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Graziella E. Ronsein,4 Alexandre Keiji Tashima,5 and Reinaldo Salomão1,6,*

SUMMARY

The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological pro-
cesses is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the pe-
ripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples
were collected at different stages of the disease, including hospital admission, after 7 days of hospitaliza-
tion, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-
related proteins were observed in patients. Patients progressing to critical illness had significantly low-
abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting
clinical recovery. Important biological processes, such as fatty acid concentration and glucosemetabolism
disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes re-
vealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance
of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persis-
tent protein changes post-hospitalization.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic has caused an unparalleled worldwide disaster, with millions of lives lost, public health

systems in shock, and economic and social devastation.1 The causative pathogen emerged in Wuhan, China, and was named severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the third coronavirus to cause severe respiratory disease in humans after SARS-

CoV and Middle East respiratory syndrome coronavirus.2

The clinical presentation of COVID-19 is heterogeneous, varying from asymptomatic (or presymptomatic), mild, moderate, severe, to crit-

ical disease.3–6 Patients who survive continue to exhibit COVID-19-related symptoms even months after discharge, such as fatigue, cognitive

dysfunction, and shortness of breath.7

Mass spectrometry (MS)-based proteomics, mostly focused on plasma, serum, and bronchoalveolar lavage fluid, has been used as a

powerful tool to elucidate a broad range of dysregulated biological processes in patients with COVID-19.8–12 However, few studies have

been conducted using patient’s cells, such as peripheral blood mononuclear cells (PBMCs).13,14 PBMCs are composed of several classes

of immune cells, such as T cells, B cells, monocytes, dendritic cells, natural killer cells, and a cellular subclass of neutrophils, low-density neu-

trophils (LDNs), which are also known asmyeloid-derived polymorphonuclear neutrophil suppressor cells.15,16 This variety of cells may provide

a more comprehensive picture of the immune system status than circulating serum or plasma.17

In this study, a tandemmass tag (TMT)-based quantitative proteomic approach combined with bioinformatics analyses was used to inves-

tigate the presence of altered proteins related to different dysregulated pathways and biological processes in patients with COVID-19. We

focused on moderately ill patients admitted to the hospital wards and presenting either (1) clinical recovery and short hospitalization or (2)

clinical deterioration and need for intensive care unit (ICU) support. Samples were obtained prospectively during the clinical course of the

disease and after hospital discharge, thus gaining the opportunity to investigate proteome changes in the early days of the disease and after

clinical recovery in patients with different clinical outcomes.
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RESULTS

Clinical and epidemiological features of the study participants

The 29 patients with COVID-19 included in the proteomic analysis are part of a cohort of COVID-19 patients admitted to the hospital wards

and presenting distinct clinical outcomes.18 The mean age of the patients was 69 years. The majority of the patients were male (n = 19, 65%).

The mean duration of symptoms before admission was 6.7 G 3.1 days. The main symptoms were fever (n = 20; 69%), cough (n = 20; 69%),

shortness of breath (n = 18; 62.1%), and diarrhea (n = 7; 24.1%). The mean of hospitalization days was 19.1 G 20.8. Among the 29 patients,

12 (41.4%) progressed to clinical deterioration and critical illness, and 17 (58.6%) presented clinical recovery and were classified as non-critical.

At the time of the first sampling (D0), all patients were admitted to the ward, and 16 (55.2%) required supplementary oxygen. At the time of the

second sampling (D7, n = 17), 9 (52.9%) were admitted to the ward, and 8 (47.1%) were admitted to the ICU. Among the patients, three died

during hospitalization.

At admission, patients presenting with deteriorating clinical courses showed elevated levels of neutrophils, neutrophil-lymphocyte ratio,

creatinine, and C-reactive protein compared with patients with clinical recovery and short hospitalization. Epidemiologic, clinical, and routine

laboratory data of the 29 patients with COVID-19 are shown in Table S1.

Global COVID-19 proteomic quantification

Prospective sample collection was carried out during hospitalization and after hospital discharge, resulting in a single visit per patient. The

patient samples were stratified according to the collection day and the clinical course observed during hospitalization. An overview of the

study, including the number of samples collected and the methodology employed, is presented in Figure 1.

TMT labeling and an LC-MS/MS strategy were applied to quantify differentially abundant proteins (DAPs) among patients with COVID-19,

stratified according to the day of blood sampling and clinical outcomes (critical and non-critical), and healthy volunteers (HVs). A total of 2,196

proteins were found in the 73 samples of the 15 TMT batches. When restricted to proteins quantified in at least 50% of samples and after

outlier removal, this number dropped to 72 samples and 1452 proteins identified with an average of 1283 proteins per sample (Figure S2;

Table S2).

This proteomic analysis of PBMCs provides a comprehensive scope of the systemic host response to SARS-CoV-2 infection. Compared

with HVs, patients with COVID-19 showed considerable differences in proteomic profiles (Figure 2). In patients with COVID-19, 348 proteins

as DAPs were identified at D0 (169 low- and 179 high-abundance proteins) (Figure 2A; Table S3), 249 DAPs were identified at D7 (110 low- and

139 high-abundance proteins) (Figure 2B; Table S4), and 109 DAPs were identified at CS30 (40 low- and 69 high-abundance proteins) (Fig-

ure 2C; Table S5). A total of 34 common proteins were found in these three follow-up samples (Figure 2D; Table S6), of which 33 had the

same direction (Figure 2F). These proteins were involved in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), and car-

bon metabolism.

IPA enrichment analysis identified eight canonical pathways significantly enriched in D0, eight enriched canonical pathways in D7, and two

enriched canonical pathways in CS30 (Figure 2E). The TCA cycle and OXPHOS were predicted to be decreased in contrast to macrophage

Figure 1. Experimental workflow

Scheme of the cohort, timing of the blood sample collection, andmethods. Note: proteomic data were subjected to iterative outlier removal using themolecular

degree perturbation (MDP) web tool.19 After MDP analyses, one patient was detected as an outlier and removed from all subsequent analyses (Figure S1).
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Figure 2. The overall distribution of differentially abundant proteins (DAPs)

(A–C) Volcano plots of DAPs at (A) D0 (n = 29) compared with healthy volunteers (HVs) (n = 11), (B) D7 (n = 17) compared with HVs (n = 11), and (C) CS30 (n = 15)

compared with HVs (n = 11). Cyan dots represent low-abundance proteins, red dots represent high-abundance proteins, and gray dots represent proteins that

were not differentially abundant.

(D) Venn diagram showing the overlap between three lists of DAPs.
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activation, nitric oxide (NO) and reactive oxygen species (ROS) production in macrophages, and interleukin (IL)-8 signaling, which were pre-

dicted to be increased. These changes were common at D0 and D7. Noteworthy, actin cytoskeleton signaling was only enriched (predicted

increase) at CS30. Additionally, 118 diseases or functional annotations were enriched in at least one time point (Table S7). Some of them re-

mained with the same direction of alteration during hospitalization (D0 and D7) and 30 days after discharge, such as fatty acid concentration,

glucose metabolism disorder, mitochondria transmembrane potential, insulin resistance, and apoptosis. Others were predicted to be

increased at D0 and D7 and decreased at CS30, such as activation of blood platelets, blood coagulation, chemotaxis of myeloid cells,

and phagocytosis of cells (Figure S3).

Principal component analysis (PCA) of DAPs segregated patients with COVID-19 and HVs at D0 (Figure 3A). This segregation remained at

D7, and it was not possible to observe a clear separation between the two groups at CS30 (Figures S4A and S4B). Additionally, DAP lists were

investigated in the PPIN (Figure S5). Based on the Markov clustering analysis, four densely connected regions (modules) were identified,

including a module enriched for the generation of precursor metabolites/energy and TCA cycle/respiratory electron transport, a module en-

riched for the processing of capped intron-containing pre-mRNA and mRNA processing, and two modules enriched to myeloid leukocyte

activation, neutrophil degranulation, and antimicrobial humoral response (Figure 3B). Noteworthy, these two modules contain proteins

with increased abundance which are related to the neutrophil biological functions, indicating the presence of co-purified LDNs in the

PBMCs fraction of patients’ samples, which has been previously reported in patients with COVID-19 and sepsis.20–22

Upon a specific analysis of glycolysis, pentose phosphate pathway (PPP), and TCA cycle using Eschermetabolic pathwaymaps, high-abun-

dance proteins were found in glycolysis and PPP in patients at D0, whereas the TCA enzymes, isocitrate dehydrogenase, succinate dehydro-

genase, 2-oxoglutarate dehydrogenase, succinyl-CoA ligase, andmalate dehydrogenase mitochondrial, had low-abundance compared with

HVs (Figure 3C). A similar profile was found at D7, while an almost complete return to homeostasis was found at CS30 (Figures S6A and S6B).

Distinctive molecular signature for patients with COVID-19 progressing to critical disease (critically ill) and those with

clinical recovery (non-critically ill)

The patients were divided into two groups: critically ill and non-critically ill patients. For each day of sampling, an analysis was performed to

assess the differences between patients with distinct clinical courses: D0-critical (n = 12) versus D0-non-critical (n = 17), D7-critical (n = 9) versus

D7-non-critical (n = 8), and CS30-critical (n = 7) versus CS30-non-critical (n = 8). The PCA plot, which illustrates the differences and similarities

between the different days and outcomes, can be found in Figure S7. A total of 195 proteins as DAPs were identified in D0-critical patients

compared with D0-non-critical patients (146 low- and 49 high-abundance proteins) (Figure 4A; Table S8), 215 DAPs were identified at D7 (123

low- and 92 high-abundance proteins) (Figure 4B; Table S9), and 225 DAPs were identified at CS30 (78 low- and 147 high-abundance proteins)

(Figure 4C; Table S10). Additionally, six proteins consistently showed differing abundances in critically ill patients compared to non-critical

patients across all three examined time points. These proteins comprise unconventional myosin-Ig (MYO1G), X-ray repair cross-complement-

ing protein 6 (XRCC6), 14-3-3 protein gamma (YWHAG), GTP-binding nuclear protein Ran (RAN), neurogranin (NRGN), and 30-50 RNA helicase

YTHDC2 (YTHDC2), as detailed in Table S11.

IPA enrichment analysis identified 10 canonical pathways in D0-critical patients compared with D0-non-critical patients, and all were pre-

dicted to be significantly decreased. Unexpectedly, only two enriched canonical pathways were found in D7-critical patients: onewas found to

be decreased, and the other was found to be increased. Interestingly, 31 enriched canonical pathways were found at CS30, and the majority

significantly increased in critical patients. Figure 4D represents pathways with unique proteins enriched in each pathway; among those with

redundant proteins enriched, the pathway most relevant to the biology of SARS-CoV-2 infection was chosen (Table S12).

Escher metabolic pathway maps revealed that the main metabolic changes between critical and non-critical samples were found at D0,

with significant low-abundance proteins involved in the PPP and glycolysis pathway in critical patients (Figure S8A). These changes are not

maintained over time (Figures S8B and S8C).

Temporal proteomic changes

A time-series soft clustering analysis considering the clinical outcomes (critical and non-critical) and day-specific proteomics was performed

using Mfuzz to explore protein abundance patterns during the clinical course of hospitalized patients with COVID-19. This analysis revealed

the presence of 5 clusters.Only 4 clusters presented enrichedpathways. Cluster 1, containing 143 core proteins involved in neutrophil degran-

ulation and the innate immune system, showed a continuous high-abundance during the clinical course of hospitalization and levels similar to

those of the HVs after discharge from the hospital (Figure 5A; Table S13). Cluster 2, containing 143 core proteins, was enriched for platelet

functions and neutrophil degranulation and presented high-abundance in critical patients, regardless of the day of sample collection,

whereas non-critical patients were similar to the HVs (Figure 5B; Table S14). Cluster 3, containing 140 core proteins, showed low-abundance

in patients with COVID-19 at D0 and a rising trend of protein abundance during follow-up, which was similar to the HVs in CS30 samples. This

cluster was enriched for the metabolism of RNA and IL-12 signaling pathways (Figure 5C; Table S15). Cluster 4 showed no enriched pathways

Figure 2. Continued

(E) Sankey diagram showing the results of the IPA canonical pathway analysis. Red lines represent a canonical pathway predicted to be significantly increased, and

cyan lines represent a canonical pathway predicted to be significantly decreased (IPA Z score R2 or % �2 with a B-H q-value <0.05).

(F) The heatmap of 34 common DAPs at D0, D7, and CS30. The color scale illustrates the relative level of DAP: red, higher than the HVs, and cyan, below the

reference HVs.
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(Table S16). Cluster 5 (77 core proteins) showed high-abundance in non-critical patients and low-abundance in critical patients (regardless of

the day of sample collection) and was enriched for eukaryotic translation elongation and peptide chain elongation (Figure 5D; Table S17).

Comparison with other human proteomic datasets

A public dataset of PBMCs from patients with COVID-19 was reanalyzed to validate our results related to metabolism and LDNs. Based on

DAPs, IPA, and PPIN module analyses, 42 metabolism-related and 24 LDN-related proteins were selected. These proteins were manually

curated for their biological functions using the UniProt (https://www.uniprot.org/). Compared with the PBMCs dataset from Carapito

et al.,14 11 metabolism-related proteins were found in common, 8 with high-abundance (UGP2, PFKP, LDHA, PGD, PYGL, GPI, HK3, and

ACLY) and three with low-abundance (GLUD1, COX4I1, and COX7A2). Regarding LDN-related proteins, 10 proteins were found in common,

all with high-abundance (LTF, MPO, CTSG, ITGAM, MMP9, BPI, PRTN3, CEACAM8, LCN2, and S100A12) (Figures S9A and S9B).

Plasma levels of cytokines and proteins related to endothelial-cell interactions and inflammation

Since PBMCs are a subset of the peripheral blood cells and represent a source and target of circulating cytokines, the plasma levels of these

mediators were evaluated in patients with COVID-19 and HVs. The findings showed that patients with COVID-19 showed increased levels of

cytokines and proteins related to endothelial-cell interactions and inflammation, which is consistent with earlier reports.23,24

Overall, 12 analytes were differentially abundant in plasma from patients with COVID-19 versus HVs at D0, including increased levels of

cytokines (IL-6, IL-8, IL-10, and IL-18), soluble intercellular adhesion proteins (s-ICAM-1, sVCAM-1, and P-selectin), a mediator modulating

vascular response (GDF-15) and levels of neutrophil proliferation and degranulation marks (NGAL and MPO). Nine mediators were altered

at D7 and six at CS30. IL-6 and IL-10 remained altered at D0 and D7, while GDF-15, sICAM-1, MPO, P-selectin, IL-8, and IL-18 were found

significantly altered at the three different time points. Critical patients at D0 showed increased MYO, NGAL, sVCAM-1, and GM-CSF

Figure 3. Protein abundance, densely connected regions, and glycolysis metabolism in patients with COVID-19

(A) Principal component analysis of 348 differentially altered proteins identified from patients with COVID-19 at D0 compared with HVs. The ellipses represent

95% confidence intervals around the centroid of each data cluster. Each dot and triangle represent one sample. Cyan represents HVs samples, and red represents

COVID-19 samples.

(B) Protein-protein interaction network (PPIN) modules in COVID-19. Cyan rings represent the low-abundance proteins, and red rings represent the high-

abundance proteins. The inner rings represent D0 abundance, the center rings represent D7 abundance, and the outer rings represent CS30 abundance.

The enriched pathways generated through the STRING enrichment are shown separately for each module (false discovery rate-corrected p value <0.05).

(C) Metabolic map visualization for glycolysis, pentose phosphate pathway (PPP), and tricarboxylic acid (TCA) cycle. The scale represents DAPs from patients at

D0 (n = 29) compared with HVs (n = 11).
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compared with non-critical patients. Critical patients at D7 showed increased levels of GDF-15, MYO, sICAM-1, sVCAM-1, IL-6, and IL-17A,

and IL-6 and IL-9 remained high in critically ill patients even after 30 days of discharge (Table S18).

DISCUSSION

In order to understand the diverse responses to SARS-CoV-2 infection, it is crucial to employ high-resolution techniques and well-character-

ized clinical cohorts. Using TMT-based quantitative proteomics and bioinformatics analysis, we present the first PBMC proteomic study of a

cohort of COVID-19 patients admitted to hospital wards, with diverse outcomes, and including samples throughout the disease course and

after discharge.

Broad dysregulation of proteins related to metabolic machinery may represent either an antiviral response or viral-mediated disruption of

host transcripts and translation.25 Previous omics studies have reported alteredmetabolic pathways during SARS-CoV-2 infection.26–29 These

results are consistent with those of our study, which showed a switch from OXPHOS to glycolysis at D0 and D7 with a ‘‘truncated’’ TCA cycle,

similar to that observed in the Warburg effect, in which it supports defense against bacterial and viral infection.30,31 These cellular metabolic

changes drive an important cellular immune response. For example, a switch to glycolysis is related to the sufficient generation of adenosine

triphosphate (ATP) and biosynthetic intermediates to perform their specific effect functions,32,33 including phagocytosis and antimicrobial

response, which are predicted to be increased in this study.

Metabolic pathways, such as those related to fatty acid metabolism, OXPHOS, glucose metabolism disorder, and insulin resistance, re-

mained altered during the hospital stay (D0 and D7 samples) and even after hospital discharge (CS30 samples) compared with HVs. Proteins

involved in the TCA cycle (MDH2 and OGDH) and mitochondrial electron transport chain and ATP synthesis (NDUFA4, NDUFAB1, NDUFS1,

ATP5IF1, and ATP5ME) were found in low-abundance 30 days after discharge. This finding is consistent with previous reports on post-acute

sequelae of COVID-19 or long COVID-19 showing a chronic and self-perpetuatingmetabolically imbalanced non-resolving condition defined

by mitochondrial dysfunction, in which ROS drive inflammation and a switch to glycolysis.34,35

Figure 4. Distinctive response for critically ill and non-critically ill patients

(A–C) Volcano plots of DAPs in (A) D0-critical (n = 12) versus D0-non-critical (n = 17), (B) D7-critical (n = 9) versus D7-non-critical (n = 8), and (C) CS30-critical (n = 7)

versus CS30-non-critical (n = 8) patients. Cyan dots represent low-abundance proteins, red dots represent high-abundance proteins, and gray dots represent

proteins that were not differentially abundant.

(D) Dot plot showing the IPA canonical pathway analysis results. Red dots represent a canonical pathway predicted to be significantly increased, and cyan dots

represent a canonical pathway predicted to be significantly decreased (IPA Z score R2 or % �2 with a B-H q-value <0.05).
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Interestingly, patients progressing to critical illness showed amarked difference inmetabolic pathways comparedwith those not progress-

ing to clinical deterioration already at hospital admission. Thus, non-critical patients showed greater protein abundance in the glucose and

PPP pathways than critical patients, whereas the TCA cycle was equivalently altered in both groups. The increased abundance of PPP-related

proteins was associated with the supply of nicotinamide adenine dinucleotide phosphate to drive ROS production, antimicrobial response,

and defense against acute oxidative stress.36,37 On the other hand, the decrease in PPP-related proteins could induce oxidative damage, cell

apoptosis, and inflammatory cytokine release.38,39 This finding is consistent with previous reports indicating that PPP-related protein defi-

ciencies may be associated with poor outcomes in patients with COVID-19.40,41 In contrast, CS30 critically ill patients presented several path-

ways predicted to be increased when compared to non-critically ill. Patients with deteriorating clinical courses received critical supportive

therapy tailored to their needs, including ventilatory support and dialysis. In addition to more invasive supportive therapy, critically ill patients

had a significantly longer hospital stay, with an average of 33.91 (25.93) days, compared to non-critically ill patients, who stayed an average of

Figure 5. Soft clustering analysis of the proteomic abundance pattern

Trend analysis of cluster proteins with similar abundance patterns according to their temporal profiles and the top 10 enriched REACTOME pathways. (A) cluster

1, (B) cluster 2, (C) cluster 3, (D) cluster 5.
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8.6 (3.8) days. Consequently, the severity of the disease and the supportive interventions during the hospital stay may contribute to the post-

discharge differences observed between the two groups.

Changes in the abundance of metabolism-related proteins were also highlighted in the time-series soft clustering analysis. Cluster 3 was

enriched to splicing processes and cap processing and exhibited low-abundance in patients with COVID-19 at D0 and a rising trend of protein

abundance during follow-up. The same pattern was observed for the whole cohort of patients. In contrast, cluster 5, more related to protein

metabolism (eukaryotic translation elongation and peptide chain elongation), exhibited differences between critical and non-critical patients,

with high-abundance in non-critical patients, which was sustained 30 days after hospital discharge. This pattern is similar to what is known as

‘‘host-shutoff,’’ which is related to the remodeling of host gene expression and protein synthesis, leading to disrupted splicing and acceler-

ated degradation of cytosolic cellular mRNAs and facilitating the viral takeover of the mRNA pool in infected cells, thus increasing translation

of viral proteins, promoting escape, and disrupting innate immune pathways.42–44

Additionally, we found many proteins enriched for neutrophil-related processes, such as azurophilic granule proteins, neutrophil granule

proteins, neutrophil elastase, and neutrophil collagenase, indicating the presence of LDNs co-purified with PBMCs, as previously re-

ported.20–22 Recent studies have suggested different functions of these cells, such as a high capacity to generate ROS, increased phagocytic

capacity, elevated neutrophil extracellular trap formation, and association with the suppression of T cell function and proliferation.15,45 The

increase in the number of LDNs may be associated with the severity of infectious diseases, such as COVID-19 and sepsis.22,46,47 This is rein-

forced in our temporal analysis results (cluster 2), in which it was possible to visualize a trend for neutrophil degranulation and platelet func-

tions with high-abundance in critical patients, regardless of the day of sample collection.

Furthermore, the presence of LDNs in PBMCsmay be associatedwith emergency hematopoiesis/granulopoiesis in these patients,48 which

is in agreement with the increase in the abundance of multiple inflammatory signals, such as IL-6, IL-8, IL-10, and G-CSF, which prolong the

lifespan of neutrophils and infiltration15,47,49 as well as high levels of neutrophil proliferation and degranulation marks50,51 and leukocytes roll-

ing mediators over vascular surfaces.52 Additionally, the results of plasma biomarkers, particularly at D0 and D7, align with the state of inflam-

mation and alterations of metabolic pathways observed in the proteome of PBMCs from these patients. These findings are consistent with

those reportedby Xiao et al.,53 who showed that reprogrammedhostmetabolismwas tightly linked to the burst of proinflammatory cytokines.

Moreover, the presence of inflammatory markers such as IL-6 and IL-9 at CS30, when comparing critical and non-critical cases, may be asso-

ciated with the symptoms reported by individuals with long COVID-19.54,55

In summary, this study highlights proteins associated with COVID-19 and reveals distinct pathway and process alterations between pa-

tients presenting clinical deterioration (critically ill) and clinical recovery (non-critically ill patients). Metabolic changes, including a shift

fromOXPHOS to glycolysis, were observed, indicating a rapid infection response accompanied by increasedmacrophage activation, antigen

presentation, phagocytosis, ROS andNOproduction, as well as the release of immature cells (LDNs). Notably, patients progressing to critical

illness showed significantly low-abundance proteins in the PPP and glycolysis pathway comparedwith thosewho recovered. Furthermore, this

study also emphasized the importance of longitudinal cellular proteomic studies to discover disease progression-related pathways and pro-

tein changes that persist even after hospital discharge.

Limitations of the study

This study has some limitations. First, it is a unicentric study and lacks a validation cohort, for example, from another hospital in another region.

Nevertheless, this hospital assists a large number of populations in São Paulo, the largest city in Brazil, and may be representative of moder-

ately ill patients usually admitted to hospital wards. Second, this study lacks functional assays to validate the proteome metabolism changes

or the potential contribution of the LDNs in our results.We have tried to overcome these limitations by reanalyzing public proteomic datasets.

Despite the limitations, this study has notable strengths. PBMCs are a type of cells not often explored in COVID-19 proteomics. All patients

with COVID-19 and HVs are non-vaccinated due to the unavailability of vaccines at the time of enrollment. Evaluating samples obtained dur-

ing hospitalization and after hospital discharge allowed us to have a broad view of the cellular proteomic alterations during the clinical course

of the disease and convalescence.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Reinaldo Salomão

(rsalomao@unifesp.br).

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Methanol Sigma-Aldrich Cat# 34860

Acetonitrile Sigma-Aldrich Cat# 34851

DL-Dithiothreitol Sigma-Aldrich Cat# D0632

Iodoacetamide Sigma-Aldrich Cat# I1149

Trypsin/Lys-C Mix Promega Cat# V5071

50% Hydroxylamine for TMT experiments Thermo Scientific Cat# 90115

Urea Sigma-Aldrich Cat# 51456

Thiourea Sigma-Aldrich Cat# T8656

Protease Inhibitor Mix Cytiva Cat# GE80-6501-23

1M Triethylammonium bicarbonate (TEAB)

for TMT experiments

Thermo Scientific Cat# 90114

PolyLC C18 tips PolyLC Inc Cat# TT200C18.96

Critical commercial assays

Pierce� BCA Protein Assay Kits Thermo Scientific Cat# 23225

Pierce� Quantitative Peptide Assays Thermo Scientific Cat# 23275

TMTsixplex� Isobaric Label Reagent Thermo Scientific Cat# 90066

Deposited data

Mass spectrometry data This paper PXD040245

Mass spectrometry data Carapito et al.14 PXD025265

Software and algorithms

R software environment (version 4.2.0) R Project https://www.r-project.org

SPSS Statistics software (version 21) IBM https://www.ibm.com/

UniProt database UniProt Consortium https://www.uniprot.org/

Perseus (version 2.0.6.0) MaxQuant https://maxquant.net/perseus/

Ingenuity Pathway Analysis QIAGEN https://digitalinsights.qiagen.com/products-overview/

discovery-insights-portfolio/analysis-and-visualization/

qiagen-ipa/

Proteome Discoverer Suite (version 2.4) Thermo Scientific https://www.thermofisher.com/us/en/home.html

Cytoscape (version 3.9.1) Cytoscape Consortium https://cytoscape.org/

stringApp (version 1.7.1) N/A https://apps.cytoscape.org/apps/stringapp

Omics Visualizer app (version 1.3.0) N/A https://apps.cytoscape.org/download/stats/

omicsvisualizer/

DAVID Bioinformatics Resources (version 2022q4) LHRI https://david.ncifcrf.gov/

LIMMA (version 3.42.2) Bioconductor https://bioconductor.org/packages/release/bioc/html/

limma.html

Mfuzz (version 2.56.0) Bioconductor https://www.bioconductor.org/packages/release/bioc/

html/Mfuzz.html
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Materials availability

This study did not generate new unique reagents.

Data and code availability

d Raw and processed mass spectrometry proteomic data generated in this study are available at ProteomeXchange with the dataset iden-

tifier PXD040245. The following public proteomic data were downloaded and analyzed in this study: PXD025265.

d This paper does not report original code. The R code used for batch correction can be downloaded from https://github.com/

GiuseppeLeite/COVID19_Proteomic.

d Any additional information required to reanalyze the data reported in this work is available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics

This was a prospective cohort study conducted at Hospital São Paulo, which is a tertiary university hospital in São Paulo with approximately

12.3 million inhabitants.18 The study protocol was approved by the research ethics committee and all volunteers gave written informed con-

sent before enrollment in the cohort (Process number 4.453.137). The study included adult patients (R18 years old) diagnosedwith COVID-19

based on positive reverse transcriptase polymerase chain reaction (RT-PCR) results from nasopharynx swabs. They were admitted to the

hospital wards between May 10 and September 26, 2020, with moderate to severe illness as defined by National Institutes of Health and

World Health Organization guidelines.5,6 Patients referred to outpatient clinics or admitted to the ICU were excluded. The patients were pro-

spectively followed and classified as critical or non-critical based on their clinical course and need for ICU support.5,6,56 Out of the initial 68

moderately ill patients in the cohort, 30 were included in the proteomic analysis. One patient was excluded after preliminary analyses (see

below). Additionally, 11 healthy volunteers, matched for age and gender, were selected as controls. The healthy volunteers underwent

comprehensive clinical evaluation, tested negative for SARS-CoV-2 antibodies, and had negative RT-PCR results from nasopharynx swabs.

Sex and ages of human subjects are reported in the current manuscript (Table S1).

Sample collection

Blood samples were collected frompatients andHVs in ethylenediaminetetraacetic acid-treated tubes (BDBiosciences, SanDiego, CA, USA),

and plasma and PBMCs were separated using a Ficoll gradient method (Ficoll-Paque PLUS, GE Healthcare Biosciences, Uppsala, Sweden).

Plasma samples were stored at �80�C, and PBMCs were stored in liquid nitrogen before use.

METHOD DETAILS

Plasma levels of cytokines and proteins related to endothelial-cell interactions and inflammation

Circulating levels of cytokines and proteins related to endothelial-cell interactions and inflammation were determined by flow cytometry

(LSRFortessa, BD Biosciences, San Diego, CA, USA) using Cytometric Bead Array Flex Set kits (BD Biosciences, San Diego, CA, USA) or

the kit MILLIPLEX� MAP Human Cardiovascular Disease (CVD) Magnetic Bead Panel 2 - Cardiovascular Disease Multiplex Assay (Millipore,

Temecula, CA, USA) in MAGPIX� Instrument (Luminex Corporation, Austin, TX, USA). Details information on the mediators is shown in

Table S19.

Preparation of PBMCs and protein extraction and digestion

Protein samples were prepared as previously described20 with minor changes. Briefly, PBMCs were thawed, and the protein extracts were

obtained by lysis in 7 M urea, 2 M thiourea, and 200 mM Dithiothreitol (DTT, Sigma Aldrich, St. Louis, MO, USA) with the Protease Inhibitor

Mix (Cytiva, Marlborough, MA, USA). After centrifugation at 13, 000 g for 15 min at 4�C, the protein concentration in the supernatants was

determined using the Bradford method.57 The samples were reduced with 5 mM DTT at 65�C for 30 min and then alkylated with 15 mM

iodoacetamide (Sigma Aldrich, St. Louis, MO, USA) at room temperature for 30 min in the dark. The proteins were precipitated in acetone:

methanol (8:1, v:v) at �80�C overnight (16 h) and, after two washes with methanol, recovered by centrifugation at 14, 000 g for 10 min at 4�C.
They were then dissolved in 100 mM triethylammonium bicarbonate buffer (TEAB, Thermo Scientific, Waltham, MA, USA) to a protein con-

centration of 1 mg.mL–1. Trypsin/Lys-CMix (Promega, Madison, WI, USA) was added at a 1:50 enzyme:protein ratio at 37�C, and samples were

digested overnight (16 h). The peptides were then desalted using PolyLCC18 tips (PolyLC Inc.,Waltham,MA, USA), vacuum-dried, and stored

at �80�C.

TMT labeling

After protein extraction and digestion, the peptides were dissolved in 100 mM of TEAB buffer. The peptide concentrations were measured

using Quantitative Colorimetric Peptide Assay (Thermo Scientific, Waltham, MA, USA) before TMT labeling to ensure that the amounts of

peptides in each channel for TMT labeling were equal. TMT labelling was performed according to the manufacturer’s recommendations

with minor modifications. For tag reconstitution, the TMT reagent (TMT sixplex� Isobaric Label Reagent Set, Thermo Scientific, Waltham,

MA, USA) was dissolved in 41 ml acetonitrile (Sigma Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions. Each batch

ll
OPEN ACCESS

iScience 26, 107824, October 20, 2023 13

iScience
Article

https://github.com/GiuseppeLeite/COVID19_Proteomic
https://github.com/GiuseppeLeite/COVID19_Proteomic


of the TMT experiment contained five different samples and one global internal standard (GIS) sample created by pooling PBMCs samples

from all individuals of the cohort (TMT channel 126 was used to label GIS). From every sample, 25 mg was labeled with 10 ml of a TMT tag.

Reactions were incubated at room temperature for 1 h. The labeling reaction was quenched by an additional 4 ml of 5% hydroxylamine for

15 min. The TMT-labeled samples were pooled with a protein concentration ratio of 1:1:1:1:1:1.58 Each mixture was dried and stored at

�20�C until the liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS analysis

Samples were analyzed by LC-MS/MS using anOrbitrap Fusion Lumosmass spectrometer (Thermo Scientific, Waltham,MA, USA) coupled to

aNanoEASY-nLC 1200 (ThermoScientific,Waltham,MA, USA). TMT-labeledpeptideswere injected into a trap column (nanoViper C18, 3 mm,

75 mm3 2 cm, Thermo Scientific, Waltham, MA, USA) with 12 mL of solvent A (0.1% formic acid) at 980 bar. The trapped peptides were eluted

onto a C18 column (nanoViper C18, 2 mm, 75 mm3 15 cm) at a flow rate of 300 nL/min and subsequently separatedwith a 5%–28% acetonitrile

gradient with 0.1% formic acid for 80 min, followed by a 28%–40% acetonitrile gradient with 0.1% formic acid for 10 min. The electrospray

ionization source was operated in a positive mode, with voltage and temperature being adjusted to 2.1 kV and 300�C, respectively. The
mass spectrometer was operated in a data-dependent acquisition mode, with the MS scan in the m/z range of 400–1600 (with a target value

of 106 ions) using theOrbitrap analyzer at a resolution of 120, 000 (at m/z 400), followed by higher-energy collisional dissociation (set to 38%) of

the 10 most intense ions at a resolution of 50, 000. The isolation window for precursor ions was set to 0.7 m/z, the minimum count to trigger

MS/MS events was 25, 000 counts per second, and the dynamic exclusion time was set to 60 s.

QUANTIFICATION AND STATISTICAL ANALYSIS

Epidemiologic, clinical, and routine laboratory statistical analysis

Statistical analyses were performed using SPSS Statistics software version 21 (IBMCorp., Armonk, NY, USA). Normal distribution and variance

homogeneity of data were assessed using the Shapiro–Wilk test and Levene’s tests, respectively. Normally distributed variables were ex-

pressed asmean and standard deviation and compared using Student’s t-test. Non-normally distributed variables were expressed asmedian

and 25th and 75th percentiles and compared using Mann–Whitney U test. Categorical data were compared using the chi-squared test. A

p-value < 0.05 was considered statistically significant.

Proteomic data processing

Raw data files from Orbitrap Fusion Lumos were processed using Proteome Discoverer Suite version 2.4 (Thermo Scientific, Waltham, MA,

USA, formic acid). Peptides were identified using the SEQUEST HT search engine with the UniProtKB/Swiss-Prot (TaxID = 9606, Homo sapi-

ens, 20, 315 sequences) database and a list with common contaminants (245 sequences, downloaded from http://www.coxdocs.org/doku.

php?id=maxquant:start_downloads.htm, 03/06/2022). The following search settings were applied: precursor mass tolerance of 10 ppm, frag-

ment ion tolerance of 0.02 Da (MS2 mode), fully tryptic specificity, maximum of two missed cleavages, minimum peptide length of 6 and

maximum peptide length of 144, TMT-labeled peptide N-terminals and lysines (+229.163 Da), carbamidomethylation of cysteine (+57.021

Da) as a fixedmodification, and oxidation ofmethionine residues (+15.994 Da) as a variablemodification. The false discovery rate for proteins,

peptides, and peptide spectral matches was set to 1%. TMT reporter ions were matched with a 20 ppm tolerance window, and both unique

and razor peptides were considered for quantitation. The abundance was normalized on ‘‘Total Peptide Amount’’ and then scaled with ‘‘On

Controls Average’’ (TMT channel 126 was used as a reference, GIS).59 In this case, it summed the peptide group abundance for each sample,

determined the maximum sum for all files, and calculated the normalization factor using the sum of the sample and the maximum sum in all

files.60

Batch effect correction

Thematrix of ProteomeDiscoverer normalized abundance of TMT reporters was imported into the R software environment (version 4.2.0) and

was log2 transformed. Proteins quantified inR 50% of samples were included in subsequent analyses. The filtered data were then imputed by

applying six different methods using R packages ‘‘randomForest’’ version 4.7-1.1 (function rfImpute), ‘‘impute’’ version 1.70.0 (function impu-

te.knn), or Perseus 2.0.6.0 (imputation from the normal distribution). The ‘‘randomForest’’ was superior to othermethods61,62 andwas selected

for further use. Imputationwas performed in an unsupervisedmode, using 1000 trees in 10 iterations.61 Subsequently, ComBat (R sva package)

was used to remove variability due to multiple batches.63 All data were subjected to iterative outlier removal using the molecular degree

perturbation (MDP) web tool.19 After MDP analyses, one patient was detected as an outlier and removed from all subsequent analyses

(Figure S1).

Differential protein abundance analysis

Differential protein abundance analysis was performed using R/Bioconductor package ‘‘Limma’’ (version 3.42.2). The difference in PBMCs

proteome profiling between two different groups was detected using the empirical Bayes moderated t-statistics test and the Benjamini-

Hochberg corrections was applied for all p-values to calculate the false discovery rates (FDR). Differentially abundant proteins (DAPs) between

the two groups had to meet the following criteria: p-value < 0.05 and log2 fold change < �0.26 or > 0.26.
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Pathway enrichment analysis

The canonical pathway enrichment analysis was performed in the ingenuity pathway analysis (IPA, Qiagen Bioinformatics, Thermo Scientific,

Waltham, MA, USA) as described previously.20 Briefly, each list of DAPs is analyzed separately to determine the most significantly affected

pathways and the predicted state. The statistical significance (p-value) was calculated using Fischer’s exact test and adjusted for multiple

comparisons by Benjamini–Hochberg-adjusted q-values. A Z-score R 2 (pathway increased) or % �2 (pathway decreased) with a B-H

q-value % 0.05 was used as the significance cutoff for our analysis.

Construction and visualization of protein-protein interaction network

The COVID-19 protein-protein interaction network (PPIN) was created using the DAPs list of D0, D7, and CS30 compared with HVs. The in-

teractions were derived from the STRING database using the Cytoscape stringApp (version 1.7.1) for Homo sapiens with a confidence cutoff

score set at 0.4 and no additional interactors. The representation of the log2 fold change variation was created using theOmics Visualizer app

(version 1.3.0). The modules were created using Markov clustering as described previously.20 All analyses were performed using Cytoscape

(version 3.9.1).

Temporal proteomic changes

Temporal changes related to patients with COVID-19 were detected using theMfuzz R package (version 2.56.0).64 The soft clustering analysis

was performed using the protein abundance matrix. The samples were grouped according to the disease progression stage and among the

three-time points. The optimal number of clusters was defined using the Elbow method.65 Core cluster proteins were used for the top 10

REACTOME pathway enrichment analyses using the Database for Annotation, Visualization, and Integrated Discovery (DAVID, version

2022q4).

Publicly available dataset

A publicly available proteomic dataset of PBMCs from patients with COVID-19 was obtained from the ProteomeXchange Consortium

(PXD025265).14 This database was compared with our main findings to validate them. Normalized data was downloaded using the access:

Project PXD025265. The data was Log2 transformed, and proteins only identified by side, reverse, and the potential contaminant was

removed. We keep only proteins with R2 peptides matched (one of which was unique). Differential protein abundance analysis was per-

formed using R/Bioconductor package ‘‘Limma’’.
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