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Abstract: With the advancement of society and the economy, environmental problems have
increasingly emerged, in particular, problems with urban CO2 emissions. Exploring the driving forces
of urban CO2 emissions is necessary to gain a better understanding of the spatial patterns, processes,
and mechanisms of environmental problems. Thus, the purpose of this study was to quantify the
driving forces of urban CO2 emissions from 2000 to 2015 in China, including explicit consideration
of a comparative analysis between national and urban agglomeration levels. Urban CO2 emissions
with a 1-km spatial resolution were extracted for built-up areas based on the anthropogenic carbon
dioxide (ODIAC) fossil fuel emission dataset. Six factors, namely precipitation, slope, temperature,
population density, normalized difference vegetation index (NDVI), and gross domestic product
(GDP), were selected to investigate the driving forces of urban CO2 emissions in China. Then, a probit
model was applied to examine the effects of potential factors on urban CO2 emissions. The results
revealed that the population, GDP, and NDVI were all positive driving forces, but that temperature
and precipitation had negative effects on urban CO2 emissions at the national level. In the middle
and south Liaoning urban agglomeration (MSL), the slope, population density, NDVI, and GDP were
significant influencing factors. In the Pearl River Delta urban agglomeration (PRD), six factors had
significant impacts on urban CO2 emissions, all of which were positive except for slope, which was
a negative factor. Due to China’s hierarchical administrative levels, the model results suggest that
regardless of which level is adopted, the impacts of the driving factors on urban CO2 emissions are
quite different at the national compared to the urban agglomeration level. The degrees of influence of
most factors at the national level were lower than those of factors at the urban agglomeration level.
Based on an analysis of the forces driving urban CO2 emissions, we propose that it is necessary that
the environment play a guiding role while regions formulate policies which are suitable for emission
reductions according to their distinct characteristics.

Keywords: urban CO2 emissions; driving forces; nighttime light data; multiscale analysis; China

1. Introduction

With the advance of global socioeconomics, greenhouse gas emissions are continuously
increasing [1,2]. It is generally known that greenhouse gas emissions have significant negative
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impacts on the sustainable development of humans worldwide [3,4]. Among the many greenhouse
gases, carbon dioxide (CO2) is particularly highlighted. CO2 emissions from energy consumption
related to human activities (CO2 emissions for short) could promote global gross CO2 emissions,
thus exacerbating the carbon imbalance, which could pose an enormous threat to global sustainable
development by causing catastrophic and irreversible damage [3,5,6], such as the melting of glaciers,
droughts, flooding, and mudslides [7,8]. Many scholars have gradually recognized that as the centers of
human activities, urban areas could play an important role in CO2 emissions [9–11]. The International
Energy Agency has reported that urban areas consume 67% of all the energy produced globally,
and account for 71% of global CO2 emissions [12,13]. Therefore, it is necessary and important to study
urban CO2 emissions, especially in rapidly-developing countries.

The economy of China, which is the largest developing country, has boomed since initiating its
reforms and opening up. In conjunction with this boom, all aspects of CO2 emissions have increased
dramatically, including human electrical CO2 emissions [14,15], residential CO2 emissions [16],
and other CO2 emissions [17]. According to international statistics, China has been the largest CO2

emitter since 2006 [18]. In addition, due to the demand of societal and economic development,
the amount of land used for urban construction has rapidly increased in recent years. Urban areas in
China exhibited an increasing trend in the period of 1992–2015, from 4.88 × 103 km2 to 31.32 × 103

km2 [19,20]. The urbanization level in China has exceeded the world average since 2013, reaching
58.52% in 2017 [21], and thereby accelerating the development of CO2 emissions [22,23]. Because rapid
urbanization has promoted high CO2 emissions, maintaining urban development while effectively
reducing urban CO2 emissions poses a great challenge for China [24,25].

In view of the importance and urgency of CO2 emission reduction in China, and the lack of
relevant policies and measures, policymakers and academia are concerned about how to implement
reasonable low-carbon planning and design policies for urban CO2 emissions [17,26,27]. To better
solve these problems and offer more comprehensive solutions, first and foremost, we should determine
the driving forces of urban CO2 emissions, such as the forces that will drive a reduction in urban CO2

emissions and those that will increase urban CO2 emissions. Understanding the driving forces could
help us to determine the factor sources of CO2 emissions [28,29] which will help to reduce urban CO2

emissions [30]. Many studies have attempted to explore the driving forces of urban CO2 emissions,
aiming to finally achieve the goal of energy conservation and CO2 emission reductions. For example,
Shi et al. [17] found that urbanization rate, population, and gross domestic product (GDP) played
important roles in urban CO2 emissions in China at the city level. Shi et al. [10] also indicated that urban
CO2 emissions had significant positive correlations with population and GDP in China at the national,
regional, and urban agglomeration scales. Bai et al. [19] analyzed the impact of changes in consumption
patterns on household CO2 emission increments, electricity, and transportation factors. The extended
log-mean Divisia index method based on the Kaya identity was adopted by Wang et al. [31] to examine
the main driving forces of CO2 emissions in both the industrial and residential sectors. In addition,
Wang et al. [32] calculated CO2 emissions from both urban and rural residential consumption in
the Beijing-Tianjin-Hebei region by applying an input–output model. Wen et al. [33] analyzed the
driving forces in China’s Yangtze River Economic Zone using pertinent data, including per capita
GDP, energy efficiency, urban level, and industry and energy structures. Wang et al. [34] examined the
effects of socioeconomic factors, urban form, and transportation factors, and applied an econometric
model and a comprehensive panel dataset for four Chinese megacities—Beijing, Tianjin, Shanghai,
and Guangzhou. To examine the influences of population scale, income level, population density,
and price of house-based residential energy consumption and CO2 emissions, Miao et al. [35] applied
an extended stochastic impacts by regression on population, affluence, and technology (STIRPAT)
model based on city-level data. Although there have been many studies on the driving forces of
urban CO2 emissions from different perspectives, most studies have focused on the potential factors
at the scale of the administrative region, which assigns a value of urban CO2 emissions to the entire
administrative region and ignores the differences in that region’s internal structures [10,36]. Within
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many administrative regions, areas exist that are not sources of CO2 emissions, for example, bodies
of water and large national scenic areas [37,38]. Thus, it is necessary to explore the driving forces of
urban CO2 emissions on a refined scale.

Due to differences in the environmental and socioeconomic conditions across China, different
regions have formed with great disparities in urban development and CO2 emissions [39]. Some
empirical studies have quantified the driving forces of urban CO2 emissions in different geographical
areas in China. For example, Wang et al. [40] evaluated the CO2 emission efficiency in the Pearl River
Delta and indicated that compact urban development could help to improve CO2 emission efficiency.
Li et al. [41] explored the effects of urban forms on CO2 emissions in 288 cities in China. Zhao et al. [42]
applied nighttime light datasets and spatial econometric models to examine the socioeconomic and
climatic factors associated with spatiotemporal CO2 emissions by dividing China into four parts.
Feng et al. [43] applied a system dynamics model to model the energy consumption and CO2 emission
trends for the city of Beijing. However, evaluation of the driving forces of urban CO2 emissions has
mostly been conducted in specific regions, and regional or scale differences in urban CO2 emissions
have rarely been discussed. Generally, it is not appropriate to transfer findings from one spatial
scale to another, because socioeconomic development, e.g., urban CO2 emissions, is sensitive to scale
changes [17,44]. Scale and hierarchy evaluation are very significant for a better understanding of the
complexity of China’s regional differences in urban CO2 emissions [45]. Although many studies have
examined the driving forces of CO2 emissions in a number of cities, regions, or counties, an evaluation
of the driving forces of urban CO2 emissions based on a sampling approach on multiple scales, which
is necessary for government policymakers, is still lacking.

This study aims to explore the driving forces of urban CO2 emissions in China. The contributions
of this study are summarized as follows:

(1) quantifying the driving forces of urban CO2 emissions at a finer spatial resolution (e.g., 1-km
spatial resolution) using multiple-source data from 2000 to 2015;

(2) evaluating the driving forces of urban CO2 emissions from multiple spatial levels;
(3) comparing regional differences in the driving forces of urban CO2 emissions.

To address the above questions, we conducted experiments at two administrative levels
(i.e., the national and urban agglomeration levels) to test our evaluation in this study. First, urban CO2

emissions and potential driving force data were extracted from multiple-source data from 2000 to 2015.
Second, the probit model was employed to evaluate the driving forces of urban CO2 emissions on
the national and urban agglomeration levels. Third, the differences between the national and urban
agglomeration levels and between the different urban agglomerations were analyzed and compared,
according to the factor relations of the urban agglomerations.

The remainder of the study was organized as follows. The second section introduces the data
and methods. The third section presents the results. A discussion is presented in the fourth section,
and the last section describes the conclusions and policy implications.

2. Data and Methods

2.1. Study Areas

To effectively quantify and compare the driving forces of urban CO2 emissions in China, study
areas were selected from national and urban agglomeration levels for a multiscale analysis (Figure 1).
The main justification for selecting these is that most previous, related, urban CO2 emissions studies
have been analyzed on these levels [46–48]. Specifically, at the urban agglomeration level, six urban
agglomerations were selected as study areas, namely, the Beijing-Tianjin-Hebei urban agglomeration
(BTH), the middle and south Liaoning urban agglomeration (MSL), the Shandong Peninsula urban
agglomeration (SP), the Chengdu-Chongqing urban agglomeration (CY), the Yangtze River Delta urban
agglomeration (YRD), and the Pearl River Delta urban agglomeration (PRD). BTH is characterized by
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an industrial population agglomeration area, especially in Beijing, and is a megacity with extremely
high population density, so urban CO2 emissions may be very high. MSL is an old heavy-industry
area, and SP has many state-owned enterprises. CY is a representative western urban agglomeration.
YRD, as a traditional economic development zone, has developed automobile, chemical, and other
industries for decades which have caused high urban CO2 emissions. PRD is characterized by light
industry and foreign trade. These six urban agglomerations are the most developed, densely populated,
and economically-active areas in China and contain almost all the characteristics of China’s urban
agglomerations (Figure 1). Specifically, these urban agglomerations in total have a population of
499,830,000, which is approximately 36% of the whole population according to the China Statistical
Yearbook of 2018. These urban agglomerations have areas of 1,003,418 km2, representing approximately
10% of China’s territory [24]. Although the economic value created by these areas is considerable,
they also suffer from tremendous problems, such as greenhouse gas effects, water pollution, and air
pollution. CO2 emissions are rising annually and are more than 8×108 t. Therefore, it is necessary to
study the CO2 emission levels and the factors affecting them in these regions.

Figure 1. Spatial distribution of the study areas. Note: BTH represents the Beijing-Tianjin-Hebei
urban agglomeration; MSL represents the middle and south Liaoning urban agglomeration; SP
represents the Shandong Peninsula urban agglomeration; CY represents the Chengdu-Chongqing
urban agglomeration; YRD represents the Yangtze River Delta urban agglomeration; and PRD represents
the Pearl River Delta urban agglomeration.

2.2. Urban CO2 Emissions

Accurately extracting urban CO2 emissions is a prerequisite for evaluating the driving forces of
urban CO2 emissions in China. In this study, the extraction of urban CO2 emissions is divided into
three steps. First, urban areas were extracted; then, data on China’s CO2 emissions were obtained.
Finally, CO2 emissions for each urban area were estimated.

At present, there are many methods for extracting urban areas. Nighttime light data have been
shown to provide an effective way to extract urban areas on a large scale [49,50]. Most previous
studies used two types of raw remote sensing data to extract urban areas, namely, the US Air Force
Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data, and the
National Polar-orbiting Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) data.
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However, the main problem is determining the threshold value of the nighttime light data. For example,
a threshold based on DMSP-OLS data has been adopted by studies to qualitatively or quantitatively
partition urban areas [51–54]. Based on this, taking reference from the studies of He et al. [55],
Xu et al. [56], and Yang et al. [57], the DMSP-OLS data, NPP-VIIRS data, land surface temperature data,
and normalized difference vegetation index (NDVI) data were used to efficiently extract urban areas
in China at a 1-km spatial resolution from 2000 to 2015 using the stratified support vector machine
method (Figure 2). Subsequently, Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus
(ETM+) images were used to examine their spatial accuracy. The accuracy verification results show an
average Kappa value of 0.66 and an overall accuracy of 95.20% [55]. Therefore, these datasets could be
used to accurately represent urban expansion in China.

Figure 2. Urban expansion in China from 2000 to 2015. Note: The red represents urban areas in 2000;
the blue represents urban areas in 2005; the yellow represents urban areas in 2010; and the brown
represents urban areas in 2015. The three magnified urban agglomeration areas are BTH, the YRD,
and the PRD.

The CO2 emissions data were retrieved from the Open-Data Inventory for Anthropogenic
Carbon dioxide (ODIAC) fossil fuel emission dataset from the Center for Global Environmental
Research (http://db.cger.nies.go.jp/dataset/ODIAC/), National Institute for Environment Studies, which
is committed to supporting global environmental research by monitoring the global environment,
developing databases, operating supercomputers, and providing facilities for data analysis. The ODIAC
first introduced the combination of nighttime light data and the emission/location profile of a single
power plant to estimate the spatial range of CO2 emissions from fossil fuels with a spatial resolution
of 1-km and a unit of t/km2. Currently, ODIAC includes several versions, such as ODIAC2013a,
ODIAC2015a, ODIAC2016, ODIAC2017, and ODIAC2018. In this study, we used the ODIAC2016 data
product, which was generated by combining multisource nighttime light data, the global point source
database, and ship/aircraft fleet orbits [58] (Figure S1). The verification results clearly show that the
ODIAC2016 data can effectively match the CO2 emissions at the global, regional, and city scales [58].
Therefore, the data product meets the requirements of large-scale and long time series [59]. Ultimately,
we extracted urban CO2 emissions in China from 2000 to 2015 based on these datasets.

http://db.cger.nies.go.jp/dataset/ODIAC/
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2.3. Potential Driving Forces

In this study, we divided the potential driving factors into two categories: Socioeconomic factors
and natural factors. Based on a literature review [17,60], six factors, namely, precipitation, slope,
temperature, and NDVI, as natural factors, and population density and GDP, as socioeconomic factors,
were selected to investigate the driving forces of urban CO2 emissions in China (Figure 3, Figure S2).
All the data have passed collinearity tests, so each factor influences a different aspect of urban CO2

emissions [61].
Population density has been proven to be a significant factor driving urban expansion and CO2

emissions [62]. The 2000–2015 population data were obtained from the Data Center for Resources and
Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn) (Figure 3m–p).
With regard to the population, some studies have found that population density has a significant
positive effect on CO2 emissions and a negative spatial spillover effect [63], suggesting that regions with
high population densities, such as China’s urban agglomerations, contribute more to environmental
pollution [64]. Therefore, the population density of the areas under study could significantly affect
urban CO2 emissions.

GDP is also a factor affecting urban CO2 emissions, as China is implementing industrial adjustments
and transformation from traditional industry towards high efficiency, low-energy consumption
levels [63]. The data in our study were acquired from the RESDC (Figure 3i–l).

The combination of temperature and precipitation is often referred to as climate, which is closely
related to human production and habitation activities. Climate influences agriculture, industry,
and energy supply, and cannot be ignored. Previous studies have reported the share of meteorological
factors (temperature and precipitation) in different industrial sectors: 14.38% in the mining industry,
4.71% in the construction industry, and 8.20% in the manufacturing industry [65]. Because of their effects
on industrial activities that are closely related to urban CO2 emissions, temperature and precipitation
are indirect influencing factors on urban CO2 emissions. These data were also collected from RESDC
(Figure 3a–h).

It can easily be seen that regions with flat terrain usually have advanced economic development
in China (Figure S2). The slope affects urban CO2 emissions indirectly by influencing urban expansion
and the economic boom. In this study, the slope was calculated using digital elevation model data.
The data derived from the Shuttle Radar Topography Mission were downloaded from the Consortium
for Spatial Information (CGIAR-CSI) (http://srtm.csi.cgiar.org/), which offers a major advance in the
accessibility of high-quality elevations with 250 m spatial resolution.

NDVI was also used as an influencing factor to further analyze urban CO2 emissions. Vegetation
growth has a great impact on CO2 emission concentrations, which in turn, react to environmental CO2

pollution. Thus, vegetation is also closely related to urban CO2 emissions. In this study, the 2000–2015
monthly NDVI composites were obtained from the Geospatial Data Cloud (http://www.gscloud.cn/).
These data have been processed by systematic correction and given in a 1-km spatial resolution. We
ultimately generated annual NDVI composites for 2000–2015 based on the average fusion (Figure 3q–t).

Ultimately, all of the spatial data were projected into an Albers conic equal area projection and
resampled to a spatial resolution of 1 km.

http://www.resdc.cn
http://srtm.csi.cgiar.org/
http://www.gscloud.cn/
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Figure 3. Spatial distribution of the potential driving factors in China from 2000 to 2015. Note:
(a–d) temperature, (e–h) precipitation, (i–l) GDP, (m–p) population, and (q–t) NDVI.
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2.4. Probit Model

Many mathematical models have been used to evaluate the driving forces of urban CO2 emissions,
mostly via regression model. Traditionally, ordinary least squares (OLS) regression has been widely
used to validate the relationships between urban CO2 emissions and potential driving factors [66].
The OLS regression has noteworthy limitations as a result of the assumptions that the error term
is continuous symmetric and that the independent variable is linear. In many practical problems,
the corresponding variable is not continuous, so the discrete choice model has been introduced
here accordingly [67]. A discrete choice model (e.g., probit model), most frequently a binary choice
model [68,69], could quantify the relationships between urban CO2 emissions and potential driving
factors in pixels by binary data. The advantage of the binary selection model is that the results can
directly predict locations that are likely to be urbanized [60]. The value of the response variable in the
probit model is 0 or 1. The probit model has been applied in many fields, such as medicine, biology,
and econometrics [67]. Thus, to explore the impact of each driving factor on urban CO2 emissions,
the probit model was adopted in this study. The model can be expressed as follows:

P (Y = 1|X) = ϕ(α + X′β) (1)

The model is a binary response, nonlinear function, and ϕ(x) obeys the standard normal
distribution, where α and β are parameters; Y = 1 means that the independent variable influences the
dependent variable, and X indicates that each dependent variable has the same dimension as X.

To more clearly express the influence of each factor affecting urban CO2 emissions, we have
incorporated temperature, precipitation, NDVI, slope, population, and GDP into Equation (1); the
model can then be expanded into the following equation:

P (Y = 1|X) = ϕ(
n∑

i = 0

βiX + u) (2)

where βi is the coefficient of the driving factor, n is the number of variables, and u is the interference
residual value. The larger the absolute value of the coefficient, the more urban CO2 emissions will be
affected by this factor; conversely, a smaller absolute value leads to a smaller effect. A positive value
indicates a promoting effect on urban CO2 emissions, and a negative value implies a negative effect on
urban CO2 emissions.

3. Results

3.1. Spatiotemporal Variations of Urban CO2 Emissions

As shown in Figure 4, total urban CO2 emissions showed a trend of increasing year by year,
from less than 2 × 108 t in 2000 to nearly 8 × 108 t in 2015, which is four times the amount in 2000.
From 2000 to 2005, total urban CO2 emissions doubled, reaching 4.5%. From 2006 to 2010, the growth
rate was significantly lower than that of the previous stage, decreasing by 2.1%. From 2011 to 2015,
the growth rate slightly increased and remained above 2.0%. One interesting phenomenon identified
was that these three stages were basically consistent with the three stages of China’s energy strategy
plan, e.g., the “Development Plan of New and Renewable Energy Industry in China for 2000–2015”.
First, the plan established an economic incentive policy system and an industry management system
from 2000–2005. The total annual exploited and utilized amounts of new and renewable energy only
account for 0.70% of total commercial energy consumption. Hence, urban CO2 emissions always have
a high rate. Second, the plan aimed to further improve the economic incentive policy system and the
technological monitoring and servicing system for new and renewable energy from 2006-2010. The new
and renewable energy percentage reached 1.25%, and correspondingly, the urban CO2 emissions rate
exhibited a massive downturn, dropping to half of the original rate. Third, the plan called for new and
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renewable energy to become one of the new, important, emerging trades in China from 2011–2015.
The total urban CO2 emissions rate remained at approximately 2.0%.

Figure 4. The total urban CO2 emissions and corresponding growth rate in China from 2000 to 2015.

Through a comparison of Figures 4 and 5, we found that from 2000 to 2015, with the expansion of
urban area, the increase in urban CO2 emissions presented the same trend. Upon closer inspection,
the urban area growth rate exceeded the urban CO2 emission growth rate; however, from 2005 to
2010, both rates declined greatly, although the urban area growth rate decreased more notably. After
2010, both rates were steady and again increased slightly. From the above findings, we could easily
determine that urban CO2 emissions are accompanied by urban expansion, and the growth trends of
the two variables are similar.

Figure 5. Urban area and corresponding growth rate in China from 2000 to 2015.

Spatiotemporal variations in urban CO2 emissions in China from 2000 to 2015 are shown in
Figure 6. We found that urban CO2 emissions were concentrated in the six urban agglomerations.
In 2000, for the BTH, urban CO2 emissions were mainly concentrated in the southeast region of Beijing
and slightly to the south of the central region of Tianjin. Urban CO2 emissions in the YRD were mainly
concentrated to the north of Shanghai and scattered within southern Jiangsu province and northeastern
Zhejiang province. Urban CO2 emissions were mainly concentrated in the northeast and northwest of
the PRD and far from the coastline. By 2005, in the YRD, Shanghai’s urban CO2 emissions extended
from the north to the surrounding areas. In the MSL, urban CO2 emissions were concentrated in a
continuous irregular area near Shenyang. The urban CO2 emissions of SP were mainly concentrated in



Int. J. Environ. Res. Public Health 2019, 16, 3692 10 of 19

the central region and had a sporadic distribution. In the CY, small patches of urban CO2 emissions
were located in Chengdu and Chongqing. In 2010, urban CO2 emission concentration areas in the BTH,
YRD, PRD, and MSL further expanded, the sporadic areas gradually became patches, and the patches
gradually expanded. By 2015, the BTH, YRD, PRD, and MSL had steadily expanded, and the SP and
CY had developed sporadically. Initially, the main areas generating urban CO2 emissions, in general,
were a few concentrated regions, such as Beijing, Tianjin, Shanghai, Foshan, and Guangzhou, but
urban CO2 emissions continuously expanded to the surrounding areas. Small areas expanded into
larger areas and sporadic areas, and more small areas formed.

Figure 6. Urban CO2 emissions in China from 2000 to 2015. Note: The three magnified urban
agglomeration areas are BTH, YRD and PRD. BTH represents the Beijing-Tianjin-Hebei urban
agglomeration; YRD represents the Yangtze River Delta urban agglomeration; and PRD represents the
Pearl River Delta urban agglomeration.

3.2. Results of the Driving Forces of Urban CO2 Emissions at the National Level

Table 1 shows the regression coefficients of driving forces that affect urban CO2 emissions using
the probit model from 2000 to 2015. The effect of each factor on urban CO2 emissions is highly
significant. Among these factors, NDVI (1.77), population density (0.14), GDP (0.12), and slope (0.02)
were significantly positively correlated with urban CO2 emissions. In contrast, temperature (−0.01) and
precipitation (−0.11) were significantly negatively correlated with urban CO2 emissions, respectively.
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Table 1. Results of the probit model at the national level from 2000–2015.

Coefficient
Precipitation Slope Temperature Population Density NDVI GDP

−0.110 *** 0.023 *** −0.013 *** 0.138 *** 1.765 *** 0.116 ***
Number 778,332 Log-likelihood −102,850 Pseudo-R2 0.046 -

Note: Significant at the *** 1% level.

3.3. Results of the Driving Forces of Urban CO2 Emissions at the Urban Agglomeration Level

The driving forces of urban CO2 emissions at the urban agglomeration level are shown in Table 2.
Urban CO2 emissions in the CY were notably influenced by every factor. Among the factors, temperature
(−0.64), precipitation (−0.78), and slope (−0.04) had negative impacts, while population density (0.10),
GDP (0.09), and NDVI (1.70) had positive impacts. In the BTH, slope, precipitation, temperature,
population density, and NDVI had a remarkable influence, among which slope, population density,
and NDVI had positive impacts on urban CO2 emissions with coefficients of 0.11, 2.37, and 2.19,
respectively, while temperature (−0.10) and precipitation (−0.92) had negative impacts. In the MSL,
slope, population density, NDVI, and GDP were significant influencing factors. Slope, population
density, and NDVI had positive impacts, with coefficients of 0.11, 0.38, and 1.71, respectively, while
GDP (−0.03) was a negative factor. In the SP, slope (0.29), population density (0.47), and NDVI (4.38)
positively affected urban CO2 emissions, while GDP (−0.11) was a negative factor. In the YRD, six
factors had significant impacts on urban CO2 emissions. Slope had a negative influence, and the
other factors had positive influences. The coefficients were 0.42 (precipitation), −0.15 (slope), 0.04
(temperature), 0.51 (population density), 3.08 (NDVI), and 0.20 (GDP), respectively. In the PRD, all the
factors (except for temperature) had positive impacts on urban CO2 emissions. The coefficients were
0.04 (precipitation), 0.32 (slope), 0.32 (population density), 0.99 (NDVI), and 0.07 (GDP), respectively.

Table 2. Results of the probit model at the urban agglomeration level from 2000–2015.

Variable CY BTH MSL SP YRD PRD

Precipitation −0.780 *** −0.916 *** 0.166 0.000 0.415 *** 0.042 *
Slope −0.036 *** 0.114 ** 0.113 *** 0.288 *** −0.147 *** 0.320 ***

Temperature −0.637 *** −0.096 *** −0.012 0.000 0.037 *** 0.005
Population density 0.101 *** 2.365 *** 0.376 *** 2.469 *** 0.506 *** 0.316 ***

NDVI 1.698 *** 2.188 *** 1.713 *** 4.375 *** 3.079 *** 0.987 ***
GDP 0.085 *** 0.011 −0.032 * −0.114 *** 0.196 *** 0.072 ***

Number 33,114 78,092 23,385 63,111 157,700 101,720
Log-likelihood −2747.630 −2594.031 −1802.104 −1,735.822 −26,426.693 −15,238.895

Pseudo-R2 0.188 0.238 0.050 0.282 0.125 0.027

Note: Significant at the * 10% level, ** 5% level, and *** 1% level. BTH represents the Beijing-Tianjin-Hebei urban
agglomeration; MSL represents the middle and south Liaoning urban agglomeration; SP represents the Shandong
Peninsula urban agglomeration; CY represents the Chengdu-Chongqing urban agglomeration; YRD represents the
Yangtze River Delta urban agglomeration; and PRD represents the Pearl River Delta urban agglomeration.

4. Discussion

4.1. Driving Forces of Urban CO2 Emissions at the National Level

From Table 1, at the national level, we found that each factor had a significant impact on urban CO2

emissions. It should be noted that some driving factors had negative effects on urban CO2 emissions,
such as temperature and precipitation, while others had positive effects, such as slope, population,
NDVI, and GDP. In terms of temperature, China has a cold living environment in winter; thus, coal has
become the main source for heating, especially in northern China, resulting in high CO2 emissions [70].
Precipitation, accompanied by winds, could relieve certain CO2 concentrations in the air, so more
rain means less urban CO2 emissions [71]. Slope, population, GDP, and NDVI are all positive driving
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forces. An increase in population leads to an increase in man-made CO2 emissions; for example,
the increase in population means more families and more private cars, which leads to an increase in
urban traffic CO2 emissions [72]. The growth of GDP is also inseparable from the development of
industry. Many factories emitted a large amount of CO2 [64]. In addition, the greater the degree of the
slope, the less likely it is that CO2 produced in the region will spread, which might lead to an increase.
However, the results of the NDVI factor did not seem to fit our expectations. We believe that vegetation
could absorb CO2, but in this result, the more vegetation there was, the more urban CO2 emissions
were observed. Because built-up areas were applied to extract the urban CO2 emissions and various
potential factors, the vegetation captured here is urban vegetation. While vegetation has an absorption
effect on CO2, relative to the large amounts of urban CO2 emissions, the vegetation’s absorption effect
is not substantial. Therefore, NDVI shows a positive impact on urban CO2 emissions [73]. Moreover,
NDVI is generally located near residential or industrial areas, meaning that it is often accompanied
by residential or industrial CO2 emissions, perhaps forming the false impression that urban CO2

emissions have a positive correlation with the growth of NDVI [66].

4.2. Difference in the Driving Forces of Urban CO2 Emissions in the Six Urban Agglomerations

The study of various driving factors at the national level has neglected regional characteristics.
Thus, the various driving factors on urban CO2 emissions were evaluated and compared at the
urban agglomeration level. Table 2 shows each factor that affected urban CO2 emissions at the urban
agglomeration level.

First, considering GDP, the highest degree of influence is seen in the YRD, with an influence
coefficient of 0.20, while the lowest degree of influence is in the PRD, with a coefficient of 0.07. As is
well known, the YRD and the PRD region are economically-developed areas of China, but from the
results, we found a large difference in the degree of influence of GDP in the two urban agglomerations
on CO2 emissions. In 2000–2015, the YRD was ranked at the top in China for secondary industry,
which makes the greatest contribution to GDP accounts; however, a large number of factories were
constructed in the development of secondary industry, causing high CO2 emissions. Therefore, GDP
has a high influence in the YRD. By contrast, the PRD also has a high-level economy, but the degree of
influence of the GDP is relatively small. The reason may be that the PRD’s tertiary industry is more
advanced; thus, tertiary industry makes the greatest contribution to GDP. Tertiary industry represents
the service industry, which emits less CO2 than secondary industry. Therefore, it is clearly indicated
that the industry structure remains to be further improved, enhanced, and upgraded in the YRD.

Second, for the NDVI, we found that the NDVI has a far higher influence in SP than in the
other urban agglomerations, with a coefficient of 4.40. This phenomenon might be explained by
the fact that, as shown in Figure 4, the distribution of vegetation in SP has an aggregation effect
and is evenly distributed throughout, unlike the other urban agglomerations. Therefore, in the local
industrial production area, the influence degree of the NDVI around factories would be relatively
higher. In addition, based on the current situation wherein the built-up area in SP is dispersed, cities in
SP are not very close to each other, and the central cities do not play a strong leading role.

Third, with regard to the driving factor of population density, we found that the degree of influence
in BTH and SP is high, with coefficients of 2.37 and 2.47, respectively. Further analysis revealed
that although population density has a high degree of influence in the two urban agglomerations,
the reasons are different. The BTH has a large number of national high-tech industries and attracts
many highly-competent people, forming a very large rainbow absorption effect that attracts many
ordinary people from across China. The majority of these people are rural workers, and most of them
provide supporting services [74]. Therefore, a large proportion of the migrant population is engaged
in low-level services. The result of this influx is a large population, leading urban CO2 emissions to
sharply increase in areas due to transportation and growth in the residential sector. However, for the
SP, the effect of population density may be due to its large population base and heavy industry. Thus,
the impact of the population factor on urban CO2 emissions is very notable.
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Fourth, the slope is a negative driving factor in the CY and the YRD. The CY is located in a
mountainous area. Compared to flat areas, high-altitude and steep areas are less likely to be developed
because it costs more to construct built-up areas [75]. At the same time, ecological protection policies
are adopted in areas with high gradients, and most have protected soil and water [66]. Thus, tourism is
the prioritized development industry. Therefore, for the CY, the higher the slope, the less construction
there is, and the less urban CO2 emissions; hence, the slope is a negative factor. For the YRD, protection
and development policies are also implemented for areas with higher slopes [76]. Tourism and
characteristic agriculture are also carried out in the region to increase local revenue. This situation
provides a development concept for mountainous and hilly areas to make full use of the regional
advantages and develop characteristic industries.

4.3. Difference in the Driving Forces of Urban CO2 Emissions at the Two Levels

Hierarchy and scale effects existed widely in all fields of socioeconomic development [17].
Due to China’s hierarchical administrative levels, a higher administrative level (e.g., China or
urban agglomerations) generally has stronger administrative powers [44,77], consequently resulting
in different spatiotemporal patterns and driving forces for urban CO2 emissions across different
administrative levels. In this study, the model results suggest that regardless of which level was
adopted, the impacts of the driving factors on urban CO2 emissions were quite different at the national
and urban agglomeration levels.

Temperature and precipitation showed negative impacts at the national level, with similar impacts
in the CY and the BTH. However, temperature and precipitation positively affected urban CO2

emissions in the YRD and the PRD. These two urban agglomerations are located in regions where
the temperature and precipitation are relatively constant throughout the year; for example, residents
in the YRD and PRD regions do not need to burn coal for heat in winter. Such climatic conditions
are more conducive to productive activities. Therefore, temperature and precipitation are positive
factors. Slope has a positive impact on urban CO2 emissions. Because built-up areas are almost always
distributed in flat terrain at the national level, a low slope is beneficial for socioeconomic development.
However, for CY and the YRD, the built-up areas are very hilly, which might negatively influence the
two urban agglomerations. In addition, it is clear that the population density and GDP both have a
positive impact on urban CO2 emissions at the national level.

We also found that all driving factors were significant at the national level. However, for urban
agglomerations, there were multiple conditions that amplify the effects. Although the conditions are
complex, they always have intrinsic causes. For example, with regard to temperature and precipitation,
the PRD has a subtropical-tropical humid monsoon climate that remains stable and results in high
temperatures and high rainfall year round [78], so that the climate has only a slight effect. For the BTH,
GDP is not a significant factor; this region’s industry structure is multifaceted and multilayered [74],
and the finance sector and high-tech industries account for the largest proportion of the GDP. Therefore,
although GDP is high, it has a small impact on CO2 emissions.

The comparison of the national and urban agglomeration levels shows that the degree of influence
at the national level is usually lower than that at the urban agglomeration level. On the one hand, for
the various regions, the six factors (temperature, precipitation, GDP, slope, NDVI, and population
density) have different dimension effects. However, the influence degree of each factor at the national
level depends on the influence degree of that factor at the regional level. Therefore, the effect of
each factor at the national scale may not be as great as that at the level of a small region of urban
agglomeration [61,79]. Although the degree of influence of the factors on urban CO2 emissions was
usually lower at the level of a single urban agglomeration, there are exceptions, because each urban
agglomeration has different conditions than the national region.
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4.4. Limitations and Future Directions

There are several limitations that are worth mentioning. As a complex environmental problem,
many other factors may affect urban CO2 emissions, and many aspects should be further studied,
such as agricultural and construction factors [80]. The selected factors are mostly natural potential
forces, but socioeconomic factors also play a significant role, such as transportation, distance from
a body of water, built-up area, and residential emissions. These factors should be incorporated into
the study. In addition, with the development of urban agglomerations, the regions are changing,
and the number of urban agglomerations will continue to rise; therefore, we should update the urban
area data over time by refining the spatial resolution from 1000-m to 500-m, even at the larger scale.
The images captured by sensors on high-resolution satellites, such as Landsat series images, can be
used to more accurately interpret urban areas. The model in this study is an economic one that did not
consider spatial locations, and therefore, the impact of the spatial location was not examined; hence,
the applicability of the geographic data needs to be improved. Other appropriate models could also
be used, such as the panel model, which has been improved with regards to capturing undesirable
environmental outputs; in addition, panel data models [81], static and dynamic panel models [82],
panel cointegration models [83], and modified input-output models could be used [84].

5. Conclusions and Policy Implications

This study explored the driving forces of urban CO2 emissions in China with a comparative
analysis between national and urban agglomeration levels. We selected four years—2000, 2005, 2010,
and 2015—to clearly determine the total amount and rate of urban CO2 emissions growth by analyzing
the spatial and temporal changes in urban CO2 emissions from 2000–2015. Temporally, it was observed
that the total urban CO2 emissions have consistently increased from 2 × 108 t to 8 × 108 t, but the rate of
increase drastically declined after 2005 and then stabilized, which corresponds with the implementation
of the policies outlined in the “Development Plan of New and Renewable Energy Industry in China for
2000–2015”. A probit model was used to quantify the effects of six factors (population density, GDP,
slope, temperature, precipitation, and NDVI) on urban CO2 emissions. At the national level, a cold
living environment in China in winter might play an important role in promoting coal burning and
heating, and thus, the temperature has a negative impact on urban CO2 emissions. The NDVI is an
interesting positive factor and is an indicator of the degree of urban CO2 emissions. Vegetation in cities
is limited, and although a large proportion of urban CO2 emissions could be absorbed, vegetation only
slightly affects the amount of urban CO2 emissions. At the urban agglomeration level, we observed
certain phenomena and examined the results in detail. We found that even though the YRD and PRD
are both economically-developed regions with GDPs among the highest in China, the influence of
GDP on urban CO2 emissions in the YRD and PRD are vastly different. GDP has the highest degree
of influence in the YRD and the lowest degree of influence in the PRD. Upon closer examination,
the YRD and the PRD have different industry structures, with the YRD having many secondary
industry enterprises that are mainly engaged in manufacturing, resulting in the area being at the top in
China. However, the GDP percentage of tertiary industry in the PRD is higher than that in the YRD.
The comparison of the two urban agglomerations reveals that the YRD should readjust and upgrade
its economic structure. In SP, the data show that vegetation has a cumulative effect that is evenly
distributed throughout SP; the vegetation in built-up areas does not absorb a large proportion of the
urban CO2 emissions. The high coefficient indicates that SP still has many CO2-intensive industries.
Given the scattered built-up areas, it is not difficult to observe that the cities in SP are not close to
each other, which further explains that the central city does not play a strong driving role. Moreover,
the population density factor has a high degree of influence on the urban CO2 emissions in BTH
and SP, but there are again different reasons. In BTH, a large number of people engage in low-level
service employment, and in terms of transportation, a high number of residents will cause high CO2

emissions. At the same time, in BTH, the population is mainly concentrated in Beijing and Tianjin. For
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mountainous areas, the slope factor negatively affects the urban CO2 emissions in CY and the YRD; the
higher the slope, the lower the CO2 emissions.

We also compared the results at the national and urban agglomeration levels. In contrast to the
national level, the climate is a positive factor in the YRD and the PRD. At the national level, each factor
is significant, but for a single urban agglomeration, because of the characteristics of the region itself,
the situation is more complex. The degrees of influence of most factors at the national level are lower
than at the urban agglomeration level.

According to the results, several policy proposals are presented. First, the government
policy-making department should introduce and support the development of new and renewable
energy industries to effectively decrease urban CO2 emissions while contributing to the national
economy. Spatially, we found that urban CO2 emissions are concentrated in the central cities of
the urban agglomerations; thus, for the central cities, relevant governmental departments should
actively adjust and upgrade the industry structures from traditional industries, such as low-level
service industry, heavy industry, and manufacturing and handicraft industries, to intensively develop
high-level service industries, high and new technology industries, and the finance sector. Moreover,
we should learn from the development of central cities, and the central cities should guide the new
and rapidly-developing cities.

Second, the YRD should readjust and upgrade its economic structure to increase its growth.
In the SP, the government should intensively develop new, high-technology industries. In addition,
because the SP has a long coastline and good harbors, the marine industry can be further developed.
We believed that the SP should develop multiple industries based on its advantages. In the future,
the Shandong government should foster the exchange of ideas and cooperation among cities and
expand the leading role of the central cities. In the BTH, to mitigate the population pressure of the
two largest cities, the government should intensively develop the surrounding areas, such as the cities
in Hebei in the BTH. In the CY, the government should make full use of its regional advantages to
develop characteristic industries.

Third, China’s government should establish a better regulatory system to coordinate urban CO2

emissions across the various regions, determine the problems that most affect the regions based on
the available data, and develop national urban CO2 emission reduction guidelines to guide local
governments to formulate specific policies according to the actual context.
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