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Humanity has long strived to create microscopic machines for various purposes. Most prominent of them employ nanorobots for
medical purposes and procedures, otherwise deemed hard or impossible to perform. However, the main advantage of this kind of
machines is also their main drawback—their small size. The miniature scale, they work in, brings many problems, such as not
having enough space for the computational power needed for their operation or the specifics of the laws of physics that govern
their behaviour. In our study, we focus on the former challenge, by introducing a new standpoint to the well-studied predator-prey
pursuit problem using an implementation of very simple predator agents. Intended to model the small-scale (micro and nano)
robots, these agents are morphologically simple—they feature a single line-of-sight sensor. The behaviour of the predator agents is
simple as well—the (few) perceived environmental variables are mapped directly into corresponding pairs of rotational velocities
of the wheels’ motors. We implemented genetic algorithm to evolve such a mapping that results in a successful capturing of the
prey by the team of predator agents. However, as the preliminary results indicated, the predators that use a straightforward sensor
could not resolve more than just few of the tested initial situations. Thus, to improve the generality of the evolved behaviour, we
proposed an asymmetric sensory morphology of predators—an angular offset to the sensor relative to the longitudinal axis—and
coevolved the amount of such an offset together with the behaviour of predators. The behaviours, coevolved with a sensor offset
between 12° and 38’, resulted in both an efficient and consistent capture of the prey in all tested initial situations. Moreover, some
of the behaviours, coevolved with sensor offset between 18° and 24°, demonstrated a good generality to the increased speed of the
prey and a good robustness to perception noise. The obtained results could be seen as a step towards the engineering of
asymmetric small-scale for delivery of medicine, locating and destroying cancer cells, microscopic imaging, etc.

1. Introduction

With the advancement of technology and invention of the
optical and electric microscopes, the humanity started ex-
ploring the miniature world. With these new discoveries;
however, new problems started to arise. To discover the
solutions to them, humankind turned to creating micro- and
nanomachines on their own [1]. As a species, striving to
survive various lethal conditions, we are exposed to the most
prominent field of use for these new nanomachines, med-
icine. There are many procedures that are hard to perform by
a human medical doctor and for which the newly created
microrobots are perfectly suited [2]. Such procedures, in
which the traditional approaches could harm the

surrounding (healthy) body tissues, include brain surgery,
video diagnostics in hard-to-reach places, and pinpoint drug
delivery (much needed in chemotherapy). Some of the
advantages that nanotechnology provides are continuous
monitoring, rapid response to a sudden change in condi-
tions, minimal trauma to the tissues, relatively short re-
covery time, and minimal posttreatment care [3].

In our research, we are employing a multiagent system
(MAS) as the model of a team of such simple small-scale
robots. The advantage of the developed MAS, compared to
centralized systems with analogical functionalities, is that it
offers an increased modularity, reduced complexity (offering
an intuitive solution to the divide-and-conquer approach of
developing and deploying complex software systems), and
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flexibility to diverse software and hardware platforms. From
the viewpoint of the end-users, the benefits of using MAS are
the superior robustness, increased fault tolerance, scalability,
and performance. The latter is especially true, as the MAS
could solve (inherently parallel or distributed) problems
much faster than centralized (or single agent) systems.
Moreover, due to their complex, nonlinear nature, MAS
could often solve problems that a single agent is unable to
solve. The whole team of multiple agents is expected to
exhibit a behaviour that can be regarded as an emergent
(high-level) property of the much simpler (lower-level)
properties of the agents, or as a whole that is “more than
the sum of its entities” (Aristoteles, 384 a.C.-322 a.C.), and,
therefore, could not be devised by applying the conventional
top-down software engineering approaches.

Currently, there are various challenges that are slowing
the progress of the real-world applicability of MAS mod-
elling the societies of small-scale robots. One of these
challenges stems from the very advantage of these robot-
s—their small size. The physical constrains imply that these
robots could not feature a complex morphology—both the
sensors and moving mechanisms need to be very simple to
be able to fit in the limited space of the bot’s body. The robots
would be behaviourally simple too, in that their decision-
making would involve no computing, but rather a direct
mapping of the (few) perceived environmental states into
corresponding commands to their actuators. Most likely, the
communication (if any) between the individual agents
would be impossible to be realized in a direct manner and
would be fulfilled implicitly, through the corresponding
changes in the environment. Such robots can be regarded as
an ultimate case of Occam’s razor principle, applied both to
their morphology and decision-making. Such simplicity
further widens the gap between the available properties of
the individual robots and the desired complex overall be-
haviour of the team of such robots as a whole. This is es-
pecially true in our case as we focus on creating bots that
could traverse the human body autonomously, rather than
being guided by an external force and continuously mon-
itored [4, 5].

The factors in favour of the possible small-scale
implementation of the robots considered in our work in-
clude (i) their minimalistic implementation, (ii) compati-
bility with the fluid dynamics at very low Reynolds numbers,
and (iii) robustness of the behaviour of the robots to
Brownian collisions (diffusion), as elaborated below.

The minimalistic implementation implies very simple
sensors, control, and effectors of the robots. Indeed, the
single line-of-sight sensor adopted in our work is seen as one
of the examples of “extreme simplicity” in robot (agent)
perceptions in the fields of multiagent systems and swarm
robotics [6-11]. It could be implemented by a single (or just
a few) receptor(s)—pixel (of a camera), nanoparticle, etc.
The control is also very simple—a purely reactive, direct
mapping of the (few) perceived environmental states into
corresponding effectors’ commands. The effectors are
modelled as wheels in our robots, arranged in a differential
drive configuration, which is seen as the minimal configu-
ration for robots in 2D environments that allow both linear
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movement and rotational (steering) movement of the robots
[6-11].

Two of the features of the wheels of the robots con-
sidered in our work are related to their compatibility with the
fluid dynamics at very low Reynolds numbers, pertinent to
the real world of small-scale robots: (i) the wheels control the
movement of robots by the resulting vectors of linear ve-
locities (rather than forces that would require the consid-
eration of torque of motors, mass and rotational momentum
of the robots, resulting acceleration, etc.) applied to each of
the two sides of the robot and (ii) the changes in these
velocities occur instantly (there is no coasting). We in-
troduced these features—controlling the robot by linear
velocities of wheels that change instantly—to bridge the
reality gap between the model of our robots and the very low
Reynolds number dynamics of the small-scale robots. In-
deed, at very low Reynolds numbers, the movement of the
robot is characterized by the dominance of the viscous forces
over the inertial ones [12]. Consequently, the mass (and the
inertia) is not a relevant factor in such a movement, and the
changes of velocities of the small-scale robots would happen
almost instantly. In an eventual 3D implementation, the
wheels could be superseded by more general “thrusters” that
model the actual propulsion source of the small-scale
robots—e.g., bioinspired rotating helical flagellum and a
rotary artificial molecular machine [11, 12].

The robustness to Brownian collisions could be achieved
by just having a sufficiently large size of the robot [12]. From
another perspective, as we shall elaborate later, we tested the
robustness of the proposed MAS to perception noise. The
effects of collision with particles subjected to Brownian
motion is somehow different from just a perception noise;
however, our experiment could be seen as a first step towards
the verification of the system in highly dynamic, uncertain
environments.

Gauci et al. [6] previously modelled similar simple robots
as agents. The agents were able to self-organize in order to
solve the simple robot aggregation problem. The same
framework was also successfully applied for the more
complex object-clustering problem [7] in which the agents
need to interact with an additionally introduced immobile
object. The very possibility of a team of such agents to
conduct an elaborate social (surrounding) behaviour in an
environment featuring dynamic objects was recently dem-
onstrated by Ozdemir et al. [8] in solving the shepherding
problem, where a team of simple agents (shepherds) needs to
guide multiple dynamic agents (sheep) toward an a priori-
defined goal.

In our study, we proposed the use of a similar team of
simple agents for the solution of a different task—the well-
studied, yet difficult to solve predator-prey pursuit problem
(PPPP) [13-17]. In this PPPP, eight identical, simple agents
(predators) are used to capture the single dynamic agent
(prey).

Our objective is to investigate the feasibility of applying
the genetic algorithms (GA) to evolve such direct mapping
of the four perceived environmental states into respective
velocities of the wheels of predator agents that result in a
successful capture of the prey by the team of predator agents.
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Moreover, we are interested in whether coevolving (i) the
asymmetric sensory morphology—an angular offset of the
sensors—of predator agents and (ii) their behaviour would
result in more efficient and general capturing.

Our motive for using the proposed instance of PPPP is
based on the increased complexity of the problem, compared
to the previously studied tasks [6-9]. In comparison to the
previously investigated domains, PPPP requires the agents
to exhibit a more diverse behavioural set, including ex-
ploration of the environment and surrounding and cap-
turing the prey. In contrast to [8], in our implementation of
the PPPP framework, the emergence of such behaviours is
made additionally complicated, by the introduced constrains
to the sensory and moving abilities of the predator agents.
Compared to the unlimited range, assumed in other works,
our predators feature myopic, limited-range sensors, and
their movement speed is equal to that of the prey, instead of
being faster [6, 8]. Furthermore, the initial position of the
predators is such that the prey is not being surrounded,
which may ease the task of capturing it. This can be viewed as
injecting the clustered team of small-scale robots at a certain
point into the human body.

An additional motivation of our research is the recog-
nition that while many real-world scenarios could be, in-
deed, reduced to the previously researched wall-following,
dispersal [9], clustering [6], and shepherding problems [8],
there would be few scenarios—requiring a direct physical
contact with an active prey—that could be modelled by the
proposed instance of PPPP [18-20]. These scenarios might
include pinpoint drug delivery, surrounding and destroying
(cancer) cells or bacteria, gathering around cells to facilitate
their repair or imaging, etc.

The remainder of this article is organized as follows. The
second section describes the entities in the PPPP. In the third
section, we elaborate the GA, adopted for the evolution of
predator behaviours. In the fourth section, we present the
experimental results and introduce the proposed asym-
metric sensory morphology of predators. In the same sec-
tion, we show the results on the robustness and generality of
the evolved predator agents. The fifth section discusses the
advantages of asymmetric morphology and the emergent
behavioural strategies of the predator agents. We draw a
conclusion in the sixth section.

2. Entities

2.1. Predator Agents. Each of the eight (identical) predator
agents models a simple cylindrical robot with a single line-
of-sight sensor featuring a limited range of visibility and two
wheels (controlled by two motors) in a differential drive
configuration.

The single line-of-sight (beam) sensor provides two bits
of information, where each bit encodes whether an enti-
ty—either a (nearest) predator agent or the prey,
respectively—is detected (if any) in the line-of-sight within
the limited range of visibility. The implementation of such
sensor would consist of two photodetectors, sensitive to
two different, nonoverlapping wavelengths of (ultraviolet,
visible, or infrared) light reflected (or emitted) by predators

and prey, respectively. Each of these two photodetectors
provides one bit of information. Equipped with such
sensors, the predators could perceive only four discrete
possible states—<00>, <01>, <10>, and <11>, as shown in
Figure 1—of the environment. The state <11> is the most
challenging one to perceive. It could be sensed, however,
under the following assumptions: (i) the prey is taller than
the predators and (ii) to not obscure the shorter predators,
the cross-section of the prey is either much narrower than
predators or (at least partially) transparent for the light to
be perceived by the predators. Notice that the perceived
environmental states do not provide the predators with any
insight about the distance to the perceived entities, nor
their total number.

In our previous work [21], we noticed that the classical
morphology of the agents—in which sensor is aligned with
the longitude axis of the agents—results in successful so-
lutions of more than a few initial situations. Therefore,
instead of the commonly considered straightforward ori-
entation of the sensor of the predators, we proposed an
angular (e.g., counterclockwise) offset relative to their
longitudinal axis. We speculated that such an asymmetric
sensory morphology would allow the predators to evolve a
more efficient capturing behaviour by implementing an
equiangular (proportional) pursuit of the prey, aiming at
the (estimated) point of the contact with the moving prey,
rather than the currently perceived position of the latter.
The proposed asymmetric morphology does not compro-
mise the intended simplicity of the agents. The main fea-
tures of the agents, used during the evolution of the
behaviour of prey agents, are summarized in Table 1.

The entirely reactive behaviour of the predator agents
could be described as a direct mapping of each of the
perceived environmental states into a corresponding rota-
tional speed of the wheel motors. For simplicity, instead of
mapping into rotational speeds (e.g., RPM) of the motors, we
will assume a mapping into the linear velocities of the
wheels, expressed as the percentage—within the range
(-100%,. . ., +100%)—of their respective maximum linear
velocities (10 units/s, as shown in Table 1). For example, a
velocity of —20% implies that the motor of the wheel is
rotating at 20% of its maximum linear velocity, and the
wheel propels the corresponding side of the robot in a
backward (negative) direction with a linear speed of 2 units/s
(i.e., 20% of the maximum linear speed of the wheel). The
purely reactive decision-making of the predator agents could
be formally defined by the following octet:

A= {VOOL’ Voor> Vo Voirs Viors Viers Vi VIIR}’ (1)

where Vyor and Vg are the linear velocities (as a per-
centage, set within the range (-100%,..., +100%), of the
maximum linear velocity) of the left and right wheels of the
agents for the perceived environmental state <00>, while
Vo, Voire Viors Viors Viir and Vijr are analogical ve-
locities for the perceived environmental states <01>, <10>,
and <11>, respectively.

Our objective of coevolving (via GA) the behaviour and
asymmetric sensory morphology of the agents could be
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(c) (d)

FiGure 1: The four possible environmental states that are perceived by any given predator agent. (a) State <00>. (b) State <10>. (c) State

<11>. (d) State <01>.

TaBLE 1: Features of the entities used during the evolution of the behaviour of predator agents.

Feature Predator Prey
Number of agents 8 1

Radius (units) 8 8
Length of the axis of wheels (units) 16 16

Max linear velocity of wheels (units/s) 10 10

Max speed of agents (units/s) 10 10

Type of sensor Single line-of-sight Omnidirectional
Range of visibility of the sensor (units) 200 50

Orientation of sensor

Counterclockwise offset (2~40 degrees) —

rephrased as coevolving (i) such values of the velocities,
shown in the octet in equation (1), together with (ii) the
angular offset of the sensor, resulting in an efficient cap-
turing behaviour of the team of predator agents. We shall
elaborate on such a coevolution in the next section.

2.2. Prey. The prey is equipped with an omnidirectional
sensor, with limited visibility range. To balance the ad-
vantage that the omnidirectional sensor gives to the prey,
compared to the single line-of-sight sensor of the predators,
the viewing distance of the prey is only 50 units, compared to
the 200 units of the predators. The maximum speed of the
prey, however, is identical to that of the predators. These
conditions would encourage the predator agents to evolve
cooperative behaviours as they will be unable to capture the
prey alone. Another viewpoint suggests that a successful
solution to PPPP, defined in such a way, could demonstrate
the virtue of the MAS as it could solve a problem that a single
(predator) agent could not.

In contrast to the predator behaviours, we implemented
a handcrafted behaviour for the prey. The prey attempts to
escape from the closest predator (if any) by running at its
maximum speed in the direction that is exactly opposite to
the bearing of the predator. The prey remains still if it does
not detect any predator. Table 1 shows the main features of
the prey agent.

2.3. The World. We modelled the world as a two-
dimensional infinite plane with a visualized part of
1600 x 1600 units. We update the perceptions, decision-

making, and the resulting new state (e.g., location, orien-
tation, and speed) of agents with a sampling interval of
0.1 s. The duration of trials is 120 s, modelled in 1200 time-
steps. We approximate the new state of predators in the
following two steps, as illustrated in Figure 2. First, from
the current orientation, the yaw rate, and the duration of
the sampling interval, we calculate the new yaw (orienta-
tion) angle (as an azimuth t the north) of the agents. The
yaw rate is obtained from the difference between the linear
velocities of the left and right wheels, and the length of the
axis between the wheels. Then, we calculate the new po-
sition (i.e., the two-dimensional Cartesian coordinates) as a
projection (in time, equal to the duration of the sampling
interval) of the vector of the linear velocity of predators.
The vector is aligned with the newly calculated orientation,
and its magnitude is equal to the mean of the linear ve-
locities of the two wheels.

3. Evolutionary Setup

We decide to apply a heuristic, evolutionary approach to
the “tuning” of the velocities of both wheels for each of the
perceived four environmental situations because we are a
priori unaware of the values of these velocities that would
yield a successful behaviour of the team of predator agents.
As we briefly mentioned in Section 1, MAS, as a complex
system, features a significant semantic gap between the
simple, hierarchically lower-level properties of the agents
and the more elaborate, higher-level behaviour of the whole
system. Consequently, we would be unable to formally infer
the values of the octet of velocities of the wheels of agents
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// Global definitions:

type
TEntitiy_in_MAS = record
Yaw : float;  // radians
X :float; //units
Y :float: //units
end;
const
Num_of_ Predators =8;
Pred_Max_Speed =10; // units/s
Sampling_Interval =0.1;  //seconds
Pred_Radius =8; // units

var

Predator: array [0.. Num_of_Predators-1] of TEntitiy_in_MAS;

// The routine Move_Predator estimates the new state of predators

Procedure Move_Predator (ID: integer; V_L,V_R: float);
// ID: the ID of the predator being currently updated, within the range [0..7]

// V_L and V_R: linear velocities of the left and right wheels, respectively.

// Calculated from the evolved genotype (as percentages of the max velocities), the values of max velocities

// (10 units/s), and currently perceived (one of the four: <00>,<01>,<10> or <11>) environmental situations.

// For the evolved sample genotype <10,15,20,25,30,35,40,45> and current situation <01> these values
// are V_L=2.0 units/s, and V_R=2.5 units/s, respectively

begin

// Step #1: Calculating the new yaw angle of the predators #ID as azimuth (to the north) in radians:
Predator[ID].Yaw := Predator[ID]. Yaw + (V_L -V_R)/( Pred_Radius x 2) x Sampling_Interva

// Step #2: Calculating the new position (X,Y) of the predator #ID:
Predator[ID].X := Predator[ID]. X + ((V_L + V_R)/2) x sin(Predator[ID].Yaw) x Sampling_Interval;
Predator[ID].Y := Predator[ID]. Y + ((V_L + V_R)/2) x cos(Predator[ID].Yaw) x Sampling_Interval;

end;

FiGure 2: The pseudocode of estimating the new state of the moving predators.

from the desired behaviour of the team of such agents.
Similarly, we are unaware of the value of the angular offset
of the sensor, resulting in an efficient capturing behaviour
of the agents. Moreover, the values of velocities of both
wheels and the value of the angular offset of the sensor
would, most likely, be dependent on each other.

Alternatively, in principle, we could have adopted an-
other, deterministic, approach, such as, for example, a
complete enumeration of the possible combinations of the
eight velocities of wheels and the sensor offset. If each of
these 8 velocities is discretized into, say, 40 possible integer
values ranging from —100% to +100% and the sensor offset
just into 20 values, then the size of the resulting search space
would be equal to 40° or about 1.3 x 10'*. This would render
the eventual “brute force” approach, based on complete
enumeration of possible combinations of values of velocities
computationally intractable.

As an alternative to the brute force search, we could
apply reinforced learning (RL) in order to define the good
mapping of the four perceived environmental states into the
four pairs of velocities of wheels. However, MAS are
complex, nonlinear systems, and there is a significant gap
between the properties of the entities and the (emergent)
properties of the system. RL would obtain a “reward” from

the system (i.e., the efficiency of the team of predators) and
will try to modify the properties (the four pairs of velocities
of wheels) of the entities. Due to the complexity and non-
linearity of MAS, this is not a straightforward task. This is
also related to the intra-agent credit-(or blame-) assignment
problem, as we could not tell which part of the agents is
responsible (and therefore-should be modified) for the bad
overall behaviour of the system.

Evolutionary computing solves these challenges in an
elegant way, by obtaining the fitness value from the system,
as a whole (i.e., the efficiency of predators in capturing the
prey) and then modifying the properties of entities (pairs of
velocities of wheels of predators) via genetic operations,
crossover and mutations.

Yet another challenge in RL is the delayed reward
problem—the success (if any) of the system (team of
predators) would occur several hundred time-steps into
the trial, but might be related to the earlier behaviour
phases of the team of predators—such as the dispersing
(exploration of the environment) at the very beginning of
the trial. Regarding the delayed reward problem, the
evolution, as a holistic approach, does not care about how
to achieve the success, but rather about the overall (final)
outcome of the trial.



In our work, we apply GA, a nature-inspired heuristic
approach that gradually evolves the values of a set of pa-
rameters in a way similar to the evolution of species in
nature. GA has proved to be efficient in finding optimal
solution(s) to combinatorial optimization problems fea-
turing large search spaces [22-24]. Thus, consonant with the
concept of evolutionary robotics [25], we adopted GA to
evolve the values of the eight velocities of the wheels and the
offset of the sensor that result in an efficient behaviour,
presumably involving exploring the environment and sur-
rounding and capturing the prey, of the team of predators.
The main algorithmic steps of the adopted GA are shown in
Figure 3, and its main attributes, genetic representation,
genetic operations, and fitness function, are elaborated
below.

3.1. Genetic Representation. We genetically represent both
(i) the decision-making (behaviour) of the predator agents
and (ii) their sensory morphology in a single “chromosome”.
The latter consists of an array of eight integer values of the
evolved velocities of wheels of the agents and an additional
allele encoding the angular offset of their sensor. The values
for the velocities are constrained within the range
(=100%. . .+100%) and are divided into 40 possible discreet
values, with an interval of 5% between them. The angular
offset is defined in range between 2° and 40°, counter-
clockwise, divided into 20 possible discreet values, with an
interval of 2° between them. The decided number of discrete
values (and the interval between these values, respectively)
provides a good trade-off between the precision of “tuning”
(i.e., expressiveness of the genetic representation) and the
size of the search space of GA. The population size is 400
chromosomes. The breeding strategy is homogeneous in that
the performance of a single chromosome, cloned to all
predators is evaluated.

3.2. Genetic Operations. Binary tournament is used as a
selection strategy in the evolutionary framework. It is
computationally efficient and has proven to provide a good
trade-off between the diversity of population and the rate of
convergence of the fitness. In addition to the tournament
selection, we also adopted elitism in that the four best-
performing chromosomes survive unconditionally and are
inserted into the mating pool of the next generation. In
addition, we implemented, with equal probability, both one-
and two-point crossover. The two-point crossover results in
an exchange of the values of both velocities (of the left and
right wheels, respectively) associated with a given envi-
ronmental state. This reflects our assumption that the ve-
locities of both wheels determine the moving behaviour of
the agents (for a given environmental state), and therefore,
they should be treated as a whole—as an evolutionary
building block. Two-point crossovers would have no de-
structive effect on such building blocks. The one-point
crossover is applied to develop such building blocks (ex-
ploration of the search space), while the two-point crossover
is intended to preserve them (exploitation).
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Step 1: Creating the initial population of random chromosomes;

Step 2: Evaluating the population;

Step 3: WHILE not (Termination Criteria) DO Steps 4~7:

Step 4:  Selecting the mating pool of the next generation;

Step 5:  Crossing over random pairs of chromosomes of the mating pool;
Step 6:  Mutating the newly created offspring;

Step 7:  Evaluating the population;

F1GUre 3: The main algorithmic steps of the GA.

3.3. Fitness Evaluation. Our aim is to coevolve the behav-
iours and sensory morphology of the team of predators that
are general to multiple initial situations, rather than a be-
haviour that is specialized to a particular one situation. To
facilitate such an evolution, we evaluated each of the
evolving chromosomes in 10 different initial situations. In
each of these situations, the prey is located in the centre of
the world. The predators are scattered in a small cloud
situated south of the prey. A snapshot of a sample initial
situation is shown in Figure 4. The distance of the cluster, of
agents, to the prey is calculated as follows: ID of the current
situation X 2 + (random of 50 units). This helps reduce the
impact of the first few evolutionary runs, when the predators
are learning how to move around the environment to find
the prey.

The overall fitness is the sum of the fitness values, scored
in each of the 10 initial situations. For a successful situation
(i.e., the predators manage to capture the prey during the
120 s trial), the fitness is equal to the time needed to capture
the prey. If the initial situation is unsuccessful, the fitness is
calculated as a sum of (i) the closest distance, registered
during the entire trial, between the prey and any predator
and (ii) a penalty of 10,000. The former component is
intended to provide the evolution with a cue about the
comparative quality of the different unsuccessful behaviours.
We verified empirically that this heuristic quantifies the
“near-misses” well and correlates with the chances of the
predators—pending small evolutionary tweaks in their
genome—to successfully capture the prey in the future. The
second component is introduced with the intension to
heavily penalize the lack of success of predators in any given
initial situation.

Our PPPP is an instance of a minimization problem, as
lower fitness values correspond to better performing team of
predator agents. Since we are aiming to discover the best
possible solution to the problem, no target fitness value is
incorporated in the termination criterion of the evolution.
Instead, this criterion includes the following two conditions:
the number of the evolved generations is equal to 200 or the
best fitness remains unchanged (stagnated) for 32 consec-
utive generations. Table 2 shows the main parameters of the
adopted GA.

4. Experimental Results

4.1. Evolving the Team of Straightforward Predator Agents.
The experimental results of 32 independent runs of the GA
evolving only the behaviour of the predator agents are il-
lustrated in Figure 5. In these runs of the GA, the sensory
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FIGURE 4: A snapshot of a sample initial situation.

TaBLE 2: The main parameters of the GA.

Parameter Value
Eight integer values of the velocities of wheels (Vo
Genotype Voors Voirs Vorrs Viors Viors Vit and Vypg) and an
integer value of the angular offset (@) of the sensor
Population size 400 chromosomes
Selection Binary tournament
Selection ratio 10%
Elite Best 4 chromosomes
Crossover Both single- and two-point
Mutation Single-point (with even distribution)

Mutation ratio
Fitness cases
Duration of the fitness trial

Fitness value

Termination criterion

5%
10 initial situations
120's per initial situation
Sum of fitness values of each situation:
(a) Successful situation: time needed to capture the
prey
(b) Unsuccessful situation: 10,000 + the shortest
distance between the prey and any predator during
the trial
No. of generations =200 or stagnation of fitness for
32 consecutive generations

morphology of predators was fixed, and the sensor offset was  there is one distinguished solution (from now on we will
set to 0. As Figure 5(a) illustrates, the mean value of the refer to it as the fastest evolved solution SFE) which suc-
fitness slowly converges to approximately 60,000, indicating  cessfully solves 8 (of 10) in the first generation. The chro-
that, on average, only 4 (of 10) initial situations could be mosome of this solution encodes for offset of the sensor of
successfully resolved (Figure 5(b)). The best result, achieved ~ 20°. This confirms the findings in our previous research
by the evolved team of predators, is only 6 successful sit- [21, 26] that a team of predators with 20° sensor offset yields
uations. These results suggest that the instance of PPPP  favourable results during evolution. As we will discuss later,
featuring predators with straightforward sensors is, in this is also true in case of additional, unforeseen, situations

general, intractable.

and presence of perception noise. However, from all 32
solutions, this is not the one that has achieved the best
overall fitness value. The best behaviour of agents (man-

4.2. Coevolving the Asymmetric Morphology and the Behav- ifested by the achieved lowest of fitness value) was obtained
iour of Predator Agents. As Figures 6-8 illustrate, just by ~ by the solution SBF featuring a sensory offset of 16°.
adding the offset, the results in number of successful initial ~ Compared to the fastest evolving solution SFE, the solution
situations and overall fitness significantly improve compared ~ SBF evolved a bit slower and solved all 10 situations by 6th
to the evolution of the team straightforward predator agents ~ generation, achieving the terminal fitness of 369 (compared
featuring no angular offset of sensors. On average, the  to 417 of solution SFE).

predators were able to resolve all 10 initial situations by 10th

Figure 9 illustrates the angular offset of the best solutions

generation of the GA. From all 32 independent runs of GA,  obtained from each of the 32 independent runs of the GA. As
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seen in Figure 9, the fitness of 80% (i.e., 26 of 32) of solutions
is in the range between 369 and 4483, i.e., the team of agents
could capture the prey (on average over all 10 situations)
between 36.9 s and 44.8 s into the allocated 120 s of the trial.
The fitness of the worst solution is 622, meaning that the
team of predator agents captures the prey, on average, at
62.2s, i.e., around the middle of the 120 s trial. Moreover, as
Figure 9 illustrates, for a particular value of the sensor offset,
there are multiple solutions with different fitness values,
meaning that there are variations in the behaviour of the
morphologically identical predators and that the sensory
asymmetry is only a precondition for an efficient capturing
behaviour of the predators. Analogically, very similar fitness
values could be achieved by predators featuring different
sensor offset, suggesting that the combination of both (i) the
morphology and (ii) the behaviour, rather than a particular
instance of each of them, is important for the success of the
behaviour of predator agents.

The breakdown of the number of the successful situa-
tions and the sensor offset of all 32 solutions are illustrated in
Figure 10. As depicted in Figure 10(a), the sensor offset of
90% (i.e., 29 of 32) of solutions is within the range (15°,.. .,
35°). There is no evolved solution that features a sensor offset
lower than 10°, which confirms experimentally our initial
hypothesis about the beneficial effect of the asymmetric

morphology of predators on the efficiency of their behav-
iour. The statistical characteristics of all 32 solutions are
shown in Table 3.

4.3. Generality of the Evolved Solutions. To assess the gen-
erality of the evolved behaviour of the predator agents, we
will examine how their performance (i.e., the number of
successfully resolved initial situations) degrades with the
increase of the speed of the escaping prey. We tested all 32
solutions, obtained via the GA (for the speed of the prey
equal to 10 units/s), for speeds of the prey, unforeseen during
the evolution, of 12, 14, 16, 18, and 20 units/s, respectively.
The number of initial situations successfully solved by each
of the 32 solutions for each of the considered speed of the
prey is shown in Figure 11. The mean (over the whole range
of speeds of the prey) of the successfully solved situations by
each of these solutions, and its breakdown are depicted in
Figure 12. As these figures illustrate, one of these solutions,
denoted as Sy, is most general in that it features no
degradation in the number of successful situations with the
increase of the speed of the prey. Moreover, its fitness value
remains under 500 (i.e., the agents capture the prey earlier
than 50 s into the 120 s trial) for all considered speeds of the
prey. As shown in Table 4, the sensor offset of Sy is 24°.
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TaBLE 3: Statistical characteristics of the 32 solutions obtained form 32 independent runs of the GA.

Parameter Value
Mean of the best fitness values 436
Standard deviation of the best fitness value 63
Mean of the sensor offset (°) 24.7
Standard deviation of the sensor offset (°) 7.2
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FIGURE 12: Generality of the evolved 32 solutions to the changes in the speed of prey from 10 to 12, 14, 16, 18, and 20 units/s: the mean
number of successfully solved situations (a) and its breakdown (b).
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TaBLE 4: Genotype of evolved solutions: the fastest evolved (SFE), with the best fitness (SBF), most general (SMG), most robust to FP

(SMRFP), and FN (SMRFN) noise.

Solution Fitness  Vyor (%) Voor (%) Voir (%) Vor (%) Vier (%) Vier (%) Vi (%) Vi (%) Sensor offset a (°)
Sex (#9) 417 30 95 100 90 -80 -75 50 -95 22
Spr (#32) 369 -95 80 90 85 -90 -90 100 90 16
Sma (#21) 382 -95 80 95 920 -90 -90 60 -10 24
Suppp (#11) 404 -70 70 90 85 ~100 -100 65 70 18
Smren (#14) 421 30 100 100 95 -75 -70 100 100 20

4.4. Robustness to Perception Noise. We evaluated the ro-
bustness of the 32 evolved solutions, evolved in a noiseless
environment, to a random perception noise. We introduced
two types of noise—a false positive (FP) and a false negative,
respectively. The former results in either of the two bits of
perception information to be occasionally (with a given
probability) read as “1” regardless of whether an entity is
detected in the line-of-sight of the predators or not. False
negative noise (FN) results in readings of “0” even if an entity
is seen. We focused on these types of noise as we assume that
the perception subsystem of predators, yet being rather
simple, would require an appropriate thresholding of the
sensory signal. A combination of unfavourable factors, such
as incorrectly established threshold and variable noise levels
in the environment or in sensors, would result in the
considered two types of perception noise. Figures 13 and 14
show the degradation of the number of successfully solved
situations by all 32 solutions for different amount of FP and
FN perception noise, respectively.

As Figures 13 and 14 illustrate, neither the fastest evolved
solution S nor the solution with the best fitness Sgg, which
we previously discussed, features a good robustness to
perception noise. On average, they solve 6.25 initial situa-
tions each, with the introduction of either FP or FN noise.
Both solutions yield similar results with the difference be-
tween them being that Sgp is more robust to FP noise while
Sgg is better in case of FN noise. Instead, the solutions Syrpp
and Syrpn (featuring a genotype as shown in Table 4)
emerge as most robust to FP noise and FN noise, re-
spectively. Solution Sy;rpp manages to solve the tests with FP
noise perfectly, while maintaining satisfactory performance
in the tests with FN noise, being able to solve on average 8.25
initial situations, depending on the level of FN noise. On the
contrary, the agents controlled by Syrpy solve the situations
with FP noise perfectly, while being able to solve an average
of 9.5 initial situations in the situations with FN noise,
resulting in the best overall performance. The sensor offset of
Syrrp and Syrpy is 187 and 20°, respectively (Table 4).

5. Discussion

5.1. Advantage of Asymmetric Morphology. We have shown
that introducing an angular offset to the viewing sensor
facilitates a more effective behaviour of the team of agents
and increases the efficiency of evolution of such behaviour.
The experimental results suggest that the behaviour, evolved
with a sensor offset of 20° (in solution Syrpn), is most robust
to noise and is close enough in terms of fitness to the best-
performing team of agents in noiseless environments. The

fitness of Syrpn is 421 compared to 369 of Sgr. While Sy
shows best results in the generality test, with perfect score in
all initial situations, it falls short in the noise robustness test.
This leads us to believe that Syrpy is an example of a good
combination of coevolved behaviour and asymmetric
morphology of the predator agents. On average, Syren
manages to solve 9.57 and 9.65 situation in the generality
and robustness tests cases. The angular offset of 20° of Syrpn
provides a good trade-off between the tangential and radial
(i.e., towards the prey) components of the speed vector of the
chasing predators.

The beneficial effect of the sensor offset is that it helps the
chasing predator to implicitly determine the position of the
prey if the latter disappears. Having a counterclockwise
displacement means that most of the time the disappeared
prey, due to the parallax induced by the movement of the
predator, would be to the left, and consequently, a slight turn
to the left would allow relocating it again. Therefore, one of
the virtues of the sensor offset is in the more deterministic
direction of the disappearance of the prey, almost certainly to
the left, which in turn facilitates a faster rediscovery and
consequently, a more reliable tracking of the latter by the
predator. Moreover, as shown in Figure 15, the chase by the
predator featuring an asymmetric morphology would result
in a characteristic circular trajectory of both the predator and
the prey. With the rather challenging but realistic as-
sumption that initially the prey is not being surrounded by
the predators (as illustrated in Figure 4), such circular
trajectories would facilitate the surrounding as the prey
would be shepherded (driven) by a single predator towards
the pack of the remaining predators.

5.2. Emergent Behavioural Strategies. Following our pre-
vious work on coevolving behaviour and morphology [27],
in this section, we review the behavioural strategies,
emerging from the team of agents controlled by the evolved
solution that is most robust to noise, the solution has the
greatest success rate, the solution Syrpn. The values of the
evolved velocities of motors and the sensor offset are shown
in Table 4. The team of predator agents manifests the fol-
lowing three types of behaviours, executed in three con-
secutive phases of the trial: (i) exploring the environment by
distancing themselves from each other (controlled by ve-
locities V) or circling around until they find a peer or the
prey (Voo), (i) shepherding (driving) the prey (by some of the
predators) in an circular trajectory (Vi ), and (iii) capturing
the prey (V). Figure 16 illustrates the different phases the
agents go through in the process of catching the prey. A
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Figure 15: Chasing the prey by a sample predator agent A;.

video of how the team of predators deals with all 10 situ-
ations can be found at http://isd-si.doshisha.ac.jp/m.
georgiev/2018-12-08-SA20deg.mp4.

As shown in Figure 16(a), in the beginning, all agents
have no vision of either the prey or any of the peers. Fol-
lowing the mapping of Vo =30% and Vyor =100%, they

start turning around in a circular motion—scanning the
environment in an attempt to find another entity. Detecting
a peer activates the set of velocities Vjop=-75% and
Vior =—70%, which forces the predators to rapidly move
away from the perceived agent, which facilitates a better
dispersion and a coverage of a wider area. This enhances the
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FIGURE 16: Emergent behavioural phases exhibited by the team of predator agents: exploring (a), shepherding (b-d), and capturing (e).

ability of the predators to explore the environment and to
discover the prey. The second stage begins when any of the
predators discovers the prey. The mapping V. = 100% and
Voir =95% results in moving forward at highest speed and
slightly turning to the right, which helps keeping the prey
always in the same relative position to the agent, to the left
side, as shown in Figures 15 and 16(b)-16(d). Once the prey
becomes invisible, as shown in Figure 16(b), the predator
exhibits an embodied cognition that the disappearance is a
result, in part, of its own forward motion; therefore, the new
location of the prey is, due to the counterclockwise offset of
the sensor, most likely on the left of its own orientation. The
evolved Vi =30% and Vyr=100% are activated
(Figure 15(c)) resulting in a circular motion to the left, until
the agent rediscovers the disappeared prey. Moreover, as
Figures 16(b)-16(d) show, a single predator, due to its sensor
offset, shepherds (drives) the prey in a circular, counter-
clockwise trajectory into the (already dispersed) other
predators. The final behavioural phase begins with the
surrounding of the prey from all sides of the world by both
thus far and newly encountered chasing predators, as il-
lustrated in Figure 16(e). When approaching from opposite
sides, the predators are able to see both the prey and a peer,
which activates the mapping V3,1, =100% and V7;r =100%.
Since they have a slight angular offset, it is possible for only
two predators to catch the prey, as illustrated in Figure 16(e).
One of the predators chases the prey from behind and guides
it to its frond left side, while the other intercepts it from the
exactly opposite direction.

At the same time, we can see in Figures 16(d) and 16(e)
that two of the agents keep distancing themselves from the
group. The agents seem to exhibit an emergent knowledge
[28] that not all eight agents are needed to capture the prey.
For the group of agents to be successful, the most important
mission is to capture the prey, rather than which particular
agent does it. As the performance of the predators is cal-
culated based on the success of the group instead of that of
the particular individual agent, such behaviour helps the
team (as a whole) by expanding the search field and finding
the prey faster, especially when it is further away from the
predators. If, instead, the agents were trying to find the prey
and capture it by themselves via “greedy chase,” they would
inevitably fail because (i) the prey is fast enough to run away
from a single predator and (ii) the predators would have

been unable to engage in any organized behaviour that
allows surrounding and ultimately, capturing the prey.

The most significant difference between the evolved
behaviour of straightforward predator agents and that of the
agents with asymmetric morphology is in the second
behavioural phase, shepherding. This phase could not be
observed in the behaviour of the straightforward agents. At
the same time, as we elaborated above, it plays an important
role in the successful capturing of the prey.

5.3. Heterogeneous vs. Homogeneous Systems. During our
research, we considered a different configuration for the
multiagent system featuring several types of predator agents
where each of them has a specific role in capturing the prey.
Our work on performance comparison between heteroge-
neous and homogeneous MAS [29] delves deeper into the
problems that heterogeneity brings: our main concern was
that the heterogeneous system would suffer from inferior
efficiency of evolution due to the inflated search space.
Moreover, the robustness of the evolved behaviour of the
team of specialized predator agents would be questionable
too. The reason for this is that if, for example, the team
employs a dedicated “driver” agent, in real-world situations,
it could be challenging to make sure that the agents would be
deployed in the vicinity of the prey (i.e., a cancer cell) in such
a way that the “driver” is in the most favourable position
relative to the prey and other predators. Instead, we opted
for an implicit behavioural heterogeneity (with genotypic
homogeneity)—the agents that are the closest to the prey
assume the role of the “driver”, and any of the eight predator
agents may turn into this role, if needed. The heterogeneity is
implicit because it arises from the interaction between the
homogeneous genotype (all agents have identical four pairs
of velocities of wheels) and the environment. The dynam-
ically faced environment is what “specialises” the different
predator agents in the team.

6. Conclusions

Nanorobots are newly emerging technology, made possible
by the rapid technological advancements in the last century.
Creating synthetic machines on a miniature level, however,
shows that there are significant problems to overcome, due
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to the differences in physics laws and the limited resources
available due to the small size of the robots. Furthermore, as
medicine is the most prominent field of use for these new
machines, they need to be reliable and precise in their work,
which requires making no compromises in the quality of
their operation. In attempt to solve these restrictions, we
employed a variation of the predator-prey pursuit problem
(PPPP), implementing very simple predator agents, equip-
ped with a single line-of-sight sensor, and a simple control of
the velocities of their two wheels. The predator agents utilize
a direct mapping of the few perceived environmental states
into corresponding velocities for their pair of their wheels.
We applied genetic algorithms to evolve such a mapping that
results in a successful capturing of the prey by the team of
predator agents. However, as the preliminary results in-
dicated, the predators featuring a straightforward sensor
could not resolve more than just few of the tested initial
situations. To improve the generality of the evolved be-
haviour, we proposed an asymmetric sensory morphology of
predators, an angular offset to the sensor relative to their
longitudinal axis, and coevolved both (i) the amount of this
offset and (ii) the behaviour of predators. According to the
experimental results, the behaviour coevolved with a sensor
offset between 12° and 38 resulted in both an efficient and
consistent capture of the prey in all tested initial situations.
Moreover, few of the evolved behaviours for a sensor offset
in the range 18°~24° demonstrated a good generality to the
variations in the speed of the prey and a good robustness to
perception noise.

We believe that the obtained results could be viewed as a
step towards the engineering of nanorobots with asymmetric
morphology for various medical applications including
pinpoint delivery of medicine, locating and destroying
cancer cells, microscopic imaging, etc. In our future work,
we are planning to develop a three dimensional model which
will resemble a more realistic environment such as the
human body.
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