how
the dysregulation of several pathways occurred in a time-dependent manner (Table 2). These include
pathways related to the maintenance of endothelial cell property, such as cytoskeleton regulation
and cell junction stabilization. Nevertheless, A2E treatment resulted in extra-cellular matrix (ECM)
impairment by affecting β-integrin and proteoglycan signaling.



Antioxidants 2020, 9, 1154 7 of 17

Table 2. Enrichment pathway analysis results. The table shows results obtained by the FunRich tool. Only pathways related to angiogenesis are reported. For each
time point, the percentage of enriched genes, the fold enrichment and the Bonferroni-adjusted p-value are reported. Not significant: fold enrichment p-value ≥ 0.05.

3 h_vs._0 h 6 h_vs._0 h 6 h_vs._3 h

Pathway % Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

% Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

% Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

Beta1 integrin
cell surface
interactions

25.4 1.1854 0.0146 26.9 1.2561 1.0167 × 10−7 34.1 1.5901 1.441 × 10−7

EGFR-dependent
Endothelin

signalling events
24.2 1.1825 0.03440 25.9 1.2690 4.5939 × 10−8 33.6 1.645 1.3314 × 10−8

Endothelins Not significant 26.1 1.26 1.3783 × 10−7 33.6 1.6222 4.1668 × 10−8

HIF-1-alpha
transcription

factor network
Not significant Not significant 5.1 4.8831 8.0756 × 10−8

IGF1 pathway 24.2 1.1838 0.0297 25.9 1.2670 6.044 × 10−8 33.6 1.6424 1.5141 × 10−8

LKB1 signalling
events 24.8 1.1964 0.0070 26.5 1.2809 4.0980 × 10−9 33.6 1.6210 4.4347 × 10−8

N-cadherin
signalling events Not significant Not significant 8.2 2.0655 0.0252

Nectin adhesion
pathway 24.2 1.1801 0.0409 26.0 1.2659 6.6551 × 10−8 34.1 1.6590 4.2976 × 10−9

PDGF receptor
signalling
network

24.3 1.1851 0.0257 26.06 1.2707 3.2165 × 10−8 33.8 1.6507 8.0949 × 10−9

Posttranslational
regulation of

adherens junction
stability and
disassembly

Not significant Not significant 7.8 2.1230 0.0235

Proteoglycan
syndecan-mediated
signalling events

25.3 1.1846 0.0167 27.1 1.2724 7.3776 × 10−9 35.0 1.6389 5.2725 × 10−9

RAC1 signalling
pathway Not significant Not significant 7.3 2.2556 0.0113
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Table 2. Cont.

3 h_vs._0 h 6 h_vs._0 h 6 h_vs._3 h

Pathway % Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

% Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

% Enriched
Genes

Fold
Enrichment

p-Value
(Bonferroni-Adjusted)

Regulation of
CDC42 activity Not significant 15.2 1.2478 0.0083 22.7 1.8607 1.1663 × 10−7

RhoA signalling
pathway Not significant Not significant 7.3 2.2556 0.0113

Signalling events
mediated by focal
adhesion kinase

24.2 1.1834 0.0317 25.9 1.27 4.0022 × 10−8 33.6 1.6462 1.2483 × 10−8

Signalling events
mediated by
Hepatocyte

Growth Factor
Receptor (c-Met)

24.3 1.1851 0.0257 26.0 1.2679 5.0634 × 10−8 33.6 1.6398 1.7211 × 10−8

Signalling events
mediated by
VEGFR1 and

VEGFR2

24.7 1.1855 0.0240 26.1 1.2705 3.0898 × 10−8 33.8 1.6469 9.8334 × 10−9

Stabilization and
expansion of the

E-cadherin
adherens junction

Not significant Not significant 9.3 2.1399 0.0025

Syndecan-1-mediated
signalling events 24.5 1.1881 0.0178 26.2 1.2721 2.1586 × 10−8 33.6 1.6310 2.6854 × 10−8

VEGF and
VEGFR signalling

network
24.4 1.1782 0.0455 26.2 1.2655 5.8984 × 10−8 33.8 1.6368 1.6437 × 10−8
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3.4. A2E Treatment CAUSES Loss of Retinal Blood Barrier Properties

Enriched pathways related to the vessel development clustered in total 423 (3 h) and 522 (6 h)
DEGs in A2E-treated H-RPE cells, when compared to untreated ones. Moreover, 175 genes were further
dysregulated between 3 and 6 h, after A2E exposure. Of these, 24 were uniquely detected in this time
lapse (Figure 3; Table S5).
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Genes encoding for proteins involved in the maintenance of tight junction integrity (TJP1, OCLN,
ROCK1) were slightly down-regulated at the first time point (3 h, log2 FC > −1), in contrast to those
encoded for proteins involved in adherens zonula formation (CAMSAP3, KIFC3) that were up-regulated,
suggesting that A2E can impair BRB properties, increasing its permeability. Together with the cell–cell
junction, light damage also affected cytoskeleton organization due to the down-expression of genes
such as RICTOR, which contributes to the maintenance of actin cytoskeleton polarity, JMY, which acts
as a de novo actin filament nucleation, and RHOA, which regulates endothelial tube lumen extension.
Moreover, ARAP1 was up-regulated promoting epithelial–mesenchymal transition.

The expression of TJP1 and OCLN further decreased after 6h of A2E treatment (log2 FC <−1)
as well as there being a higher abundance of CAMSAP3 and KIFC3, if compared to the previous time
point. In addition, adherens junction formation should be enhanced by down-expression of BMP6 and
RDX, clustered in the “negative regulation of adherens junction organization” annotation term of the
Gene Ontology database. Moreover, angiogenic markers such as CCN1 and VEGFA were up-regulated
in H-RPE cells 6 h after treatment, when compared to untreated ones, suggesting that continuous
exposure to the blue light can promote neo-vessel formation. This finding is further supported by the
increased expression of FZD4 and LRP5, involved in the norrin signal pathway that contributes to
retinal vasculature development.

3.5. A2E Treatment Impairs Expression of AHR and ROM1

Among 363 genes provided to the ToppGene tool as “Test gene set”, 57 were prioritized according
to functional annotations and protein interaction networks related to angiogenesis (Table S6). Eight of
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these genes are known to cause different RP phenotypes (Table 3). Surprisingly, only two of these,
AHR and ROM1, showed different expression values in A2E- treated H-RPE cells, when compared to
untreated ones. In detail, under stress condition, AHR was down-expressed while ROM1 up-regulated.

Table 3. RP causative genes differentially expressed in A2E-treated H-RPE cells. For each gene,
the HUGO Gene Nomenclature Committee ID is indicated. The table also reports the RP phenotype
linked to each locus, the role of the encoded protein in angiogenesis, and the expression values
(as log2 FC) observed for each gene 3 and 6 h after A2E treatment. Not significant: gene expression
change is not statistically significant. Not determined: no expression value detected by the analysis.

Locus
(HGCN ID) RP Phenotype Angiogenesis Log2 FC 3

h_vs._0 h
Log2 FC 6
h_vs._0 h

AHR
(348) recessive

If depleted,
enhances retinal angiogenesis [37] −0.78173956 −1.52949254

PROM1
(9454)

recessive with macular
degeneration

Expressed on EPCS;
promotes neovascularization [38] not significant

MERTK
(7027) recessive

Promotes EC survival
by inhibiting apoptosis [39] not significant

RPE65
(10294) recessive

Overexpressed in RPE cells
surrounding CNV [40] not determined

RHO
(10012)

- dominant;
- recessive

If mutated, leads to retinal vessels
atrophy following light exposure [41] not significant

NR2E3
(7974)

- recessive in Portuguese
Crypto Jews;
- dominant

Regulates retinal neovascularization
by targeting FLT1 [42] not significant

SEMA4A
(10729) dominant

In ECs, suppresses VEGF-mediated
EC migration and proliferation by

binding Plexin-D1 [43]
not significant

ROM1
(10254) dominant

GO Biological process:
retina vasculature development in

camera-type eye (GO:0061298)
1.256611685 1.123121917

PANK2
(15894)

recessive HARP
(hypoprebetalipoproteinemia,

acanthocytosis, retinitis
pigmentosa, and palladial

degeneration)

Required for normal development of
angiogenetic properties in ECs [44] not significant

3.6. Quantitative RT-PCR Data Validation

Quantitative RT-PCR confirmed the expression values observed by RNA sequencing. The same
genes were considered for both time points and data are shown in Figure 4a as the average of
the three replicates. Positive correlation indexes (3 h_vs._0 h, r: 0.99739771625149; 6 h_vs._0 h,
r: 0.99952653060046) were obtained by the ratio between log2 FC observed by RNAseq and qRT-PCR
values (Figure 4b,c).
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4. Discussion

The eye is continuously exposed to both natural and artificial light and this was shown to increase
ROS levels within the retina. In particular, RPE and photoreceptors are extremely sensitive to oxidative
damage as visual pigments, proteins and lipids are targets of peroxidation reactions. Moreover,
lasting ROS exposure can trigger an inflammation cascade that results in apoptotic photoreceptor death
and vision loss [45]. For this reason, oxidative stress is considered one of the main causes of AMD that
usually develops in adulthood. Oxidative damage was shown to be further induced by A2E treatment
and light exposure [46]. However, impairment of ROS homeostasis due to genetic mutations can lead to
the onset of hereditary retinal dystrophies and, among these, RP [47]. Occasionally, RP is accompanied
by a vascular event known as choroidal neovascularization (CNV). It usually onsets late, probably due
to an imbalance between pro-angiogenetic and anti-angiogenetic factors. However, the reason why
CNV occurs is not yet clear. With expression analysis, we investigated the role of the endogenous
adduct A2E in stimulating the expression of genes involved in angiogenesis regulation. Our results
showed that blue light damage occurring following A2E exposure can enhance expression of positive
regulators of angiogenesis in RPE cells. RPE takes part in the formation of Bruch’s membrane that
separates photoreceptors from the choriocapillaris. As previously reported, A2E treatment and light
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exposure increased RPE early response against oxidative damage [48]. In contrast, expression increase
of genes involved in angiogenesis is not an early event and occurs very slowly, in a time-dependent
manner. This supports the evidence that neovascularization happens as a complication of RP. In detail,
the first events of BRB barrier damage are indicated by the dysregulation of genes involved in cell
junction maintenance and in ECM remodeling (Figure 5). (The percentages and p values in Figure 5
must be converted into the UK/US system, i.e., 24,18 to 24.18 and p = 0,034 to p = 0.034).

1 
 

 Figure 5. Enriched genes in biological pathways related to angiogenesis. Each biological pathway is
considered both 3 and 6 h after A2E treatment. Enrichment percentage and the Bonferroni-adjusted
p-value are reported.

A2E-treated cells showed dysregulated expression of genes clustered within nectin, focal adhesion
kinase, E-cadherin and N-cadherin adhesion pathways. Our results deal with those recently reported
by Ibrahim et al. [49]. The authors observed the disruption of the RPE barrier due to increased
MMP2 metalloproteinase activity, following high BMP4 concentration. BMP4 and MMP2 were
upregulated also in our samples. The high expression level of BMP4 has been shown to stimulate
VEGFA production [50]. Moreover, A2E induced the disruption of tight junctions, as demonstrated by
the down-expression of TJP1, OCLN and ROCK1 in treated RPE cells, when compared to untreated ones.
Together with cell junctions, ECM also suffered blue light-induced stress, as shown by enrichment fold
of the pathways related to β-integrin and proteoglycan signaling. Extracellular matrix remodeling
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in RP was linked to the increased MMP9 activity [51], while a protective role was established for its
inhibitor TIMP1 [52]. TIMP1 expression increased in H-RPE cells after A2E supplementation, and this
can be considered an attempt of protection against the oxidative substance. Although ECM remodeling
signaling was observed early, expression of angiogenic markers significantly changed 6h after the
treatment, when endothelin, VEGF and PDGFB pathways were highly enriched. A2E treatment was
shown to induce oxidative damage [46]. Under oxidative conditions, angiogenesis is enhanced due to
a hypoxic condition by the activation of the PI3K/Akt cascade [53]. Despite the PI3K/Akt pathway
perturbation not being described in RP, our hypothesis is that it can contribute to CNV development
in patients with impaired oxidative stress defense mechanisms [54]. Moreover, the non-sudden
overexpression of pro-angiogenic markers following A2E treatment can explain the reason why CNV
emerges late in patients. Our results are consistent with a previous report by Vila et al., suggesting that
blue light can induce vasculature remodeling in RPE cells [55,56].

Finally, we focused on RP causative genes that were dysregulated in H-RPE cells treated
with A2E and that play a role in angiogenesis regulation. In this context, prioritization analysis
highlighted AHR and ROM1. AHR encodes for the aryl hydrocarbon receptor, a transcription factor
that inhibits transcription of pro-angiogenic genes. Oxidative stress reduced AHR expression leading
to endothelial cell proliferation [57]. Moreover, in endothelial barriers, AHR was shown to contribute
to the maintenance of barrier properties by mediating cytochrome CYP1 expression, in response to
xenobiotics [58]. Taken together, these data suggest that RP patients carrying AHR loss of function
mutations might have an augmented risk of developing CNV, as they are pro-angiogenetic genes
which are no longer inhibited. Furthermore, AHR loss of function cannot preserve barrier integrity
from continuous exposure to the cytotoxic effect of endogenous A2E.

In contrast, oxidative stress increased ROM1 expression. It encodes for a photoreceptor that is still
poorly characterized. However, heterozygous ROM1 mutant mouse models showed narrowed retinal
vasculature [59]. According to prioritization results, among all RP causative genes, here we propose
that AHR and ROM1 might preferably promote CNV, since they are involved in the regulation of the
angiogenic process. Knowledge of the mechanisms by which these genes can impair normal vasculature
remodeling needs to be elucidated. Therefore, these are preliminary results that require further
investigation to establish if AHR and ROM1 mutations in RP patients can act as CNV-promoting factors.

5. Conclusions

Retinitis pigmentosa is a large heterogenous group of inherited retinal dystrophies. To date,
more than 300 genes have been linked to RP development. Although oxidative stress is commonly
observed in RP patients, not all patients have a better prognosis if treated with antioxidants. Likewise,
only a few RP patients develop vascular phenotypes, such as CNV. Causes that lead to CNV have
not yet been elucidated. Therefore, here we propose a model of oxidative stress induced by A2E
treatment and blue light exposure, on human RPE cells. Our results demonstrate that the expression of
pro-angiogenic genes increases in a time-dependent manner, after treatment. ECM remodeling and cell
junction impairment are key events that can contribute to increasing permeability and loss of properties
of the blood–retinal barrier. Moreover, two RP causative genes, AHR and ROM1, can potentially
promote CNV onset in RP patients.
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