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Disruption of the open conductance 
in the β-tongue mutants of 
Cytolysin A
Monifa A. Fahie1,2, Lucas Liang2, Alzira R. Avelino1, Bach Pham2, Patanachai Limpikirati2, 
Richard W. Vachet1,2 & Min Chen1,2

Cytolysin A (ClyA) is a water-soluble alpha pore-forming toxin that assembles to form an oligomeric pore 
on host cell membranes. The ClyA monomer possesses an α-helical bundle with a β-sheet subdomain 
(the β-tongue) previously believed to be critical for pore assembly and/or insertion. Oligomerization 
of ClyA pores transforms the β-tongue into a helix-turn-helix that embeds into the lipid bilayer. Here, 
we show that mutations of the β-tongue did not prevent oligomerization or transmembrane insertion. 
Instead, β-tongue substitution mutants yielded pores with decreased conductance while a deletion 
mutation resulted in pores that rapidly closed following membrane association. Our results suggest 
that the β-tongue may play an essential structural role in stabilizing the open conformation of the 
transmembrane domain.

Pore forming toxins (PFTs) contribute significantly to virulence in many important pathogenic bacteria1. PFT 
permeabilize host cells by creating water-filled channels in their membranes, which leads to cell lysis2,3. The alpha 
(α) and beta (β) classification of PFTs refers to the secondary structure of their transmembrane domain – either 
α-helices or β -barrels4. PFTs are typically secreted as soluble monomeric proteins that bind host membranes in a 
lipid-dependent manner5,6 or through specific protein-receptor interactions7–9. Membrane-associated monomers 
then assemble to form a homo or hetero-oligomeric pre-pore. The pre-pore then converts into a lytic pore by 
forming the transmembrane domain which crosses the lipid bilayer2,10.

Cytolysin A (ClyA) is an α-PFT11,12 and a virulence factor for several bacterial species such as Escherichia coli 
(E. coli)13–15 and Salmonella typhi (S. typhi)16. Unlike classic PFTs, ClyA is secreted into the extracellular environ-
ment in outer membrane vesicles (OMVs)17,18. Little is known about how the OMVs deliver the cargo toxins to 
carry out the cytotoxic function19. The monomer of ClyA has a rod-shaped helical bundle of four long helices11. 
At one end, the C-terminus of ClyA forms a shorter helix that packs against the αA and αB helices forming a 
five-helix bundle for about one-third of the length of the monomer (Fig. 1a)11. Between the third and fourth 
helices of the main bundle, a highly hydrophobic β-hairpin (called the β-tongue) was predicted to be the trans-
membrane region by several groups11,20. Indeed, substitution of the hydrophobic residues within the β-tongue 
with aspartate or serine abolished its cytolytic activity, thus suggesting its role in forming the transmembrane 
domain21–23. However, the crystal structure of the ClyA transmembrane pore revealed that a large conforma-
tional change occurring during the conversion of the soluble monomer to the dodecameric transmembrane pore 
(Fig. 1b): the N-terminal amphipathic αA helix rotates 180° to pack with αA helices of neighboring monomers 
to form an iris-like α-helical barrel24. This conformational change is critical for protomer assembly as fixing the 
N-termini to the C-terminal helix using an engineered disulfide prevented the oligomerization25. Surprisingly, the 
β-tongue was not a component of the transmembrane barrel. Instead, it converted into an alpha helix-turn-helix 
that was located adjacent to the transmembrane domain for roughly 30% of the barrel length24. Therefore it was 
proposed that the β-tongue may act as a hydrophobic membrane anchor that initiates the membrane association 
which subsequently triggers the assembly of the oligomer24. However, earlier biochemical studies do not fully 
support this notion as deletion or substitution mutations in the β-tongue region did not completely abolish the 
membrane association ability21,22.

To understand why the β-tongue is necessary for the cytolytic function of ClyA, we created two β-tongue 
deletion mutants, two substitution mutants and explored their ability for: (1) membrane association; (2) 
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oligomerization and (3) pore formation. Our data showed that the mutants retained the ability to interact with 
the membrane and form ring-like oligomers that were comparable to the wild type. However, the hemolytic 
activity of these mutants was either severely impaired or abolished, which correlated with the reduction or loss 
of the open conductance in the lipid bilayer. Our results suggest that the β-tongue domain may be involved in 
maintaining the open conformation of the α-helical transmembrane barrel.

Results
Characterization of the β-tongue mutants.  We created two deletion mutants and two substitution 
mutants to test how the β-tongue region of ClyA affects its assembly and pore-forming ability. One mutant had 
a deletion of residues 185–203, corresponding to the two β strands and the helix αE only, and a slightly longer 
deletion where residues 181–203 were removed (Fig. 1). The glycine 188 and proline 189 were kept in the trun-
cated region (Fig. 1c) to form the turn connecting the end of two helices that run parallel to each other in the 
protomer structure (Fig. 1a). The two other mutants were created to test how altering the hydrophobicity in the 
β-tongue would affect ClyA. The mutant with decreased hydrophobicity was I198A/V202A/V203A (ClyA-IVV) 
while the mutant with increased hydrophobicity was S195A/Y196A/S197A (ClyA-SYS). As expected, the purified 
Δ185–203 mutant and Δ181–203 mutant ran faster than ClyA wild-type (ClyAwt) in SDS-PAGE (Fig. 2a). The 
average molecular mass of the ClyA proteins were confirmed by mass spectrometry to be 34.447 kDa for ClyAwt, 
32.790 kDa for Δ185–203, 32.650 kDa for Δ181–203, 34.330 kDa for ClyA-SYS and 34.350 kDa for ClyA-IVV 
which were all within 3 Da of their theoretical mass (Supplementary Figure S1).

Interestingly, the deletion mutants in their native state eluted earlier than ClyAwt in gel filtration suggesting a 
partially misfolded or altered monomeric state (Fig. 2b). Dynamic light scattering measurements however suggest 
that the Δ185–203 mutant was dimeric, while the Δ181–203 mutant was trimeric (Supplementary Table S1). It 
is unclear why the deletion of the β-tongue could lead to oligomer formation but a possible explanation is that 
the deleted region of the mutants may have disrupted the packing of the α-helix bundle resulting in the partial 
exposure of hydrophobic regions that promoted the non-native oligomerization of monomers.

To assess whether the secondary structures were affected, ClyAwt and the mutants were characterized using 
circular dichroism (Fig. 2c). Both deletion and substitution mutants showed significant alpha helical content, 
indicating the secondary structures were largely retained. In addition, we obtained the intrinsic fluorescence of 
the proteins (Fig. 2d). ClyA has two tryptophan residues, W37 and W86 which are both buried in the monomeric 
form (Supplementary Figure S2). The intrinsic fluorescence of ClyA-IVV mutant aligned well with that of ClyAwt 
suggesting a very similar fold. However, the emission maximum for ClyA-SYS and Δ185–203 mutants was red 
shifted by 4 nm while there was a 7 nm red shift for the Δ181–203 mutant (Fig. 2d, Supplementary Figure S3). 
Notably, all mutants had a reduced fluorescence intensity compared to ClyAwt (Supplementary Figure S3). The 
red shift in emission maximum as well as the reduction in fluorescence intensity suggests that either one or both 
of the tryptophan residues of the mutants have switched to more solvent exposed state than those in ClyAwt26. 

Figure 1.  Structure and sequence of ClyA and the β-tongue mutants. Structures of (a) the ClyA monomer 
(1QOY) and (b) a protomer from the transmembrane oligomer (2WCD). (c) Sequence alignment of ClyA 
proteins. Mutants Δ185-203 and Δ181-203 have deleted residues indicated by the dashes (−). ClyA-SYS has 
alanine mutations at S195, Y196, S197 while ClyA-IVV has alanine mutations at I198, V202 and V203.
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These results indicate that deletion of the β-tongue residues especially may have disrupted the monomeric struc-
ture that led to the exposure of the tryptophans to solvent.

The hemolytic activity of ClyA mutants.  To evaluate the cytolytic activity of the mutants we performed 
hemolytic assays (Fig. 3). Red blood cells were incubated with ClyA proteins to give an initial OD650 reading of 
0.5–0.7 and a final protein concentration between 2.9–3.06 × 10−6 M. Lysis was monitored at several intervals 
over time by the decrease in optical density at 22 °C (Fig. 3a). The ClyAwt reached 50% hemolysis after 40.3 ± 0.4s 
while the mutants were significantly slower. ClyA-SYS mutant reached 50% lysis at 241.7 ± 5.5s, ClyA-IVV at 
657.6 ± 15.7s and Δ185–203 at 1174.5 ± 10.5s. Notably, the Δ181–203 mutant did not lyse the cells under these 
conditions. Next, we monitored cell lysis as a function of toxin concentration (Fig. 3b). Red blood cells were 
incubated with ClyA proteins ranging from 0.58 nM to 3.06 µM for 15 min at 37 °C. The HC50, defined as the con-
centration of ClyA protein to reach 50% of cell lysis was 4.20 ± 0.23 × 10−9 M for ClyAwt. The HC50 of the mutants 
were 2.95 ± 0.3 × 10−8 M for ClyA-SYS mutant, 1.54 ± 0.08 × 10−7 M for ClyA-IVV and 1.60 ± 0.09 × 10−6 M for 
Δ185–203 respectively, corresponding to a ~10-fold, ~40-fold and ~380-fold reduction in hemolytic activity 
compared to ClyAwt (Fig. 3b). Under these conditions, the Δ181–203 mutant had no detectable lytic activity. In 
summary, all of the β-tongue mutants showed a strong reduction in hemolytic activity compared to ClyAwt, while 
the Δ181–203 mutant had a complete loss of hemolytic ability.

Membrane-association of β-tongue mutants.  It was suggested that the role of β-tongue is to initiate 
membrane insertion which leads to the assembly of the ClyA monomers at the membrane surface24. Because the 
hemolytic activity of the β-tongue mutants were significantly impaired, we investigated whether the loss in hemo-
lytic activity was due to an inability to associate with membranes.

We used a membrane pull down assay to assess membrane association ability of ClyA variants to brain lipid 
vesicles or sheep’s red blood cells. All proteins were incubated with brain lipid vesicles at 23 °C and red blood cells 
at 37 °C for the indicated times to induce protein-membrane association. The protein-membrane or protein-red 
blood cell mixtures were then centrifuged and the supernatant and pellet were analyzed by SDS-PAGE and 

Figure 2.  Characterization of ClyA proteins. (a) SDS-PAGE of purified WT protein, Δ185–203, Δ181–203, 
IVV and SYS mutants on separate gels which were cropped. (b) Gel filtration profiles of the purified proteins 
using Superdex 200 column (GE). (c) Secondary structure analysis of ClyA samples using circular dichroism. 
(d) Intrinsic fluorescence spectra of ClyA samples excited at 280 nm and fluorescence read from 293–407 nm.
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western blot. The fraction of proteins bound to membranes was calculated from the band intensity of pellets 
compared with the total amount of protein before centrifugation (Fig. 4). After a 5 minute incubation, the fraction 
of ClyA proteins found in brain lipid membrane was 76 ± 8% for wild type, 78 ± 1% for Δ185–203, 67 ± 2% for 
Δ181–203, 76 ± 14% for ClyA-SYS and 78 ± 15% for ClyA-IVV (Fig. 4a,b). This indicates that all ClyA proteins 
associated with membranes with high efficiency, with the Δ181–203 mutant exhibiting a slightly reduced mem-
brane association after 5 min compared to ClyAwt. After one hour incubation, the fraction bound to the pellet 
reached saturation for all ClyA proteins. Similarly, when the ClyA proteins were incubated with red blood cells, 
they were mainly associated with the cell pellet (Fig. 4c). After two hours incubation of protein with red blood 

Figure 3.  Hemolytic activity of ClyA proteins. (a) The time-dependent hemolytic activity of the ClyA proteins 
was measured as a loss in optical density at 650 nm of the red blood cell (RBC) suspension over time. ClyA 
proteins (750 µL) were mixed with 250 µL red blood cells to give a final protein concentration of 100 µg/mL 
and an initial OD650 reading of 0.5–0.7. Hemolytic activity for wt (black, 2.90 µM), Δ185–203 (red, 3.05 µM), 
Δ181–203 (blue, 3.06 µM), SYS (green, 2.91 µM), IVV (orange, 2.91 µM) was measured. (b) The concentration-
dependent hemolytic activity of ClyA proteins were characterized by measuring A540 for the level of hemoglobin 
released into the supernatant after 15 min incubation of RBCs with varying concentrations of protein. The data 
points are the average of at least three independent trials and the errors are the standard deviation.

Figure 4.  Membrane association assay of ClyA proteins. (a) Representative gels after 24 hours incubation of 
ClyA samples with brain lipid membranes. The no lipid (−lipo) and total samples (T) were not centrifuged. The 
supernatants (S) and liposome pellets (P) of the liposome-treated samples were collected after separation by 
ultra-centrifugation. ClyA proteins in all fractions were analyzed with SDS-PAGE. (b) Quantitative analysis of 
proteins found in the pellet (P) fraction compared to that in the total (T) at various incubation times. Percentage 
of protein bound to the membrane pellets were calculated using ImageJ analysis for the different time points. 
Fraction bound is the average and the error bar is the standard deviation from three independent trials. (c) 
Western blot analysis of ClyA proteins incubated with red blood cells for 30 mins and 2 hrs. The gels were 
cropped for conciseness.
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cells, ~97% of ClyAwt was found in the pellet, while ~95% of Δ185–203, ~73% of Δ181–203, ~81% ClyA-IVV 
and ~79% ClyA-SYS were in the pellet fraction. These results show that the β-tongue mutations can still bind to 
vesicle membranes and red blood cell membranes albeit with slightly decreased efficiency.

Since the β-tongue mutants were still able to associate with membrane in high efficiency, altered membrane 
association alone would not explain the severely impaired hemolytic activity of all mutants. We wondered if the 
alteration of the β-tongue might prevent monomers from forming the oligomeric ring of the pore or pre-pore. 
Previous studies have used electron microscopy to analyze the structure of ClyA pores that were induced to 
oligomerize by the addition of detergent dodecyl-D-maltoside (DDM)20,25 or octyl-glucoside27. We therefore 
obtained images of DDM-treated proteins as well as proteins that were embedded in vesicle membranes by EM. 
We found that all five ClyA proteins generated barrel-shaped structures in random orientations on EM grids 
(Fig. 5). We also tested the heat stability of the DDM-treated proteins and found that the deletion mutants were 
more heat resistant than ClyAwt, ClyA-SYS and ClyA-IVV (Supplementary Figure S4). Therefore, the loss in 
hemolytic activity is not caused by the inability to form oligomers or the loss in oligomer stability once formed.

Single channel recording of ClyA pores.  Next, we investigated the ionic current characteristic of the 
pores formed by the ClyA proteins by using electrical recording of pores embedded in planar lipid membranes. 
The ionic conductance of the transmembrane pores is related to their pore dimensions. ClyA proteins were added 
to the recording chamber and the conductance of pores was calculated from the step-wise increase of ionic current 
caused by the insertion of individual protein pores (Fig. 6). ClyAwt, Δ185–203, ClyA-IVV and ClyA-SYS pro-
duced stable open pores. ClyAwt pores have an average conductance of 10.4 ± 0.04 nS. Δ185–203 pores showed 
two populations with conductance of 1.9 ± 0.6 nS and 5.5 ± 0.3 nS. The average conductance for ClyA-IVV and 
ClyA-SYS was 6.4 ± 0.2 nS and 6.8 ± 0.1 nS respectively. Compared to ClyAwt there was a significant reduction in 
the average conductance for these mutants (Fig. 6a–d). In addition, the Δ181–203 mutant exhibited heterogene-
ous currents in the planar lipid bilayer which we categorized into two groups: (1) transient current spikes and (2) 
open pore currents that lasted from seconds to minutes (Fig. 6e). We also observed traces generated by Δ181–203 
showing two phases: the early phase showed step-wise increase of the current corresponding to pore insertions, 
while the later phase showed step-wise decreases in current suggesting pore closures. Our observations suggest 
that Δ181–203 could not form stable open pores in planar lipid membranes, which could account for its complete 
loss in hemolytic activity. We surmise that the β-tongue serves as a vital membrane anchor, without which pores 

Figure 5.  Electron microscopy of DDM-induced and vesicle associated ClyA oligomeric proteins. The images 
show negatively stained ClyAwt, Δ185–203, Δ181–203, ClyA-IVV and ClyA-SYS proteins that were incubated 
in 0.1% DDM or in vesicles from brain lipid extract. The two panels of ClyAwt in DDM were images of two 
batches of independently prepared proteins which exhibited mainly the ring top view (left) and the barrel side 
view (right) of ClyA. Scale bars represent 100 nm. Black arrows indicate oligomeric rings.
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can detach from the membrane manifested as stepwise loss in ionic current. Alternatively, the β-tongue pins seg-
ments of the helical barrel to the membrane core to hold it open. Without it, the pore can collapse and completely 
close and possibly re-open transiently. Since the membrane association the Δ181–203 mutant was similar to the 
ClyAwt pore (Fig. 4), we propose that the β-tongue is more likely to play a role in holding the pore open.

Discussion
Partial deletion of the β-tongue region resulted in greatly reduced hemolytic activity while complete removal 
abolished lysis entirely. This observation is consistent with previous studies that showed mutations at or the dele-
tion of the β-tongue caused the loss of hemolytic activity11,21–23. However, our data have shown that the β-tongue 
is not essential for membrane interaction as the full deletion mutant was still able to associate with membranes, 
albeit with slightly decreased efficiency. Furthermore, the mutation of the β-tongue did not abolish the oligomer-
ization of ClyA, as demonstrated by the EM study of the mutant oligomers. Current recording experiments of 
ClyA pores further confirmed that the β-tongue deletion mutants were able to form pores on planar lipid bilayers, 
suggesting that the amphiphilic N-terminal helix (αA) alone is sufficient to mediate membrane association and 
transmembrane domain formation.

Our single channel electrical current recordings further revealed that the β-tongue partial deletion mutant 
Δ185–203 and substitution mutants ClyA-IVV and CyA-SYS formed pores of smaller conductance than the wild 
type. More importantly, the β-tongue full deletion mutant Δ181–203 pore exhibited a short-life span lasting only 
seconds to a minute, which suggests that the α-helical transmembrane barrel may have switched to a closed con-
formation. In contrast, a previous electrophysiological characterization of a β-tongue mutant Δ181–203 showed 
the mutant formed stable pores of broad conductance, half of which were similar to wild type proteins21. This 
observation is contradictory to the results of our hemolytic assays and their own assays in which the complete loss 
of hemolytic activity was observed for mutant Δ181–20321. The contradiction in the previous work was attributed 
to the mutant’s deficiency in membrane association, which was estimated to be 25% of the ClyAwt level based 
on the pore insertion rate on DPhPC planar bilayers21. If this is the case, then we would expect that a Δ181–203 
mutant with only a 4-fold reduction in membrane association should still result in a fairly active toxin, especially 
if half of the population formed pores similar to the wild type. So, we directly examined membrane retention of 
ClyA proteins on brain lipid membranes and on red blood cells and found only a slight decrease in association 
efficiency with our β-tongue deletion mutants. We believe that the slightly reduced membrane association of the 

Figure 6.  Current recording characteristics of the ClyA proteins. The insertion of consecutive pores of (a) 
ClyAwt and (b) Δ185–203 and the population distribution of their conductance. The conductance distributions 
for (c) ClyA-IVV and (d) ClyA-SYS. (e) The different classes of membrane activity displayed by Δ181–203 
mutant. Traces were recorded in 1.0 M KCl, 20 mM Tris-HCl pH 8.0 buffer at +10 mV at a sampling rate of 
100 µs using a low pass Bessel filter of 2 kHz. Conductance measurements from at least 100 pore insertions were 
analyzed. For Δ181–203 over 20 trials were performed.
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β-tongue Δ181–203 alone should not account for the complete loss of its functionality. Although it is logical to 
think the decreased hemolytic activity of the deletion mutants may be the result of impaired oligomerization effi-
ciency caused by mutations, we observed that the substitution mutants (IVV and SYS) also showed diminished 
activity, despite none of the residues in substitution mutants are involved in protomer-protomer interactions 
which stabilize oligomer formation. In addition, even if Δ181–203 mutant had a slower oligomerization effi-
ciency, one might expect it still contains partial hemolytic activity. Instead, we observed a completely inactive 
toxin after it was exposed to red blood cells for more than one-hour.

Our single channel studies suggest that removing key residues of the β-tongue led to a smaller or closed trans-
membrane domain manifested by reduced conductance in all the β-tongue mutants. The crystal structure of the 
ClyA transmembrane pore shows that residues 181–203 in the β-tongue associated with the αA helix (Fig. 7a,b). 
Analysis of non-covalent interactions in the ClyA transmembrane pore by PDBsum reveals that 50 interacting 
residue pairs exist between the αA helix and its surroundings, 31 of which occur between the αA helix-helix 
packing of adjacent protomers28,29. The rest formed between αA and the β-tongue of the same protomer and a 
neighboring one. Specifically, residues 181–203 of the β-tongue join residues 177–180 to form a helix-turn-helix 
that packs tightly with αA. Particularly residues I198 and V202 of the β-tongue form hydrophobic interactions 
with residues Y27, L31, V34 and I35 of αA helix while S195 forms a hydrogen bond with Y30 (Fig. 7). When the 
interactions between β-tongue and αA were disrupted in the substitution mutants ClyA-IVV and ClyA-SYS, 
where the I198/V202 and S195 were replaced with alanine respectively, the conductance of the pores were reduced 
by 40% regardless if the hydrophobicity of the β-tongue was increased or decreased. Apparently, the significant 
deletions of the β-tongue resulted in partially or completely closed pores. This could be due to Δ181–203 deletion 
mutant may also alter the orientation of the α-helix 177–180 and disrupt hydrophobic interaction between A179 
with the L31 of the neighboring αA in addition to the loss of I198/V202/S195 interactions (Fig. 7). Because of 
that, we surmised that in order to gain more contact with each other without the two supporting helices formed 
by the β-tongue, the αA helical domain of Δ181–203 may twist to a larger degree relative to the bilayer normal, 
which results in a more closed pore compared to other mutants. This speculation will be further investigated by 
structural studies and molecular dynamics simulation.

Two other structures that have a barrel structure formed by a single transmembrane α-helix are the fragacea 
toxin C (FraC) produced by sea anemones and the E. coli outer membrane protein Wza, which is responsible 
for exporting polysaccharide from the bacteria30,31. The α-helical barrel of the FraC octamer is tightly held by 
the protein-lipid interactions. Eight fenestrations appear at the promomer-protomer contact interface that are 
exposed to the lipid bilayer (Fig. 7b). Of note, 12 smaller fenestrations could also be seen between the protomers 
of dodecameric ClyA after removing the β-tongue region from the ClyA transmembrane pore structure to expose 
the α-helical barrel (Fig. 7c). In the FraC α-helix barrel, lipids were found to cover these fenestrations by forming 
interactions with the α-helical peptides. In ClyA, the β-tongue transformed into a two helix bundle that covers 
up the gap instead. Octameric Wza, exhibits a perfectly sealed barrel wall, yet the transmembrane domain of Wza 
consists of a 26 amino acid long α-helix with a kink created by a proline at the 11th position. The kink breaks the 
α-helix into two shorter helices that spans the lipid membrane by 13.8 Å and 26.1 Å, respectively (Fig. 7d). By 
this arrangement, 42 interacting residue pairs can be found between the two neighboring transmembrane helices 
within Wza, compared to 22 pairs within FraC and 31 pairs within ClyA as revealed by PDBsum analysis28,29. The 
significantly reduced helix packing in FraC and ClyA likely account for the fenestrations that appear in the barrel. 

Figure 7.  Structures of the α-helical transmembrane regions of ClyA, FraC and Wza channel proteins. (a) 
Hydrophobic interactions and a single hydrogen bond of β-tongue residues (red) with αA residues (blue). (b–d) 
Surface representation of the α-helical transmembrane domains of (b) FraC, (c) ClyA (d) Wza. Residues 177–
204 were removed from ClyA structure to expose the surface of the transmembrane barrel.
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This suggests that a single continuous α-helix with a length >35 Å, which is required to span the lipid bilayer, is 
unable to pack seamlessly to form a barrel. Unlike FraC, the ClyA β-tongue mutants may not be able to maintain 
its original helix-helix packing angle because it would expose its negatively charged residues around the fenestra-
tions to the hydrophobic lipid environment (Supplementary Figure S5).

The monomer structures of two α-PFTs, Hbl-B and NheA, exhibit remarkably high structural similarity to 
the ClyA monomer despite their lack of sequence homology32,33. These two Bacillus cereus toxins also contain 
a hydrophobic β-tongue like region that was proposed to form the transmembrane domain. Furthermore, the 
recently solved crystal structure of Cry6Aa, a Cry insecticidal protein from Bacillus thuringiensis, also resembles 
the structure of the ClyA monomer except that a long hydrophobic loop was found at the corresponding β-tongue 
region34. Future biochemical and structural studies of the transmembrane pores of these ClyA-type αPFTs could 
further reveal if a common structural arrangement is shared among them during membrane association and 
penetration.

In summary, the β-tongue mutations reduced or abolished cell lytic activity in the ClyA toxin, seemingly 
because the mutant may be unable to form a fully open transmembrane domain in the lipid bilayer. Our data 
suggest the essential role of two helix bundles transformed from the β-tongue region in stabilizing the αA helix 
barrel structure of the transmembrane domain. Our finding may also provide useful guidance for the design of 
new α-helical barrel protein pores.

Methods
Construction of ClyA β-tongue mutants.  The β-tongue deletion ClyA mutants (Δ185–203 and 
Δ181–203) were obtained by overlap PCR as previously described35. PCR was performed using a Phusion  
polymerase kit (New England Biolabs) with pT7-ClyAwt-His6 as a template. The primers for Δ185–203  
were 5′-GGTGGTCCAGAAGGAAAACTGATTCCAGAATTG-3′ (forward) and 5′-TCCTTCTGGACCACC 
GGCTGCGGCACCGGCATATG-3′ (reverse) while those for Δ181–203 were 5′-GCCGGTGGTCCAGAAG 
GAAAACTGATTCCAG-3′ (forward) and 5′-CTTCTGGACCACCGGCATATGCTTCCTTCCTGATTTTATC-3′ 
(reverse). ClyA-IVV primers were 5′-GCGGCTGCGGGCGCCGCGGAAGGAAAACTGATTCCAG-3′ 
(forward) and 5′-GGCGCCCGCAGCCGCAGAATAGGAAATGATTAATC-3′ (reverse) while ClyA-SYS  
primers were 5′-ATTGCGGCAGCAATTGCTGCGGGCGTAG-3′ (forward) and 5′-AATTGCTGCCGCAATGAT 
TAATCCAAATG-3′ (reverse). The four different PCR products were digested with DpnI at 37 °C for 3 hours to 
remove the template plasmids. Chemically competent E. coli Novablue cells were then transformed with the DpnI 
mixture. Plasmids from transformed Novablue colonies were digested with NdeI to identify those containing the 
ClyA genes and then the mutations were confirmed by DNA sequencing.

Protein expression and purification.  The plasmids were transformed into E. coli BL21 (DE3). Cells from 
a pre-culture inoculated from a single colony were grown in 250–500 mL Luria Broth (LB) media at 37 °C to an 
OD600 of 0.6. Isopropyl β-D-1-thiogalactopyranoside was then added to the cell culture at a final concentration 
of 0.5 mM to induce protein expression. The cultures were grown for 16–18 h at 15 °C and then harvested by 
centrifugation. The cell pellets were frozen at −20 °C until ready to use. The C-terminal hexa-His-tagged ClyA 
proteins were purified by Ni-NTA affinity chromatography. Cell pellets were resuspended in 20 mL lysis buffer 
(50 mM Tris-HCl, pH 8.0, 1 mM EDTA, 0.1 mM phenylmethanesulfonylfluoride). The cell suspensions were then 
sonicated for 15 min and the lysate was centrifuged at 10,000 × g for 15 min to pellet the cell debris. After passing 
through a 0.45 µm filter, the supernatant was loaded onto gravity Ni-NTA affinity columns that were equilibrated 
with cold buffer A (50 mM Tris-HCl, pH 8.0, 150 mM NaCl). His-tagged ClyA proteins were eluted in eluting 
buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 150 mM imidazole) after an initial treatment with wash buffer 
(50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 50 mM imidazole). The eluted proteins were then dialyzed twice at 4 °C 
for at least 8 h in dialysis buffer (50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 150 mM NaCl). The dialyzed protein was 
concentrated using 10 kDa cutoff Centricon and further purified using HW-55S gel filtration column (TOSOH) 
that was equilibrated in 10 mM sodium phosphate buffer pH 7.0, 150 mM NaCl. The ClyA proteins were collected 
and assayed the same day or stored at −80 °C until use. The purity of the protein (>95%) was verified by sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and visualized using a stain free imaging method 
(Biorad). Protein concentration was determined by bicinchoninic acid (BCA) assay.

Gel Filtration of ClyA proteins.  ClyA proteins were prepared and analyzed similar to previously described 
methods35. Briefly, purified proteins (100–200 µg) were analyzed by using an analytical Superdex 200 10/300 gel 
filtration column (GE healthcare) equilibrated in 150 mM NaCl, 20 mM sodium phosphate pH 7 buffer.

Liquid Hemolysis assay to test pore-forming activity.  Sheep’s defibrinated blood (Lampire Biological 
Laboratories) was rinsed in 50 mL of isotonic buffer (150 mM NaCl 10 mM sodium phosphate pH 7.0) and pelleted 
at 3,200 × g until the supernatant was colorless/light pink. The red blood cell pellet was then resuspended in iso-
tonic buffer to the indicated diluted percent. For the concentration dependent hemolysis assay, 250 µL of 25% red 
blood cell suspension were mixed with 100 µL of prepared ClyA proteins of various concentrations ranging from 
0.58 nM to 3.06 µM at 37 °C for 15 minutes. Samples were then centrifuged at 20,000 × g for 2 min to pellet any 
intact red blood cells. The absorbance of the supernatant at 540 nm was measured to determine the relative amount 
of released hemoglobin protein36. Total hemolysis was defined by the incubation of red blood cells in MilliQ water. 
For the time-dependent hemolysis assay25, a total of 100 µg of protein was mixed with isotonic buffer in a dispos-
able cuvette to a final volume of 750 µL. Then 250 µL of 1.56% red blood cell suspension was added to bring protein 
to a final concentration of 100 µg/mL or between 2.9–3.06 µM. The cuvette was inverted three times and the OD650 
was measured at 22 °C every 2–20 s. The hemolysis results were plot and fit using Origin 2017.
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Circular Dichroism measurement.  ClyA protein samples (0.2 mg/mL; 5.8–6.1 µM) in 10 mM sodium 
phosphate buffer pH 7.0, 150 mM NaCl were filtered using 0.22 µm filter into 1 mm path-length cuvettes. The 
CD spectrum was recorded at 0.5 nm/s scanning speed on a Jasco 1500–150 CD Spectrometer from 200–250 nm 
at 25 °C. The spectra are shown as an average of three scans. For heat stability test of ClyA oligomers, the ClyA 
samples were first pre-incubated in 0.1% DDM at 23 °C for 30 mins. Half of the mixture was heated at 90 °C for 
20 min and then cooled to 25 °C and measured after 10 min equilibration at 25 °C.

Intrinsic Fluorescence measurement.  ClyA proteins were analyzed as previously described35. Briefly, 
1 mL of 0.88–0.91 µM of ClyA proteins were excited at a wavelength of 280 nm and their emission spectra were 
collected from 293–407 nm using a PTI fluorimeter at 22–23 °C. The spectrum of the blank buffer (150 mM NaCl, 
10 mM sodium phosphate pH 7.0) was subtracted from the spectra of ClyA samples.

Membrane Preparation.  To prepare lipid vesicles, porcine brain lipid extract in chloroform (Avanti Polar 
Lipids) was dried under nitrogen and then reconstituted in 150 mM NaCl, 10 mM sodium phosphate pH 7.0 
buffer at a concentration of 25 mg/mL. After five cycles of freeze-thawing, the lipids were then extruded 31 times 
through a 0.1 µm filter to generate unilamellar vesicles. For membrane pull down assay, 25 µl of 25 mg/mL lipids 
was reconstituted in 300 µl centrifugation buffer (150 mM NaCl, 10 mM sodium phosphate pH 7.0, 5% sucrose). 
The reconstituted lipids were flash frozen and thawed three times and bath sonicated for 60 min at room tem-
perature to prepare membrane. The prepared membranes were then used immediately or stored at 4 °C for up to 
two weeks.

Electron Microscopy of ClyA pores.  ClyA proteins (0.2–0.5 mg/mL) were either incubated in 0.1% DDM 
for 16 hours at 4 °C or incubated in vesicles made in a 1:100 protein-lipid mass ratio for 16 hours at 22–23 °C. 
ClyA proteins incubated in DDM were then diluted 5 times with 0.1% DDM solution while protein in vesicles 
were undiluted. Carbon coated Parlodion grids were glow discharged for 30s. A volume of 5 µL sample was added 
to the grid and allowed to rest on the carbon side of the grid for 30s. The excess liquid was removed with a fil-
ter paper and the adsorbed protein was stained with 2% uranyl acetate onto the surface. The excess liquid was 
removed with filter paper and the grid allowed to air-dry for 5 min. The samples were imaged using a FEI Tecnai 
12 Spirit electron microscope at 92 or 105 kV.

Membrane pull-down assay.  ClyA proteins at a concentration of 250–300 µg/mL were filtered using 
a 0.22 µm filter and then centrifuged at 20,000 × g for 10 min to pellet any insoluble aggregates. The proteins 
in the supernatants were then mixed with vesicle membranes at a ratio of ~1:50 protein:lipid mass ratio. The 
protein-liposome mixture was incubated for various time periods: 5 min, 1 hr, 6 hr, and 24 hr at 22–23 °C. 
Thereafter, 20 µl of the protein-lipid mixture was reserved as a sample to indicate the total amount of protein while 
the rest was ultra-centrifuged at 200,000 × g for 30 min using Optima TLX ultracentrifuge (Beckman Coulter). 
The supernatant was separated from the membrane pellet while the pellet was resuspended in buffer at the same 
initial volume prior to centrifugation. The total supernatant and pellet samples were mixed with SDS-Laemmli 
buffer and analyzed via SDS-PAGE. The percent protein found in the pellet was calculated from the protein band 
intensity as analyzed by ImageJ.

For the membrane binding assay with red blood cells, 150 ng ClyA proteins were mixed with 100 µl of red 
blood cells (blood was used within six weeks from the bleed date). The protein blood cell mixture was incubated 
in a 37 °C water bath for 30 min or 2 hr. Thereafter, 30 µL of the protein blood cell mixture was saved as the sample 
to indicate the total amount of ClyA proteins. The remaining mixture was centrifuged at 200,000 × g for 30 mins 
at 25 °C. The total, supernatant and cell pellet samples were run on an SDS-PAGE. The proteins were then trans-
ferred onto PVDF membrane (GE Healthcare Life Sciences) in cold transfer buffer (192 mM Glycine, 25 mM Tris, 
20% methanol) at constant 350 mA for 100 mins. The membranes were then incubated with gentle shaking in 
5% non-fat milk dissolved in TBST buffer (150 mM NaCl, Tris-HCl pH 7.4, 0.1% Tween-20) for 1 hr. After three 
times washing in TBST, the membranes were then incubated with a 1:10,000 dilution of primary mouse antibody 
against His6 tag (His.H8 clone, Invitrogen) in TBST containing 1% BSA for 16 hrs at 4 °C. Then the membranes 
were washed three times in TBST and incubated with the donkey anti-mouse HRP secondary antibody (1:20,000 
dilution) in TBST containing 1% BSA for 1.5 hrs at 23 °C. The membranes were washed three times in TBST 
and the fourth wash was in TBS. The membranes were developed using the ECL prime kit (GE Healthcare Life 
Sciences) and imaged.

Electrophysiology characterization of ClyA proteins.  Experiments were performed as previously 
described in a chip partitioned into two chambers separated by a 25 µm-thick Teflon film containing a 100-µm 
diameter aperture35. The ClyA proteins were incubated in 0.1% DDM overnight at 4 °C to oligomerize prior to 
electrophysiology characterization. The Teflon film was treated with a hexadecane/pentane (1:10 v/v) solution and 
the pentane was allowed to evaporate. Thereafter, 900 µl of 1 M KCl, 25 mM Tris-HCl, pH 8.0 buffer was added to 
both chambers. 1,2-diphytanoyl-sn-glycerol-3- phosphocholine (DPhPC) in pentane (10% w/v) was deposited on 
the surface of the buffer and the pentane was allowed to evaporate. A Ag/AgCl electrode was placed in each cham-
ber with the cis chamber grounded. A bilayer was spontaneously formed by pipetting the solution up and down 
across the aperture. The proteins (5–10 nM) were added to the cis chamber and a voltage of +10 mV was applied 
across the membrane. The current was amplified with an Axopatch 200B integrating patch clamp amplifier (Axon 
Instruments, Foster City, CA). Signals were filtered with a Bessel filter at 2 kHz and then acquired by a computer 
(sampling at 100 µs) after digitization with a Digidata 1320 A/D board (Axon Instruments). Conductance meas-
urements from at least 100 pore insertions unless otherwise stated were analyzed with Clampex 10.7 software.
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Data Availability Statement.  All data generated or analysed during this study are included in this pub-
lished article (and its supplementary information files) and are available from the corresponding author on rea-
sonable request.
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