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Abstract

Motivation: When rare missense variants are clinically interpreted as to their pathogenicity, most are classified as
variants of uncertain significance (VUS). Although functional assays can provide strong evidence for variant classifi-
cation, such results are generally unavailable. Multiplexed assays of variant effect can generate experimental ‘vari-
ant effect maps’ that score nearly all possible missense variants in selected protein targets for their impact on pro-
tein function. However, these efforts have not always prioritized proteins for which variant effect maps would have
the greatest impact on clinical variant interpretation.

Results: Here, we mined databases of clinically interpreted variants and applied three strategies, each building on
the previous, to prioritize genes for systematic functional testing of missense variation. The strategies ranked genes
(i) by the number of unique missense VUS that had been reported to ClinVar; (ii) by movability- and reappearance-
weighted impact scores, to give extra weight to reappearing, movable VUS and (iii) by difficulty-adjusted impact
scores, to account for the more resource-intensive nature of generating variant effect maps for longer genes. Our
results could be used to guide systematic functional testing of missense variation toward greater impact on clinical
variant interpretation.

Availability and implementation: Source code available at: https://github.com/rothlab/mave-gene-prioritization

Contact: robert.nussbaum@invitae.com or fritz.roth@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Clinical genetic testing is frequently performed for carrier screening
and for the detection and diagnosis of disease. The rapid decline in
sequencing costs, coupled with increased demand for genetic testing
and a shift in the standard of care toward larger gene panels, has
resulted in rapid increases in the number of previously unseen var-
iants (Blazer et al., 2015).

Clinical variant interpretation is required to determine which
variants are worthy of a physician’s concern. In ClinVar, a widely
used resource for reporting clinical variants, �40% of all variants
reported in disease-implicated genes are missense variants
(Landrum et al., 2016). Unfortunately, more than half of these
missense variants are classified as variants of uncertain signifi-
cance (VUS) (Starita et al., 2017; Weile and Roth, 2018).
Although physicians and genetic counselors do flag VUS emerging
from a diagnostic genetic test for future follow-up and reinterpret-
ation, VUS results are generally not considered clinically action-
able (Hoffman-Andrews, 2017). Therefore, evidence that can help
reclassify VUS as ‘benign’, ‘likely benign’, ‘pathogenic’ or ‘likely

pathogenic’ could substantially impact the value of genetic testing
for patient care. Although well-established functional assays, such
as complementation (Lee and Nurse, 1987; Osborn and Miller,
2007) or in vitro biochemical activity assays (Guidugli et al.,
2014; Millot et al., 2012), are used as evidence for variant inter-
pretation under current American College of Medical Genetics and
Genomics/Association for Molecular Pathology (ACMG/AMP)
guidelines (Richards et al., 2015; Brnich et al., 2018; Brnich et al.,
2019), such assays are resource-intensive and have not generally
been performed for rare clinical missense variants. Multiplexed
assays of variant effects (MAVEs) are an emerging tool to provide
systematic experimental testing of nearly all missense variants for
selected protein targets (Starita et al., 2017). Missense variant ef-
fect maps have, for some genes, been shown to outperform general
computational predictors of pathogenic variation (previously
trained on variants across many genes) (Sun et al., 2020; Weile
et al., 2017). For example, a variant effect map for the human CBS
gene was generated in yeast cells based on the ability of each vari-
ant to complement the loss of the yeast CBS ortholog CYS4. This
MAVE study detected almost four times more pathogenic variants
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than a computational approach, at the same stringency (Sun et al.,
2020).

Because MAVE technology has emerged only recently (Fowler
and Fields, 2014), full-length variant effect maps are available for
fewer than 30 human proteins (Esposito et al., 2019; Weile and
Roth, 2018). Moreover, many of these maps cover proteins for
which very few difficult-to-interpret missense VUS have been
reported. As the output of MAVE studies rapidly increases (Weile
and Roth, 2018), it would be helpful to have more guidance on the
protein targets for which variant effect maps could have the greatest
impact on clinical variant interpretation. Here, we implement three
strategies, each building on the previous, to prioritize gene targets of
missense variant effect mapping studies.

2 Materials and methods

2.1 Clinical variants
We used ClinVar (Landrum et al., 2016) to assemble missense var-
iants that had been interpreted in the context of clinical genetic test-
ing (‘clinical testing’), as opposed to variants in the literature that
were not clearly interpreted in the context of clinical testing (‘litera-
ture-only’), and had been assigned a clinical interpretation of ‘uncer-
tain significance’ by all submitters. Variants with conflicting
interpretations were removed.

Missense variants were also extracted from Invitae’s clinical variant
database, as were the number of patients in which each variant was
found, the clinical area of the patients’ tests, and the most recent inter-
pretation of each variant. Because our repeated observation (i.e. re-
appearance) measure could potentially over-weight genes that had
been subject to more intensive cascade screening of individuals related
to the primary proband (i.e. extensive family member testing), we
included only variants from probands who were not known to be
related. Variants were interpreted using the Sherloc system, for which
both methods and validation have been published (Nykamp et al.,
2017). Interpreted variants were stripped of all protected health infor-
mation (i.e. de-identified) under an approved protocol from the
Western Institutional Review Board (IRB #20161796). As previously
described, the Sherloc system offers a series of detailed refinements to
the ACMG/AMP variant classification criteria to capture exceptions
and special cases. For all VUS in the database, we retrieved the semi-
quantitative scores that had been assigned given supporting evidence
types. Briefly, each evidence criterion was awarded a preset number of
points on the benign (1B-5B) and pathogenic (1P-5P) scales, and total
benign and pathogenic points were calculated separately (see Nykamp
et al., 2017 for details on the Sherloc system). To be classified as ‘likely
benign’ or ‘likely pathogenic’, a variant had to receive at least three be-
nign points (i.e. 3B) or four pathogenic points (i.e. 4P), respectively.
For instance, a variant that is absent from the Exome Aggregation
Consortium (ExAC), a large-scale reference human genetic variation
dataset (Lek et al., 2016), would receive 1P, and another 3P if it were
seen in four unrelated clinical case reports, so that it would receive a
total of four pathogenic points and be classified as ‘likely pathogenic’,
in the absence of other evidence.

2.2 Accounting for ‘movability’ of variants
Variants annotated as VUS were considered ‘movable’ if new func-
tional evidence (i.e. evidence from functional assays) would be suffi-
cient to change the variant interpretation to a non-VUS category.
We computed the number of movable VUS under two scenarios:
functional evidence was ‘strong’ and functional evidence was
‘weak’, conveying either two and a half points or one point, respect-
ively, within the Sherloc system (Nykamp et al., 2017). For VUS to
be ‘moved’, a variants’s total (after considering new strong or weak
functional evidence) would need to either reach four pathogenic
points (4P) or three benign points (3B). For example, VUS previous-
ly receiving two pathogenic points (2P) and no benign points (0B)
based on other scoring criteria, if found to significantly reduce fit-
ness in a human cell line assay and if the interpreter considered this
to be strong functional evidence worth 2.5P, would now have a total
of 4.5P and be moved to ‘likely pathogenic’. Alternatively, variants

that previously received no pathogenic or benign points (0P, 0B)
could not reach 4P even with the same piece of strong functional evi-
dence, and would not be considered ‘movable’.

This analysis accounted for pre-existing functional evidence (e.g.
VUS for which strong functional evidence had already been consid-
ered in the classification would not be considered movable). Any
VUS with substantial evidence for a benign classification (>3B) and
substantial evidence for a pathogenic classification (>4P) was not
considered movable, because new functional evidence is unlikely to
resolve the conflict.

2.3 Giving extra weight to reappearing variants
To score the tendency of a gene to harbor clinical variants that are
repeatedly observed, we divided (for each gene) the number of
patients in which a variant had been observed by the number of
unique variants observed for that gene. To reduce the impact of
common variants on our analysis, we capped the number variant
observations at seven (treating variants seen in more than seven
patients as though they had been observed in only seven). Applying
this cap, 95% of VUS were left unchanged (Supplementary Fig.
S1a).

2.4 Modeling the reappearance-weighted fraction of

movable variants
We used the Invitae clinical variant database to calculate two coeffi-
cients that were subsequently used to modify variant effect map im-
pact estimates for each gene. The first coefficient, the fraction of all
variants that were movable (i.e. movability fraction, or M), was cal-
culated as:

M gð Þ ¼
Cmovable gð Þ

C gð Þ
; (1)

where CðgÞ is the unique VUS count for gene g and CmovableðgÞ is the
unique movable VUS count for gene g. To limit the effects of small
sample size for genes with fewer observed variants, we used a more
conservative estimation approach (i.e. regularized movability frac-
tion, or M̂) that returned values closer to the average M value (Mavg)
where less data were available. This was calculated using:

M̂ gð Þ ¼
Cmovable gð Þ þ Cpseudo �Mavg

CðgÞ þCpseudo
; (2)

where CðgÞ is the unique VUS count for gene g and Cpseudo is a pseu-
docount (see next page for a description of pseudocount selection)
added to allow processing genes for which no movable VUS were
observed in the Invitae dataset.

The second coefficient we calculated gives extra weight for
repeated observations (R) of a variant. This ‘reappearance coeffi-
cient’, which captures the ratio of patients to unique variants while
limiting the extra weight provided by capping the number of occur-
rences, was calculated by:

R gð Þ ¼
P gð Þ
C gð Þ

; (3)

where PðgÞ is the number of patients observed to have a VUS for
gene g. To limit the effects of small sample size for genes for which
fewer patients had been observed, we calculated a regularized R (R̂)
that returned values closer to the average R value (Ravg) when less
data were available:

R̂ gð Þ ¼
P gð Þ þ Cpseudo � Ravg

CðgÞ þ Cpseudo
; (4)

where CðgÞ and Cpseudo are the unique VUS count for gene g and a
pseudocount, respectively.

For each regularization step, we used Cpseudo ¼ 8. Thus, e.g. a
gene with only two observed VUS had an M or R value that was
80% [8 pseudocounts/(8 pseudocountsþ2 observed VUS)¼80%]
driven by the average value across all genes, while M or R for a gene
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with more than 72 VUS was more than 90% [72 observed VUS/(8
pseudocountsþ72 observed VUS)¼90%] driven by VUS observed
in that gene. A pseudocount enabled the model to process datasets
(e.g. ClinVar) where movability fraction (M) and reappearance (R)
are not available, as long as a dataset (e.g. Invitae) is present to pro-
vide the average movability and reappearance.

Our simplest measure of impact score (SClinVar) was calculated
simply as the unique VUS count:

SClinVar g;Cð Þ ¼ C gð Þ; (5)

where CðgÞ is the unique VUS count for gene g in ClinVar. We then
used the above-described coefficients of movability and reappear-
ance to calculate a movability- and reappearance-weighted impact
score (MARWIS) (SMARWIS) for each gene with at least one VUS in
the ClinVar database:

SMARWIS g;Cð Þ ¼ M̂ gð Þ � R̂ gð Þ � C gð Þ; (6)

where CðgÞ is the unique VUS count for gene g. MARWIS was calcu-
lated either using the count of unique VUS from ClinVar (CClinVar)
or from Invitae (CInvitae), yielding SMARWIS ðg;CClinVarÞ and
SMARWIS ðg;CInvitaeÞ, respectively.

In calculating SClinVar and SMARWIS scores, the goal was to esti-
mate absolute impact on clinical variant interpretations that a vari-
ant effect map might provide, so we did not consider measures of
difficulty of the project, e.g. by considering the length of each
protein.

2.5 Difficulty-adjusted impact score (DAIS)
For each protein, a DAIS (SDAIS) was calculated to account for the
increased difficulty of variant effect mapping for longer proteins:

SDAIS g;Cð Þ ¼ SMARWIS g;Cð Þ
DL gð Þ þDfixed

; (7)

where DLðgÞ is the protein length [i.e. number of amino acids, based
on the canonical isoform according to the Ensembl database (Yates
et al., 2019)]. The denominator estimated the resources that would be
required for variant effect mapping, as the sum of length-dependent
(DL) and -independent (Dfixed) costs, with length-independent costs
modeled as equivalent to the length-dependent costs of a 300 amino
acid protein (Dfixed ¼ 300). Length-independent costs were introduced
to capture costs such as assay development and assay validation experi-
ments, as well as length-independent aspects of downstream analysis.

2.6 Prioritization of genes
Figure 1 shows the three strategies we used to prioritize genes accord-
ing to how useful a variant effect map could be in classifying variants
for those genes. The first strategy ranked the genes by the number of
unique missense VUS that had been reported to ClinVar (‘VUS
count’). The second strategy ranked genes by MARWIS to give extra
weight to reappearing, movable VUS. The third strategy ranked genes
by DAIS, which rescale the MARWIS to account for the more
resource-intensive nature of generating variant effect maps for longer
genes. Analysis scripts, datasets and raw results are available via
GitHub (https://github.com/rothlab/mave-gene-prioritization).

3 Results

3.1 Application of prioritization strategies
The three strategies—using (i) ‘unique VUS count’, based on the
number of unique VUS in ClinVar; (ii) MARWIS, the ClinVar VUS
count modified by Invitae-derived movability and reappearance
coefficients and (iii) DAIS, which adjusted the MARWIS with a
rough estimate of the relative difficulty of producing a variant effect
map—resulted in three unique lists of the 20 highest-priority genes
(Table 1).

For the ‘unique VUS count’ approach, we examined 221 538
unique missense VUS in 3646 genes from ClinVar (accessed on

September 2, 2020). This approach to prioritization had the advan-
tage of being simple and readily calculated from available ClinVar
data. However, this approach had two limitations. First, it counted
VUS even where new functional evidence would not lead to reclassi-
fication. Second, it gave no extra weight to VUS that appeared in
multiple patients, even though reclassification of such variants
would have greater clinical impact. Unfortunately, these issues could

Ranking Strategies

Invitae

Unique ClinVar 
VUS count

Movability- and 
reappearance-weighted 

impact score
MARWIS

Difficulty-adjusted 
impact score

DAIS

ClinVar Ensembl

Extracted amino 
acid length of the 
canonical isoform

Calculated parameters:
1. Movability
2. Repeated observations 

(i.e. reappearance)

Extracted missense variants:
1. Collected by clinical testing
2. Classified as variant(s) of uncertain 

significance (VUS)

Fig. 1. Three strategies for ranking genes according to the potential impact of vari-

ant effect map on clinical interpretation of VUS. Missense VUS collected through

clinical testing were extracted from the ClinVar and Invitae databases. The first

strategy ranked genes based on their unique VUS count. The second strategy ranked

genes based on their MARWIS to give extra weight to reappearing, movable VUS.

The third strategy ranked the genes by their DAIS, calculated to account for the

costs associated with studying longer genes

Table 1. Top 20 genes ranked by strategy

Rank Unique ClinVar VUS MARWIS DAIS

1 TTN ATM TP53

2 BRCA2 BRCA2 MYH7

3 ATM MYH7 CHEK2

4 APC NF1 MSH2

5 MSH6 TTN MSH6

6 NF1 APC VHL

7 BRCA1 POLE ATM

8 POLE MSH6 MLH1

9 MSH2 BRCA1 BRCA2

10 PALB2 RYR1 BRCA1

11 TSC2 MSH2 NF1

12 BRIP1 FBN1 MUTYH

13 RYR2 PALB2 PALB2

14 DICER1 BRIP1 STK11

15 PMS2 CHEK2 POLD1

16 PLEC POLD1 POLE

17 RAD50 DICER1 BRIP1

18 BARD1 TP53 NBN

19 SYNE1 MLH1 PMS2

20 CDH1 TSC2 APC

Genes in bold were common to all three top 20 lists.
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not be addressed using only the public ClinVar resource, which does
not provide information about movability. Although ClinVar can
contain multiple reports for the same variant, the number of such
reports is a poor proxy for the rate of repeated observation, given
that providers will typically only provide a new report to ClinVar
upon observation in a new patient if their interpretation has
changed.

To obtain information about movability and reappearance for
each VUS, we mined data from the Invitae database, which encom-
passed 411 782 missense VUS observations (218 096 unique mis-
sense VUS in 1921 genes). Following ACMG/AMP guidelines, as
implemented by the Sherloc system (Nykamp et al., 2017) used by
Invitae for interpretation, we established that in the Invitae data-
base, only 9.6% of VUS were potentially movable on the basis of
strong, new, functional evidence (3.7% to benign or likely benign,
6.9% to pathogenic or likely pathogenic and 1% to either category
given the direction of functional evidence).

After calculating movability and reappearance coefficients for
each gene (see Section 2), we combined the two coefficients with the
VUS count from ClinVar to estimate an MARWIS for each of the
3646 genes with missense VUS in ClinVar. To limit the dependence
of gene prioritization on the experience of any one clinical genetics
provider, we only used ClinVar variants to derive the unique VUS
count. However, results based on unique VUS counts from Invitae
yielded similar MARWIS (Pearson correlation, r¼0.90) (Fig. 2). We
applied reduced major axis regression, which is more appropriate
than ordinary least-square regression when a bivariate relationship
is symmetrical (Smith, 2009).

Ranking ClinVar genes by unique VUS count and by MARWIS
yielded substantial agreement (Pearson correlation, r¼0.92)
(Fig. 3), but with many noteworthy exceptions. For most genes that
were extreme outliers, the MARWIS were higher than those for
other genes with similar unique VUS counts, indicating that consid-
eration of variant reappearance and movability can substantially
alter prioritization. For example, as shown in Figure 3, the MYH7
MARWIS was nearly five times the score projected from the MYH7
unique VUS count by the linear regression model
(y ¼ 0:2017c � 1:1323; where c is the unique missense VUS count
from ClinVar). MYH7 variants are associated with familial hyper-
trophic cardiomyopathy (CMH1 [MIM: 192600]) and dilated

cardiomyopathy (CMD1S [MIM: 613426]) (Fiorillo et al., 2016).
Although hundreds of causal variants (e.g. LRG_384p1:
p.Arg403Gln) have been reported (Geisterfer-Lowrance et al.,
1990), 30–40% of CMH1 (Arad et al., 2005; Watkins et al., 2008)
and 65–80% of CMD1S (Daehmlow et al., 2002) cases cannot be
explained by known pathogenic variants. Correspondingly, about
70% of all missense variants in the MYH7 gene in ClinVar have
been annotated as VUS. Because 49.7% of MYH7 variants are
moveable, as opposed to 9.6% of VUS overall, evidence of variant
functionality might be expected to offer a greater-than-average
benefit for clinical interpretation of MYH7 variants.

Although the MARWIS approach allows ranking of genes for
which a variant effect map would provide the greatest impact on
clinical variant interpretation, it does not account for the idea that
producing a variant effect map is more resource-intensive for a lon-
ger protein than for a shorter one. The top 20 MARWIS-ranked
genes encoded proteins with an average length of 3674 amino acids
(based only on the annotated canonical isoform), as compared with
an average length of 842 amino acids over all proteins scored.

Therefore, we developed the DAIS, which divides the MARWIS
by a gene-specific estimate of relative difficulty. This estimate was
necessarily crude, as determining the best functional assay (e.g.
in vitro test versus complementation in human cells) for each
disease-associated protein and its relative cost is not currently feas-
ible. A detailed analysis for limitation of this estimation and ways to
further prioritize ranked genes are explored in Section 4.

3.2 Comparison of rankings
Examining the ‘top 20’ genes from each of the three lists, we found
10 genes common to all lists: BRCA2, ATM, APC, MSH6, NF1,
BRCA1, POLE, MSH2, PALB2 and BRIP1 (Table 1). (‘top 100’
lists are also provided in Supplementary Table S1.) For other genes,
ranks differed substantially between the lists. For example, the
TP53 gene was ranked 48th by unique VUS count, 18th by
MARWIS and 1st by DAIS. TP53 was the top DAIS-ranked gene,
though the DAIS still likely underestimated the impact of somatic
variation (see Section 4). In keeping with its top rank by DAIS, mul-
tiple MAVE studies (Bhagavatula et al., 2017; Giacomelli et al.,

Fig. 2. Correlation between MARWIS calculated from two datasets. The MARWIS

calculated using unique missense VUS from ClinVar (SMARWISðCClinVarÞ) correlated

well (r¼0.900) with the MARWIS calculated using unique missense VUS from the

Invitae dataset for 1921 genes (SMARWISðCInvitaeÞ). The blue line shows the reduced

major axis regression of the dataset

MYH7

NF1

RYR1

BRCA2

TTN

ATM

APC

Fig. 3. Correlation between unique VUS count and MARWIS. The unique VUS

count correlated well (r¼0.919) with the MARWIS. Some genes, including RYR1,

NF1, MYH7, ATM and BRCA2, exhibited more frequently reappearing and mov-

able VUS than the group average, whereas other genes (e.g., TTN and APC) showed

fewer. The blue line shows the linear regression of the data
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2018; Kotler et al., 2018) have been conducted to better
understandTP53 variation.

Ranking genes by DAIS provided an additional aspect of gene
prioritization that would otherwise have been ignored. For example,
the VHL gene was ranked 6th by DAIS despite being 36th by
MARWIS and 137th by unique VUS count. Variation in VHL can
cause familial erythrocytosis (ECYT2 [MIM: 263400]), von Hippel–
Lindau syndrome (VHL [MIM: 193300]) and clear cell renal carcin-
oma (CCRC [MIM: 144700]) (Gossage et al., 2015). Its importance
in genetic disease already suggested that it should be a high-priority
target for proactive functionality testing, but the fact that it is a rela-
tively short protein (178 amino acids) suggests that it should be fur-
ther prioritized. The ‘top 40’ list for this preferred strategy is
provided in Table 2, annotated by previously conducted systematic
variant mapping studies, number of unique missense variants and
VUS in ClinVar, typical mode of inheritance, whether or not patho-
genic variants tend to be gain-of-function or loss-of-function, and
the clinical categories to which each gene belongs.

3.3 Sensitivity of results to parameter choices
To assess whether our results were sensitive to the parameters of our
analysis, pseudocounts ranging from 1 to 10 were explored. High
correlation between rankings generated with different pseudocount
choices suggested that our results were not highly sensitive to pseu-
docount choice (Supplementary Fig. S2, lowest observed r¼0.999).
Next, we varied the choice of cap on the number of repeated obser-
vations from 1 to 10. High correlation between ranks suggested that
our results were also not highly sensitive to this choice
(Supplementary Fig. S1b, lowest observed r¼0.96). Finally, length-
independent costs of a protein ranging from 0 amino acids (i.e. no
length-independent cost) to 500 amino acids (assuming length-
independent costs are equivalent to the length-dependent costs for a
protein of length 500) were explored. Our rankings were also not
highly sensitive to the choice of length-independent cost
(Supplementary Fig. S3, lowest observed r¼0.94).

4 Discussion

Previous studies have provided metrics to rank human genes based
on how likely they are to tolerate functional genetic variation (Lek
et al., 2016; Petrovski et al., 2013). Despite being useful for inferring
gene essentiality, such measures do not predict the burden of clinical
missense variants annotated as VUS. Indeed, there are many exam-
ples of absolutely essential genes that are not associated with genetic
disease (e.g. because defects yield embryonic lethality).

Here, we examined three strategies for ranking genes according
to the potential for MAVEs to assist clinical variant interpretation,
and further provided a list of prioritized genes using each strategy.
We recommended the most nuanced DAIS strategy because it takes
into account protein length as at least one element of difficulty in
variant effect mapping.

Some of the prioritized genes we identified had already been sub-
jected to systematic functional testing. For example, a recent MAVE
study on functionally critical domains of the BRCA1 gene identified
more than 400 non-functional missense variants that might improve
clinical interpretation of BRCA1 variants (Findlay et al., 2018).
High throughput assays performed on the TP53 gene (Bhagavatula
et al., 2017; Giacomelli et al., 2018; Kotler et al., 2018) revealed
novel loss-of-function and gain-of-function missense variants that
might facilitate interpreting TP53 clinical variants. However, vari-
ant effect mapping studies are currently available for only 4 of the
top 40 DAIS-ranked genes (Table 2). To our knowledge, no variant
interpretation currently reported in ClinVar has yet made use of
MAVE evidence.

As the MAVE community continues publishing high-quality
MAVE studies, it is potentially beneficial to re-evaluate the effective-
ness of improving clinical variant interpretation with MAVE when
more MAVE data become available.

We note that our ranking schemes, which sought to maximize
impact on clinical variant interpretation, should not be confused

with rankings by overall clinical impact of variant interpretation.
Such a ranking would also need to consider clinical actionability. A
more complex accounting of the clinical impact gained by improved
clinical interpretation would be a valuable future direction.
Although this would be an enormous undertaking that falls outside
the scope of this work, we expect that the scoring schemes described
here could contribute to such an effort.

Another limitation was that we did not separately account for the
effect of somatic variants when estimating impact scores. Although
some of the variants reported in ClinVar have been observed somatic-
ally, most are germline variants (Landrum et al., 2018). While TP53
is one of the most frequently somatically mutated genes in human
cancers (Olivier et al., 2010), with missense variants reported in more
than 25 000 cancer samples in the Catalogue of Somatic Mutations in
Cancer (Tate et al., 2019), somatic variants represent only 74 (11%)
of the 649 missense VUS for TP53 in ClinVar. Thus, our prioritiza-
tion largely ignored the impact that variant effect maps could have on
interpreting somatic variants. Prioritizing genes based on a more in-
clusive combination of somatic and germline variation, as well as
other variant types (e.g. in-frame deletions or insertions, intronic or
promoter variation) is an avenue for future investigation.

We did not consider reasons to study the functional impact of
human variation beyond that of improving clinical variant interpret-
ation. For example, MAVE studies can provide clues about func-
tional protein domains (e.g. by revealing potential protein
interaction interfaces) (Weile et al., 2017).

Our study calculated movability in terms of what fraction of VUS
could potentially be reclassified with the appearance of strong new
functional evidence. Of course, the number and identity of movable
variants will ultimately depend on the quality of the new functional
evidence and on the variant interpreter’s judgment (following
ACMG/AMP guidelines) of the strength of evidence it provides. As a
result, the impact of a variant effect map on clinical interpretation
should ultimately be assessed for each individual gene and map. As
such analysis emerges, we imagine that any trends could be consid-
ered in a priori prioritization of other genes (e.g. to upweight prior-
ities for well-conserved metabolic enzymes if it were found that maps
for these genes tended to provide stronger evidence).

It would also be of interest to determine the genes and variants for
which systematic gathering of other types of evidence (e.g. co-
segregation of phenotypes within families), either alone or together
with functional evidence, could affect variant classification. This type
of analysis could also consider synergism between functional evidence
and other evidence types. For example, systematic analysis of co-
segregation could not only enable reclassification for some VUS, but
also place others within range of reclassification based on new func-
tional evidence, thereby increasing the impact of a variant effect map.

Although current ACMG/AMP guidelines make no recommen-
dations as to whether variant effect maps provide strong or weak
evidence for benign or pathogenic classification, published studies
have demonstrated the value of variant effect maps in identifying
pathogenic variants (Sun et al., 2020; Weile et al., 2017). However,
although this study defined a VUS to be movable to pathogenic/like-
ly pathogenic or to benign/likely benign given strong functional evi-
dence, no similar studies have investigated the value of these maps
in identifying benign variants with confidence. Thus, the determin-
ation of movability should be revisited as a better understanding of
the evidentiary performance of MAVEs emerges.

Our prioritization strategies implicitly considered reclassification
from VUS to pathogenic/likely pathogenic to have the same clinical
value as reclassification from VUS to benign/likely benign.
However, future ranking schemes might place more clinical value on
reclassification toward pathogenicity. Our model also did not ac-
count for the fact that VUS in known cancer driver genes might have
more clinical impact than a VUS in a gene where disease association
has not been firmly established. In theory, a less disease-relevant
gene with many VUS could be ranked higher than a known disease-
causing gene with very few VUS. However, genes for which a disease
association is not clear are less likely to be included in clinical genet-
ic tests; as a result, these genes should have fewer VUS identified and
hence lower prioritization by our ranking strategies.
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Table 2. Top 40 genes ranked by DAIS

Rank Gene Unique missense

variants in ClinVar

(# and % that

are missense)

Mode of inheritance and molecular mechanism Clinical categories

1 TP53a 1091 (649, 59%) Autosomal dominant—Li-Fraumeni syndrome (LoF) Exome, hereditary cancer, preventive

2 MYH7 1432 (1001, 70%) Autosomal dominant—dilated cardiomyopathy, hypertrophic

cardiomyopathy, left ventricular non-compaction

Autosomal recessive—distal myopathy

Cardiology, exome, preventive

3 CHEK2 1328 (1090, 82%) Autosomal dominant—CHEK2-related cancer risk (LoF) Hereditary cancer, preventive

4 MSH2b 2118 (1611, 76%) Autosomal dominant—Lynch syndrome (LoF)

Autosomal recessive—constitutional mismatch repair

deficiency syndrome (LoF)

Exome, hereditary cancer, preventive

5 MSH6 3115 (2509, 81%) Autosomal dominant—Lynch syndrome (LoF)

Autosomal recessive—constitutional mismatch repair

deficiency syndrome (LoF)

Exome, hereditary cancer, preventive

6 VHL 478 (285, 60%) Autosomal dominant—von Hippel–Lindau syndrome (LoF)

Autosomal recessive—familial erythrocytosis (LoF)

Exome, hereditary cancer, preventive

7 ATM 5000 (4181, 84%) Autosomal dominant—ATM-related cancer risk (LoF)

Autosomal recessive—ataxia-telangiectasia (LoF)

Carrier, hereditary cancer, preventive

8 MLH1 1341 (970, 72%) Autosomal dominant—Lynch syndrome (LoF) Exome, hereditary cancer, preventive

9 BRCA2 7433 (4663, 63%) Autosomal dominant—hereditary breast and ovarian cancer

syndrome (LoF)

Autosomal recessive—Fanconi anemia (LoF)

Exome, hereditary cancer, preventive

10 BRCA1c 4333 (2364, 55%) Autosomal dominant—hereditary breast and ovarian cancer

syndrome (LoF)

Exome, hereditary cancer, preventive

11 NF1 3412 (2396, 70%) Autosomal dominant—neurofibromatosis, type 1 (LoF) Hereditary cancer, pediatric genetics,

preventive

12 MUTYH 790 (665, 84%) Autosomal recessive—MUTYH-associated polyposis (LoF) Exome, hereditary cancer, preventive

13 PALB2 2039 (1568, 77%) Autosomal dominant—PALB2-related cancer risk (LoF)

Autosomal recessive—Fanconi anemia (LoF)

Hereditary cancer, preventive

14 STK11 704 (568, 81%) Autosomal dominant—Peutz-Jeghers syndrome (LoF) Exome, hereditary cancer, preventive

15 POLD1 1150 (1102, 96%) Autosomal dominant—MDPL syndrome (LoF), POLD1-

related cancer risk (LoF)

Hereditary cancer, preventive

16 POLE 2273 (2176, 96%) Autosomal dominant—POLE-related cancer risk (LoF)

Autosomal recessive—FILS syndrome (LoF)

Hereditary cancer, preventive

17 BRIP1 1760 (1500, 85%) Autosomal dominant—BRIP1-related cancer risk (LoF)

Autosomal recessive—Fanconi anemia (LoF)

Hereditary cancer, preventive

18 NBN 1137 (952, 84%) Acute lymphoblastic leukemia (LoF)

Autosomal recessive—Nijmegen breakage syndrome (LoF)

Carrier, hereditary cancer, preventive

19 PMS2 1566 (1275, 81%) Autosomal dominant—Lynch syndrome (LoF)

Autosomal recessive—constitutional mismatch repair

deficiency syndrome (LoF)

Exome, hereditary cancer, preventive

20 APC 4381 (3663, 84%) Autosomal dominant—familial adenomatous polyposis (LoF) Exome, hereditary cancer, preventive

21 RAD51C 611 (539, 88%) Autosomal recessive—Fanconi anemia (LoF) Hereditary cancer, preventive

22 BMPR1A 622 (530, 85%) Autosomal dominant—juvenile polyposis syndrome (LoF) Exome, hereditary cancer, preventive

23 RAD51D 466 (397, 85%) Autosomal dominant—RAD50-related cancer risk (LoF)

Autosomal recessive—Nijmegen breakage syndrome-like

disorder (LoF)

Hereditary cancer

24 CDH1 1329 (1142, 86%) Autosomal dominant—hereditary diffuse gastric cancer (LoF) Hereditary cancer, preventive

25 RAD50 1409 (1250, 89%) Autosomal dominant—RAD50-related cancer risk (LoF)

Autosomal recessive—Nijmegen breakage syndrome-like

disorder (LoF)

Hereditary cancer

26 PTENd 652 (394, 77%) Autosomal dominant—Cowden syndrome (LoF) Exome, hereditary cancer, preventive

27 CDKN2A 401 (337, 84%) Autosomal dominant—melanoma (LoF) Hereditary cancer, preventive

28 LMNA 551 (324, 59%) Autosomal dominant—Hutchinson-Gilford progeria

syndrome, congenital muscular dystrophy, dilated

cardiomyopathy (LoF), Emery-Dreifuss muscular dystrophy

(LoF), Limb-Girdle muscular dystrophy (LoF), lipodystrophy

Autosomal recessive—Charcot-Marie-Tooth disease, type 2

(LoF), Emery-Dreifuss muscular dystrophy

Exome, neurology, preventive

29 BARD1 1354 (1182, 87%) Autosomal dominant—breast cancer (LoF) Hereditary cancer, preventive

30 AXIN2 908 (852, 94%) Autosomal dominant—AXIN2-related carcinoma (LoF) Hereditary cancer, preventive

31 DICER1 1486 (1310, 88%) Autosomal dominant—Pleuropulmonary blastoma (LoF) Hereditary cancer, preventive

32 TSC2 2366 (1552, 66%) Autosomal dominant—tuberous sclerosis-2 (LoF) Exome, pediatric genetics, preventive
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Although we recommend DAIS as it balances benefits against
costs, the estimation of difficulty used in DAIS was necessarily
crude, as no systematic measure is available to determine the best
functional assay for each disease-associated protein and its relative
cost. Therefore, after identifying a ‘short list’ of genes, users may
wish to reweight MARWIS based on their own estimates of relative
difficulty. There are other ways to refine the relative priorities of
genes that were top-ranked by one of our scores. For instance, one
might prefer essential genes in more tractable cell lines given the
relative ease of assay development. When multiple alternative func-
tional assays are available, users may wish to separately adjust not
only for the difficulty of each alternative assay, but also by basing
weight on expected fidelity or evidentiary value of that assay.
However, because such criteria tend to vary between users, they
were not included as general adjustment parameters in this study.

Because the quality of an MAVE study depends on the validity
of the functional assays it uses, a quality assurance step is required
to benchmark the robustness of functional assays by evaluating a
list of variants known to be pathogenic or likely pathogenic and
variants known to be benign or likely benign. As a result, in
Supplementary Table S1, we provide (i) the number of unique
pathogenic, likely pathogenic, likely benign and benign variants in
ClinVar and (ii) the number of unique VUS, the number of occur-
rence of VUS, the number of movable VUS and the number of oc-
currence of movable VUS in the Invitae database for the top 100
genes ranked by DAIS. A threshold might be applied to further
prioritize genes with enough variants with clear clinical classifica-
tion. To facilitate functional assay selection, we developed
MaveQuest, an online resource for planning experimental tests of
human variant effects (Kuang et al., 2020). For example, for
CHEK2, which was ranked third by DAIS, MaveQuest suggests
multiple potential functional assays. One possibility is a CRISPR
knockout assay supported by a negative viability phenotype
observed in a systematic CRISPR knockout screen (Wang et al.,
2015). Another is a trans-species complementation assay based on
the ability of human CHEK2 to complement the loss of the yeast
ortholog RAD53 (Roeb et al., 2012).

Calculation of MARWIS was only possible given coefficients
derived from data on movability and repeated observations of VUS,
such as those provided by Invitae. Although VUS counts were based

on the more inclusive ClinVar dataset, genes for which Invitae offers
tests had greater opportunity for increased (or decreased) prioritiza-
tion based on movability and reappearance. We note that the com-
position of variants in ClinVar necessarily inherits biases from
Invitae and major submitters to ClinVar. These biases could be
viewed as a feature rather than a limitation, in that they should col-
lectively tend to favor genes for which genetic assays are of greatest
clinical interest. However, different clinical genetic services may dif-
fer in terms of their focus on particular genes and disease areas (e.g.
somatic variation within tumor genomes). The modeling process we
describe can be tuned to blend coefficients from multiple sources.
Therefore, other organizations could enhance this prioritization pro-
cess through similar sharing of de-identified clinical variation data
collected under approved protocols.

In conclusion, our study explored three ways to prioritize genes
according to the clinical impact of systematically testing missense
variant functions. Through use of the DAIS strategy in particular,
we offer a list of genes prioritized by potential benefit in clinical
variant interpretation, as weighted by a measure of difficulty in pro-
ducing the maps. As more VUS are identified in annotated disease
genes, and as more genes are implicated in disease, the priority list
of genes will evolve. Therefore, the prioritization exercise reported
here should be periodically revisited.
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Table 2. (continued)

Rank Gene Unique missense

variants in ClinVar

(# and % that

are missense)

Mode of inheritance and molecular mechanism Clinical categories

33 MYBPC3 1112 (685, 62%) Autosomal dominant—dilated cardiomyopathy, hypertrophic

cardiomyopathy, left ventricular non-compaction

Cardiology, exome, preventive

34 TNNT2 228 (147, 64%) Autosomal dominant—familial hypertrophic cardiomyopathy

(Lof)

Autosomal dominant—dilated cardiomyopathy (LoF)

Cardiology, exome, preventive

35 SDHB 362 (255, 70%) Autosomal dominant—gastrointestinal stromal tumor

syndrome (LoF), paraganglioma–pheochromocytoma

syndromes (LoF), SDH-related renal cell carcinoma (LoF)

Autosomal recessive—mitochondrial complex II deficiency

(LoF)

Exome, hereditary cancer, preventive

36 MEN1 634 (409, 65%) Autosomal dominant—multiple endocrine neoplasia (LoF) Exome, hereditary cancer, preventive

37 FH 492 (319, 75%) Autosomal recessive—Fumarase deficiency (LoF) Hereditary cancer, preventive

38 MSH3 887 (787, 89%) Autosomal recessive—familial adenomatous polyposis (LoF) Hereditary cancer, preventive

39 FBN1 2475 (1069, 43%) Autosomal dominant—Marfan syndrome (LoF) Cardiology, exome, preventive

40 LDLR 982 (237, 24%) Autosomal dominant—familial hypercholesterolemia (LoF) Cardiology, exome, preventive

Diseases were categorized as loss-of-function (LoF) or gain-of-function (GoF) depending on the underlying molecular mechanism. Small superscript letters indi-

cate systematic variant effect studies for each gene.
aTP53: Bhagavatula et al. (2017), Giacomelli et al. (2018) and Kotler et al. (2018).
bMSH2: Jia et al. (2020) on bioRxiv.
cBRCA1: Findlay et al. (2018), Starita et al. (2015) and Starita et al. (2018).
dPTEN: Matreyek et al. (2018) and Mighell et al. (2018).
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