
RESEARCH ARTICLE

A sampling survey of enterococci within

pasteurized, fermented dairy products and

their virulence and antibiotic resistance

properties

Solomon H. MariamID*

Aklilu Lemma Institute of Pathobiology, Armauer Hansen Research Institute, Addis Ababa University, Addis

Ababa, Ethiopia

* solomon.habtemariam@aau.edu.et

Abstract

Globally, fermented foods (FFs), which may be traditional or industrially-produced, are

major sources of nutrition. In the traditional practice, the fermentation process is driven by

communities of virtually uncharacterized microflora indigenous to the food substrate. Some

of these flora can have virulent or antibiotic resistance properties, posing risk to consumers.

Others, such as Enterococcus faecalis and Enterococcus faecium, may also be found in

such foods. Enterococci that harbor antibiotic resistance or virulence factors can cycle

among animals, food, humans and the environment, thereby transferring these harmful

properties at the gene level to harmless commensals in the food matrix, animals and

humans. In this work, several microbial isolates obtained from different FF sources were

analyzed for their identity and virulence and/or antibiotic resistance properties. For identifi-

cation aiming at enterococci, isolates that were Gram-positive and catalase- and oxidase-

negative were subjected to multiple tests including for growth in broth containing 6.5% NaCl,

growth and hydrolytic activity on medium containing bile-esculin, hemolytic activity on blood

agar, and growth at 45˚C and survival after incubation at 60˚C for 30 min. Furthermore, the

isolates were tested for susceptibility/resistance to a select group of antibiotics. Finally, the

isolates were molecularly-characterized with respect to species identity and presence of vir-

ulence-encoding genes by amplification of target genes. Most sources contained entero-

cocci, in addition to most of them also containing Gram-negative flora. Most of these also

harbored virulence factors. Several isolates were also antibiotic-resistant. These results

strongly suggest attention should be given to better control presence of such potentially

pathogenic species.

Introduction

An association between humans and microbes begins early in life, and eventually the gastroin-

testinal tract (GIT) alone becomes host for numerous species of microbes (collectively called
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the gut microbiota), but other body sites also represent important niches [1,2]. A large portion

of this pool of microbes is yet uncultivated, or uncultivable. Consequently, this pool remains

partially uncharacterized with respect to their overall roles in health and disease, and many

aspects (e.g., antimicrobials, virulence, etc) remain largely yet to be explored [3]. Consumption

of food products of fermentation may serve as a source of live lactic acid bacteria (including

species that reportedly provide human health benefits) and may influence the diversity and

composition of the gut microbiota [4,5]. This pool may be subject to consistent flux of intake

and exit, and colonization may be transient due to encountered stress (although some may be

resilient). However, even transient colonization may have negative impact (e.g., antibiotic

resistance transfer) [6]. Survival of yogurt bacteria during passage through the GIT is consid-

ered a prerequisite for colonization. Several studies [7–14] indicate that much of the yogurt

bacteria indeed survive the stress (e.g., acid, bile) encountered during passage.

There are great diversities in the types of fermented food (FF) products as well as their

microbial contents and numbers present within [4]. Modern or industrial food fermentation

practices introduced defined starter culture systems that, unlike the traditional ones, appear to

be better characterized with respect to their identities and other characteristics [15]. Such fer-

mentations in most other countries often are spontaneous fermentations, relying on indige-

nous microbes present in the starting raw materials [16].

Lactic acid bacteria (LAB) (such as those of the genera Lactobacillus, Lactococcus, Strepto-
coccus, and Enterococcus are among the microbial flora responsible for food fermentations.

Probiotics (live microorganisms which when administered in adequate amounts confer health

benefit on the host) are deliberately added to processed foods and promoted as healthful food

additives. However, although probiotics have been used for centuries and appear to be safe for

some people, there are still controversies regarding the probiotic-derived benefit or side effects.

Some [e.g., 17,18] warn of possible side effects, or that the verdict on probiotic safety is still

pending. Others [e.g., 19] grossly and indiscriminately advocate probiotic inclusions in foods,

a premature recommendation. Even probiotics that have long established use may have side

effects. A case in point is that of Escherichia coli Nissle 1917, a strain that has been in use as a

probiotic for more than a century to alleviate intestinal disorders such as ulcerative colitis and

Crohn’s disease [20]. This strain was shown to cause damage (genotoxic effect) in the form of

double-strand breaks in DNA mediated by possession of a peptide-polyketide-encoding geno-

mic island that was also shown to be inseparable from its probiotic activity [20,21], although

this disentanglement may be possible through genetic manipulation for its probiotic effect

devoid of genotoxicity [22]. Perhaps, the future is for engineered probiotics.

Enterococci can be found in FFs as contaminants, primarily because of their resistance to

disinfectants and adaptation to harsh environments [23,24]. They also have capacity to share

antibiotic resistance and other determinants. Enterococci of both clinical and food origin pos-

sess genomes of high plasticity due to abundance of pheromone-responsive and broad host

range plasmids, enabling them to colonize a wide range of niches and habitats and thereby

both acquire and spread genetic traits, including resistance and virulence genes [25,26]. Acqui-

sition and spread of antibiotic resistance in enterococci can be mediated via mobile genetic ele-

ments such as resistance plasmids, transposons and integrative conjugative elements [27,28].

Intra- or inter-species gene exchange, resulting in sharing or transfer of antibiotic resistance,

altered metabolic capabilities, and other virulence factors (VFs) has been observed in entero-

cocci in in vitro and in vivo conditions [29,30]. For example, transfer of vanA gene has been

reported [6,31,32]. Furthermore, enterococci exhibit intrinsic resistance to several clinically-

relevant antibiotics (such as β-lactams, aminoglycosides, lincosamides, and cephalosporins).

Additionally, enterococci acquire resistance through mutations, enhancing their power as

causes of patient morbidity and mortality.
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Although enterococci have been perceived as having low pathogenic potential, this is

changing as enterococci are opportunistic pathogens and some are emerging as major patho-

logic agents and nosocomial pathogens as a result of several factors including their possession

of VFs and pheromone-responsive plasmid-gene-transfer mechanisms. Thus, they can be

found as colonizers in several infections (especially those caused by multidrug-resistant strains

in patients hospitalized for prolonged periods or with underlying diseases) including urinary

tract infections, endocarditis and sepsis (thought to be due to dissemination from the gut into

the bloodstream or along intravenous lines [33]. As with many other infectious diseases, treat-

ment of infections caused by enterococci is mostly empirical. This can have consequences

including failed treatment outcome, morbidity, mortality and succession of the gut commensal

flora with flora of different composition (such as the pathogenic Clostridium family), or vanco-

mycin-resistant enterococci [34].

The multiple VFs that enterococci express include aggregation substance (agg), gelatinase

(gelE), cytolysin (cyl), enterococcal surface protein (esp), accessory colonization factor (ace),
hyaluronidase (hyl), enterococcal endocarditis antigen (efaA) and sex pheromones (e.g., cpd,

cob, ccf, cad). Aggregation substance is a surface protein encoded by sex pheromone plasmids

that binds to extra-cellular matrix proteins of eukaryotic cells and promotes donor and recipi-

ent cell aggregation and conjugative transfer of plasmid virulence traits and antibiotic resis-

tance genes [35,36]. gelE codes for a protein toxin with gelatinolytic activity capable of

hydrolyzing gelatin, collagen, hemoglobin, and other bioactive compounds. Cytolysin,

encoded by the cyl operon, is composed of several cytolysin genes (cylM, cylB, cylA, etc) that

may be involved in transport, activation, modification and expression of cytolysins (combines

activities of both its own expression and lytic activity against a broad range of prokaryotic and

eukaryotic cells) [37]. esp, which encodes for a cell wall-associated protein on the bacterial sur-

face, is involved in immune evasion (due to expression of alternate forms of the Esp protein),

and is mostly found in infection-derived E. faecalis isolates [38]. The enterococcal accessory

colonization proteins (Ace in E. faecalis and Acm in E. faecium) are collagen and laminin

adhesins thought to be involved in endocarditis, as both ace and acm deletion mutants are

attenuated in experimental endocarditis in rats, and antibodies specific for the collagen-bind-

ing domain of Ace protect rats from endocarditis [39]. efaAfs was originally isolated from

serum of an endocarditis patient, and its homolog in E. faecium (efaAfm) subsequently identi-

fied [40,41]. Many of these VFs appear to be transmissible via pheromone-responsive conjuga-

tive plasmids [42,43].

The high diversity of the microbiota and their intimate association with states of health

and/or disease engenders the question as to what constitutes a healthy or unhealthy micro-

biota? Since a germ-free state is neither attainable nor sustainable in life [44,45] and at least

some of the gut microbiota come from consumption of food products of fermentation, it is

therefore imperative that, probiotic or not, microbes that are acquired from such foods are

characterized for pathogenic potential. In Ethiopia, information on virulence properties and

possible health impacts of Enterococcus (a major food-borne pathogen) in such foods is scarce

or nonexistent. In fact, it was not even possible to find any validated figures regarding the

share of FFs in Ethiopian staple food. Even a National Food Consumption Survey prepared by

the Ethiopian Public Health Institution did not adequately mention the share of dairy products

to the national diet, although it is known that FFs in general and dairy products in particular

account for a large share. The objectives of this small-scale study were to conduct assessment

of both the prevalence and possible virulence traits of enterococci that exist within FFs of pas-

teurized dairy origin that are extensively consumed by the population, in order to provide a

glimpse of the situation at the wider scale.
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Materials and methods

The study site

Addis Ababa is the capital of Ethiopia. The city’s milk supplies come mainly from dairy indus-

tries and cooperatives. The same brands of dairy products are distributed for sale at all super-

markets of/in the city. The population size is estimated at ~4 million. Moreover, it has a

significant international presence, being the seat of many diplomatic, continental and global

organizations.

Isolation and presumptive identification of bacteria

Broth and agar media used for isolation and growth of bacteria were from Becton Dickinson

(Sparks, Maryland) or Oxoid (Basingstoke, Hampshire, United Kingdom). For isolation of

bacteria, yogurt, cheese and milk purchased from supermarkets were used as source of bacte-

ria. Ten mL samples of each yogurt brand were serially-diluted in physiological saline and dilu-

tions plated onto MRS, plate count or tryptic soy agars. Single colonies were picked and

inoculated into MRS and/or brain heart infusion (BHI) broth and incubated. Mid-log phase

cultures were pelleted to store the pellet, while portions were also inoculated onto agar media.

From this growth on agar media, Gram-stains were made to select for Gram-positive cocci.

Culture media were from Becton Dickinson (BD) and Oxoid. Culture media used were MRS

agar or broth, M17 agar, tryptic soy agar, BHI broth, blood agar and PCA agar (for total LAB

count).

Colonies were re-streaked 3 successive times, each from 24-hr-grown agar cultures of single

colonies pre-grown in broth, to get pure isolates (until the Gram stain showed no mix of

Gram-negatives and Gram-positives or cocci and rods). The tests were aimed at isolating

enterococci. Isolates that were Gram-negative or with yeast appearance were saved but not fur-

ther characterized.

Catalase test

Catalase test was conducted by adding 2–3 drops of 3% H2O2 on cultures.

Oxidase test

The oxidase test was performed using Oxidase test strips (OXOID, Australia) by adding 1–2

drops of oxidase reagent on sterile petri dishes smeared with a loopful of the bacterial growth.

Once pure isolates (Gram-positive, catalase- and oxidase-negative) were obtained, further tests

were conducted.

Growth in 6.5% NaCl

Isolates were incubated in BHI broth containing 6.5% NaCl at 37˚C for 24–48 h. All isolates

were also simultaneously and similarly incubated in BHI broth without NaCl.

Esculin hydrolysis test

This was conducted by streak plating onto bile esculin (BE) agar plates and incubating at 37˚C

for 24 hrs. Isolates were also simultaneously inoculated onto agar without BE.

Growth tests at high or low temperatures

Tests for survival after incubation at 60˚C for 30 minutes in a water bath were conducted

using diluted broth cultures pre-grown for 24 hrs. CFU were quantified both before and after
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incubation. Growth tests at 45˚C were conducted by incubating broth cultures at 45˚C for 24

or 48 h. Growth tests at 10˚C were conducted by incubating broth cultures at 10˚C for 24 or 48

h.

Hemolysis test

This was conducted by inoculation of Columbia blood agar base containing 5% defibrinated

sheep blood and incubating at 37˚C for 24 hrs.

The biochemical, salt tolerance and temperature tests were performed following standard

procedures [46].

Antibiotic susceptibility tests (ASTs)

Preliminary ASTs were conducted for some of the isolates by disk diffusion using Muller-Hin-

ton (MH) agar. Bacterial suspensions were prepared in physiological saline (0.85%) from

18-hr-grown agar cultures to closely match the density of MacFarland Standard 0.5. These

were then spread on the MH agar on petridishes to make a thick paste using sterile cotton

swabs and antibiotic-impregnated disks (Abtek, England) were placed on the agar after 15

minutes of inoculation. The disk contents in μg were erythromycin, 15; tetracycline, 30; ampi-

cillin, 10; oxacillin, 1; ciprofloxacin, 5; azithromycin, 15; vancomycin, 5. The plates were placed

in 37˚C incubator within 15 minutes of disk placement. Interpretations of results were made

from the categories according to the Clinical Laboratory Standards Institute (CLSI) version

2017 [47] (however, not all interpretive criteria were available from CLSI for the available disk

contents). Escherichia coli ATCC 25922) and Staphylococcus aureus ATCC 25923 and E. faeca-
lis ATCC 29212 were used simultaneously for quality control in the disk diffusion tests. A lim-

ited number of isolates were tested for susceptibility to eight antibiotics using a plate broth

microdilution assay (VetMIC Lact2, version 2014–06) (National Laboratory institute, Upsalla,

Sweden). All isolates were tested for presence of ermB, ermC and/or vanC1, vanC2/C3 resis-

tance genes with primers listed in Table 1.

DNA extraction, polymerase chain reaction (PCR), electrophoresis and

capture of gel bands

DNA was extracted using Qiagen Blood and Tissue Kit or by heat treatment for 10 min at

95˚C. The concentrations of the extracts were measured using NanoDrop 2000 (Thermo

Scientific). Species-specific PCR was used to identify Enterococcus faecalis and Enterococus fae-
cium [48]. The primers, product sizes and reference sources are given in Table 1. Modifications

on some of the primer concentrations were made. PCR products were separated in agarose

gel. Separated bands were viewed and captured using a gel scanner and UV Transilluminator

(Bio-Rad, USA).

Tests for presence of virulence genes

The isolates verified as enterococci by PCR were then submitted for extended virulence con-

tent analysis. The virulence genes tested for the presence of included gelE, asa1, cylA, cylM,

cylB, esp, hyl, efaAfs, efaAfm, cob, cpd, ccf, and erm and van genes (Table 1). For the virulence

factors asa1, gelE, esp, hyl and cyl, a multiplex PCR protocol was conducted [49]. The hyl gene

was not amplified by this protocol, including from E. faecalis ATCC 29212 itself. It was not

possible to detect the cob, cpd, and ccf genes in a single multiplex PCR reaction, despite several

attempts, because cob would not amplify with the other two even when it is present. Thus,

PCR for cob was run separately, but cpd and ccf were amplifiable together, using optimized
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PCR protocols. Similarly, the reaction product for efaA, which like cob had to be run sepa-

rately, was not detected using a previously described protocol [50], but was amplified using a

different PCR protocol [51]. For ermB and ermC detection, designed primers [52] were used

with optimized PCR protocol.

Data analysis

The presence of whether VFs are present in significant differences based on species or food

type were tested using the “t” test for the former and Wilcoxon Rank Sum test for the latter.

Quality control

Enterococcus faecalis 29212, Pseudomonas aeruginosa 27853 and Escherichia coli 25922, Strep-
tococcus pyogenes 19615, Staphylococcus aureus 29213, all ATCC strains, were used as positive

or negative quality control strains, as relevant, in the various tests. Each experiment was

repeated two or three times.

Results

Altogether, about 70 isolates were isolated from the fermented food products. S1 Table shows

the products used in the study (type, size, purchase and expiry dates). S2 Table lists all the iso-

lates (enterococcal, non-enterococcal and others) along with the results of the various tests. In

most cases, multiple isolates of various types were obtained from each food product. Several

cultures from cheese samples (isolates 34–37, product 4) all contained yeasts as viewed in the

Gram stains, with no bacteria. It seemed the presence yeasts was detrimental to bacterial pres-

ence. Isolates 39–43 from a different cheese product also contained yeasts.

Table 1. PCR primer sequences and their targets used in this work.

Target/Gene Primer Sequence (50!30) Product size (bp) Reference(s)

E. faecalis� ATCAAGTACAGTTAGTCTTTATTAGACGATTCAAAGCTAACTGAATCAGT 941 48

E. faecium� TTGAGGCAGACCAGATTGACGTATGACAGCGACTCCGATTCC 658

asa1 GCACGCTATTACGAACTATGATAAGAAAGAACATCACCACGA 375 49

gelE TATGACAATGCTTTTTGGGATAGATGCACCCGAAATAATATA 213

esp AGATTTCATCTTTGATTCTTGGAATTGATTCTTTAGCATCTGG 510

hyl ACAGAAGAGCTGCAGGAAATGGACTGACGTCCAAGTTTCCAA 276

cylA ACTCGGGGATTGATAGGCGCTGCTAAAGCTGCGCTT 688

cylB ATTCCTACCTATGTTCTGTTAAATAAACTCTTCTTTTCCAAC 843 50

cylM CTGATGGAAAGAAGATAGTATTGAGTTGGTCTGATTACATTT 742

efaAfs GACAGACCCTCACGAATAAGTTCATCATGCTGTAGTA 705

efaAfm AACAGATCCGCATGAATACATTTCATCATCTGATAGTA 735

cpd TGGTGGGTTATTTTTCAATTCTACGGCTCTGGCTTACTA 782

cob AACATTCAGCAAACAAAGCTTGTCATAAAGAGTGGTCAT 1,405

ccf GGGAATTGAGTAGTGAAGAAGAGCCGCTAAAATCGGTAAAAT 543

vanA GGAAAACGACAATTGCGTACAATGCGGCCGTTA 732

vanB ATGGGAAGCCGATAGTCGATTTCGTTCCTCGACC 635

vanC-1 GGTATCAAGGAAACCTCCTTCCGCCATCATAGCT 822

vanC2/C3 CTCCTACGATTCTCTTGCGAGCAAGACCTTTAAG 439

ermB CATTTAACGACGAAACTGGCGGAACATCTGTGGTATGGCG 405 52

ermC ATCTTTGAAATCGGCTCAGGCAAACCCGTATTCCACGATT 283

• The primer pairs for E. faecalis and E. faecium are species-specific.

https://doi.org/10.1371/journal.pone.0254390.t001
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Fig 1 shows the bacterial loads in the different FF products (these are total bacterial counts,

not any specific species).

Isolates that were Gram-negative and catalase- and oxidase-positive were excluded from

most further tests. Yeasts were also excluded. Isolates were presumptively considered to be

enterococci based on the following findings: Gram-positivity and catalase-, and oxidase-nega-

tivity, growth in medium containing 6.5% NaCl, growth at temperatures of 45˚C for 24–48 hrs

and 60˚C for 30 minutes. Most isolates grew in culture broth containing 6.5% NaCl and during

incubation at 45˚C. Isolates 3, 4, 5, 30 and the ATCC E. faecalis itself showed growth at 10˚C

after storage for up to 4 days. Others did not show visible growth after 4 days at 10˚C, but grew

overnight when left at room temperature after removal from 10˚C.

The results of these tests also suggested which isolates may be non-enterococcal LAB

(nE-LAB). The study isolates confirmed as enterococci by PCR were isolates 1, 2, 21, 22, 25,

30, 45, 51, and 61–63 (all E. faecium) and 3–6 and 52 (all E. faecalis) (S2 Table and S1A Fig).

Isolates 3–6 that were found to be E. faecalis were independent isolates from a commercial

yogurt (Product 7) that is on sale in many supermarkets of the city labeled as “probiotic

yogurt”. This product also contained the highest bacterial load (Fig 1). Moreover, known VF

genes (gelE, cylA, cylB, cylM, asa, efaA, cpd, ccf, and cob) were contained in these isolates

(Table 2 and S1B–S1E Fig). The hyl gene was not detected in these or the other enterococcal

isolates, and the esp gene was found in only two (52 and 61) of the isolates tested (Table 2).

efaA was the most frequently occurring virulence gene, and was found in almost all E. faecalis
and E. faecium isolates. Isolates from cheese, milk and the national collection, most of them E.

faecium, also contained fewer numbers of VF genes (Table 2). With the caveat that the sample

sizes are small, the E. faecalis food isolates were found to contain significantly more VF genes

than the E. faecium isolates (Table 3). With respect to food types, yogurt samples contained the

highest number of VFs.

The disk diffusion AST results showed that isolates 2, 3 and 21 were all resistant to six of

seven antibiotics while isolates 30 and 31 were both susceptible to vancomycin, but 31 was sus-

ceptible to tetracycline as well (S3 Table). Isolates 2 and 3 were also resistant to all antibiotics

in the VetMIC format, including to ampicillin and vancomycin (S4 Table). Not all isolates

were tested by both disk diffusion and the VetMIC assay (due to limitations in availability),

but those tested by the latter assay were all resistant to all antibiotics. Almost all isolates tested

Fig 1. Microbial loads found in the different products of this study.

https://doi.org/10.1371/journal.pone.0254390.g001
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by both methods are considered multidrug-resistant. The VetMIC assay also showed that the

five isolates (2, 3, 4, 5 and 32) were resistant to not only vancomycin (MIC� 4 μg/mL, CLSI

breakpoint), but also to linezolid (S4 Table). Some resistance marker genes for vancomycin

((vanC1, vanC2/C3) and/or erythromycin (ermB, and ermC) were also found in several of the

isolates (Table 2).

Discussion

In this study, there were many more non-enterococcal and Gram-negative species in the prod-

ucts. Importantly, many of the tested products that were declared to have been pasteurized

Table 2. Virulence genes detected in enterococcal isolates of this study.

Source/isolate Virulence factor gene(s) detected antibiotic resistance genes

gelE esp cylA cylM cylB hyl asa1 efaA ccf cpd cob ermB ermC vanC1 vanC2/C3

Yogurt

E. faecalis + − + + + − + + + + + − + + −
1� − − − − − − − + − + − − − − −
2� − − − − − − − + + − − + − − −
3�� + − + − − − + + + + + − + − +

4�� + − + + + − + + + + + − − − −
5�� + − + + + − + + + + + + − +

6�� + − − − − − + + + + + − − + −
Cheese

21� + − − − − − + + − + + − − − −
22� − − − − − − − + − + − − − − −
25� − − − − − − − + + + − − − − −
30� − − − − − − − + + + − − + − −
Milk

45� − − − − − − − − + − − − − − +

51� − − − − − − − + − + + − − − +

52�� + + − − − − − + + + + − + − +

National Collection

61� + + + − − − − + + + − − − − −
62� + − − − − − − + − − + − − −
63� − − − − − − − + + + − − − − −

�—E. faecium.

��—E. faecalis.

https://doi.org/10.1371/journal.pone.0254390.t002

Table 3. Prevalence of virulence factors (VFs) per species and food type.

No species Total VFs Mean SD S2 Variance ratio t tc P

A. Virulence factor by species 0.78 5.27 2.447 <0.002

E. faecalis 6 37 7.4 1.5 2.25

E. faecium 9 18 3.33 1.323 1.75

No/food type Total VFs Rank sum U stat P

B. Virulence factor by food type U > Uc < 0.05

Yogurt 6 35 38

Cheese 4 13 17

https://doi.org/10.1371/journal.pone.0254390.t003
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contained enterococci. The possible sources of enterococci in the products, though not known

certainly. could include the environment, dairy workers, animals, and/or the equipments used.

The prevalence of enterococci reported here is probably an underestimate, since colony selec-

tion was at random and were identified as enterococci after isolation of pure colonies. Cur-

rently, no information is available about the types, numbers, and manners of selection of LAB

used in the fermentation processes of these commercial products. Nor are there any indica-

tions that regulations exist for the control of quality and safety of all commercial fermented

dairy products.

The commercial yogurt that is widely on sale (product 7) and that contained enterococci is

labeled as both “Pasteurized” and “Probiotic”. The general public is unfamiliar with “probiot-

ics”; however, “pasteurized” is in everyone’s concept and this gives consumers a sense of secu-

rity, which is false. Moreover, although the producer declared on the label the microbial flora

“present” in the product (3 in total, all of them suppose to be Gram-positive), Enterococcus is

not one of them. Additionally, all four independent enterococcal isolates contained most of

the virulence-encoding genes. The product also contained Gram-negative species. Thus, this

product is not what the producer declares it to be. The presence of enterococci in the other

“pasteurized” dairy products also suggests that the prevalence of enterococci is widespread. It

is possible that other FF products similarly contain enterococci and pathogenic microflora. In

general, microorganisms, including Enterococcus, can coexist with other bacteria in humans,

in foods or culture media [53–55]. In this study itself, most products contained enterococci

along with other Gram-positive and/or Gram-negative bacteria.

Foods of various sorts (dairy, poultry, seafood, etc) are major vehicles that transmit patho-

genic bacteria that carry virulence or toxin-encoding genes. For example, enterotoxin- and vir-

ulence-encoding genes were found in methicillin-resistant S. aureus strains isolated from

subclinical bovine mastitis [56]. Similarly, enterotoxin gene was detected in methicillin-resis-

tant S. aureus isolates from chicken [57]. These can also involve multi-drug resistant Gram-

negative pathogens [58–60]. Multidrug-resistant infections are generally more prevalent in

nosocomial settings, but are spreading into communities. These have multifaceted effects

including worse outcomes, increased morbidity and mortality, increased use of broad-spec-

trum antibiotics (thereby exacerbating the drug resistance problem and eventually exhausting

treatment options) and exaggerated healthcare costs [61,62]. Foremost among the involved

pathogens are methicillin-resistant Staphylococcus aureus, extended spectrum β-lactamse-pro-

ducing enterobacteriaceae, and vancomycin-resistant enterococci. A link between antibiotic

use in food animals and rates of antibiotic resistance in humans is known to exist, as exempli-

fied by the use of avoparcin (a glycopeptide) in Europe in the 1990’s, with the consequent rise

in vancomycin-resistant enterococci [63].

A recent guidance by the European Food Safety Authority (EFSA) [64] detailed that any E.

faecium strain with ampicillin MIC > 2 μg mL−1 and in possession of the genetic elements

IS16, hylEfm and esp should be considered unsafe. Conversely, those strains lacking these ele-

ments are to be considered safe as feed additives. The presence of these markers has been

reported to be positively-correlated with clinical, epidemic or hospital-associated strains of E.

faecium [38,65,66]. Unless it can be ascertained that strains that lack the above elements also

consequently lack the other known enterococcal VFs, it seems doubtful that strains lacking the

described genetic elements would be safe. In fact, some [67] argue that the EFSA designation

does not guarantee a safe strain and E. faecium strains without those elements can be associ-

ated with severe human infections. Most isolates tested here were resistant to ampicillin.

Enterococci display intrinsic resistance to β-lactams (via expression of penicillin-binding

proteins [PBPs] with low affinity to β-lactams) and aminoglycosides (AGs) (due to inability of

AGs to reach the target ribosome). Enterococci also display acquired resistance to β-lactams
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(via acquisition of β-lactamases or mutations in PBPs) and AGs (via acquisition of mobile genetic

elements, or enzymatic modifications of hydroxyl moieties of AGs, or ribosomal mutations) [24].

In this study, resistance to the AGs was found to be high, and these antibiotics may be of little if

any use against these isolates. However, such AGs may be of use when combined with β-lactams

(i.e., combination with cell wall active agents), resulting in synergistic bactericidal activity [68]. A

limitation of this approach is toxicity resulting from prolonged use of AGs [69]. Most of this

study’s isolates also displayed resistance to the β-lactams. Vancomycin found use as a treatment of

choice against aminoglycoside-resistant enterococci, but resistance to it has also emerged world-

wide. Other antibiotics (e.g., daptomycin, linezolid, tigecycline) were introduced to deal with van-

comycin-resistant enterococci, but enterococcal resistance to each of these drugs also rapidly

developed [24]. The tested isolates are considered MDR, including their resistance to linezolid,

which was recommended to treat vancomycin-resistant enterococci.

Limitations

More detailed analyses of FF products with respect to antibiotic resistance and virulence are

needed to elucidate the full impact of the findings of this study on public health. Full identifica-

tion and analyses for possible virulence and antibiotic resistance properties (including possibly

transferable resistance) of the non-enterococcal LAB/microbial species, which were not

addressed here, are also required.

Conclusions

Enterococci have been used for food fermentation and preservation, and they were for long

considered harmless. However, enterococci also cause opportunistic infections, which earned

them the unclassified status for some time as “friend or foe” [70,71]. On top of their possession

of both intrinsic and acquired antibiotic resistance, coexistence with other bacteria in various

habitats and niches (e.g., foods, animals and humans), evolution in both their resistance and

virulence traits, their propensity to acquire and disseminate resistance and virulence, and their

involvement in several types of infections (e.g., urinary tract infections, endocarditis, sepsis,

etc) make them formidable pathogens [33,72,73].

The findings here strongly indicate there are serious issues of safety of dairy foods. Many of

the dairy products tested contained enterococci, along with other Gram-positive and–negative

bacterial isolates. There is no clear information about the sources of these microbial flora (resi-

dent or contaminants), but it is very likely to be both. The virulence and antibiotic resistance

traits associated with these isolates are serious public health concerns. It is very likely that

these health risks are actually causing harm to consumers (but these are not recognized), due

to gaps in knowledge of cause-effect relationships. These also represent diagnostic challenges

(thus misdiagnosis is very likely in these scenarios), which could lead to inappropriate treat-

ment or failure to treat. Elucidating the roles of these and other microbes in metabolism, sym-

biotic association with the host, and overall role in host resistance/susceptibility to specific

epidemic or pandemic bacterial and viral pathogens are goals worth pursuing.

Supporting information

S1 Fig. PCR results for Enterococcus identification (A) and VF detection (B, efaA; C, cpd, ccf;
D and E, cob). PCR for species identification of Enterococcus. Upper panel: Lane 1: Molecular

weight marker (MWM) (1 Kb Plus), 2: Isolate 1, 3: Isolate 21, 4: Isolate 22, 5: Isolate 2, 6: Isolate

62, 7: Isolate 63, 8: Isolate 51, 9: Isolate 52, 10: Isolate 3, 11: Isolate 4, 12: Isolate 5. Lower panel:

Lane 1: MWM (1 Kb Plus), 2: Isolate 61, 3: Isolate 45, 4: Isolate 6, 5: Isolate 25, 6: Isolate 30, 7:

E. faecalis (ATCC), 8: Isolate 32 (a cheese isolate), 9: Negative control. Isolates 45, 25, and 30
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were run for the species PCR again with increased primer/template combinations and found to

be E. faecium (data not shown). (B) PCR for VF detection (efaA). Upper panel: Lane 1: MWM

(1 Kb Plus), 2: E. faecalis (ATCC), 3: Isolate 1, 4: Isolate 2. 5: Isolate 3, 6: Isolate 4, 7: Isolate 5, 8:

Isolate 6, 9: Isolate 21, 10: Isolate 22: 11: Isolate 25, 12: Isolate 30. Lower panel: Lane 1: MWM (1

Kb Plus), 2: E. faecalis (ATCC), 3: Blank lane, 4: Isolate 45, 5: Isolate 51, 6: Isolate 52, 7: Isolate

61, 8: Isolate 62, 9: Isolate 63, 10: Negative control. Isolates 51, 62 and 63 were found to contain

efaA in a different optimized PCR run. (C) PCR for VF detection (ccf and cpd). Upper panel:

Lane 1: MWM (1 Kb Plus), 2: E. faecalis (ATCC) (with both cpd and ccf). 3: Isolate 1, 4: Isolate

2, 5: Isolate 3, 6: Isolate 4, 7: Isolate 5, 8: Isolate 6, 9: Isolate 21, 10: Isolate 22: 11: Isolate 25, 12:

Isolate 30. Lower panel: Lane 1: MWM (1 Kb Plus), 2: E. faecalis (ATCC), 3: Blank lane, 4: Iso-

late 45, 5: Isolate 51, 6: Isolate 52, 7: Isolate 61, 8: Isolate 62, 9: Isolate 63, 10: Negative control.

Isolates 61 and 63 were found to contain both ccf and cpd in a different PCR. (D) PCR for VF

detection (cob). Upper panel: Lane 1: MWM (1 Kb Plus), 2: E. faecalis (ATCC), 5: Isolate 4, 6:

Isolate 5. Lower panel: Lane 1: MWM (1 Kb Plus), Lane 6: Isolate 62. (E) PCR for VF detection

(cob) for additional isolates. Upper panel: Lane 1: MWM (1 Kb Plus), Lane 9: Isolate 51, Lane

10: Isolate 52. Lower panel: Lane 1: MWM (1 Kb Plus), Lane 3: Isolate3, Lane 4: Isolate 6. The

other lanes in D and E were also loaded with samples but were negative for cob.
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S2 Table. Phenotypic and genotypic test results of bacterial isolates.
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S3 Table. Disk diffusion test results for the study isolates.
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