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ABSTRACT: To overcome the environmental and economic challenges posed by the increasing amounts of the coal gasification
slag, here, a simple and efficient method for enriching the residual carbon from the coal gasification fine slag was proposed. The
residual carbon enrichment pattern in the particle size distribution of coal gasification fine slags after the ultrasonic pretreatment was
mainly enriched toward the 500—250 pgm and 250—12S5 pm particle size classes by analyzing the changes in the particle size
distribution and apparent morphology. The pulp pretreatment at the ultrasonic output power of 270 W for 4 min was determined as
the optimal experimental condition with respect to the yield, ash content, and ash rejection of the concentrates. Compared to the
conventional wet sieving separation, the yield and ash content of the final concentrates were reduced by 7.99 and 14.96%,
respectively. Moreover, the ash rejection of the final concentrates was as high as 88.51%, indicating an increment of 11.63% than the
conventional wet sieving separation. Furthermore, thermogravimetric analysis confirmed that the final concentrates exhibited the
lowest reactivity; however, these demonstrated had the highest carbon content (nearly 70%) with 27.27% ash content. The
combustion characteristics analysis showed that the wet screening concentrate after ultrasonic pretreatment had the highest
composite combustion characteristic index (S) of 3.17 X 107%, as compared to the raw and conventional sieving concentrates.

1. INTRODUCTION

The coal gasification process is critical to the diversification
and low-carbon energy development of the world’s energy
sources, especially for developing countries."” For instance,
coal consumption for coal gasification process in China
exceeds 200 million tons per year, while several million tons
of coal gasification slag are generated.3 However, the
gasification slag, which contains harmful substances such as
tar, sulfur-containing catalysts, and various salts, is a typical
hazardous waste. For the sake of environmental safety and
economic considerations, a large extent of the coal gasification
slag needs to be recycled.

Due to the advantages of high carbon conversion, wide
range of raw materials, and environmental protection, the
entrained-flow coal gasification process has been developed
significantly in recent years compared with other coal
gasification processes. The gasification process of the
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pulverized coal in the entrained-flow gasifier is described in
Figure 1,%° whereas the schematic diagram of the slag
treatment system is shown in Figure 2.5 Compared with
coarse slag, fine slag is richer in residual carbon with a higher
economic value. However, previous studies have shown that

78 and

the reaction properties of high carbon fines are poor
unsuitable for secondary gasification or combustion. In
addition, the landfill or stacking of coal gasification slag not

only causes waste of resources but also pollutes the
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Figure 1. Gasification process of the pulverized coal in an entrained-flow gasifier.
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Figure 2. Flow chart of the slag treatment system in an entrained-flow
gasifier.

surrounding environment.” Therefore, it is necessary to enrich
and recover the residual carbon in the coal gasification slag,
especially for the fine slag, to improve the economic and
environmental benefits for coal gasification enterprises.

In the last decade, the mineral processing methods,
including flotation and sieving, have been widely used to
separate and enrich the residual carbon from the coal
gasification fine slag. In entrained flow coal gasification
furnaces, the closely embedded molten ash and residual
carbon are stripped off by reactive gases at high temperatures
and then quenched in a water bath, which leads to significant
oxidation and large surface area of the particles.'’”"”
Therefore, it is difficult to obtain additional economic value
from the enrichment of carbon residues by flotation due to the
excessive flotation reagents required. In addition, the research
studies have shown that the fine slag has obvious grading
characteristics as it contains a variety of products collected in
the entrained-flow coal gasifier. Thus, the different size
fractions in the residual carbon differ in content and
characteristics,">™'* indicating that the residual carbon can
be effectively enriched through simple sieving,

However, the enrichment of the residual carbon in the fine
slag by sieving separation suffers from a significant challenge.

The molten ash and residual carbon are often closely
embedded, in particular, a large number of the high ash fine
particles are attached on the surface of the partly gasified
carbon particles.'® Such a unique tightly wrapped combination
makes it nearly impossible to achieve an effective separation
even by mechanical stirring and wet sieving, thus, leading to a
high ash content in the concentrates as well a low separation
efficiency. Indeed, for closely embedded minerals, the effective
dissociation, cleaning and dispersion are often prerequisites for
an efficient separation.17 However, for the fine slag, the natural
particle size is remarkably fine and the mixing degree is high;
thus, the grinding dissociation further increases with mixing,
leading to a reduced separation accuracy. The rupture of
cavitation bubbles can generate high-speed shock waves and
micro-spray during the ultrasonic pretreatment of pulp.'®"”
The mechanical effects generated by this process can clean the
surface of particles,zo’21 broken particles,22 emulsified reagents,
and so forth. Therefore, ultrasonic processing is a relatively
gentle separation method, which can largely disperse the high
ash fines adhering on the surface of fine slag particles and thus
improving the separat1on efficiency of wet sieving.

Our previous study'® reported that the ultrasonic pretreat-
ment can improve the residual carbon recovery efficiency from
the coal gasification fine slag, and reduce the ash content and
change the particle size distribution of the flotation
concentrates at the same time. Different ultrasonic pretreat-
ment conditions were employed to pretreat the pulp with a
certain concentration modulated by the fine slag and water.
These systematic studies and concrete conclusions are
envisaged to lead to numerous practical applications. The
obtained findings have a certain guiding influence on the
separation and purification of the mixed solid waste exhibiting
grading characteristics, such as waste lithium batteries™ and fly
ash.”**> Moreover, the separation experiments employed in
the study were simple and efficient, thus representing swift
extension to the relevant research and industrial production.

In this work, the effect of ultrasonic pretreatment on the
enrichment of residual carbon from the coal gasification fine
slag through wet sieving separation was investigated
comprehensively. First, the variation in the particle size
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Table 1. Proximate Analysis and High Heating Value of XFS, Conventional Wet Sieving Separation, and Wet Sieving

Separation with Ultrasonic Pretreatment”

sample M,4/% A,q/%
XFS 242 61.86
XFS-0(0)-M 1.98 4330
XF$-0(0)-C 241 4121
XFS-0(0)-T 2.03 79.53
XFS-270(4)-M 1.83 56.19
XFS$-270(4)-C 267 26.54
XFS-270(4)-T 227 76.89

Vaa/% EC,a/% Vaat/ % HHV/MJ kg™
3.94 31.78 11.03 10.30
4.10 50.62 7.50 17.55
3.93 5245 6.98 18.15
3.31 15.13 17.95 3.78
4.55 3743 10.83 12.71
2.24 68.56 3.16 23.64
3.64 17.19 17.48 4.66

“M,q A,a Vag and FC,q refer to moisture, ash, volatile, and fixed carbon on an air-dry basis, whereas V refers to volatile on a dry ash-free basis.
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Figure 3. Wet sieving separation experiment process and the research flow.

distribution of the samples as a function of the ultrasonic
pretreatment conditions was studied, followed by the
establishment of the transfer rule of the residual carbon after
ultrasonic pretreatment. Second, by employing an industrial
CCD camera, each particle size fraction during the conven-
tional and ultrasonic pretreatment wet sieving was imaged, and
the apparent morphological changes in each particle size
fraction were compared. Third, the optimal separation
conditions were determined by quantifying the yield, quality,
and ash rejection (AR) of the calculated concentrates. Final,
the non-isothermal thermogravimetric analysis (TG-DTG) was
used to characterize the combustion performance of the
original sample, conventional wet sieving products and
ultrasonically pretreated wet sieving products. This work
aims to provide some theoretical foundation on the realization
of the goal of “harmlessness, recycling, and utilization” for the
coal gasification slags via a combination of ultrasonic
pretreatment and wet sieving process.

2. MATERIALS AND METHODS

2.1. Materials. The coal gasification fine slag, named as
XFS, was procured from a typical entrained-flow coal
gasification plant in Xinjiang, China. Because the moisture
content of the initial XFS was 56.91%, the experimental

40308

samples were dried at 105 °C for 6 h and subsequently air
dried for 12 h. The proximate analysis’**’ and high heating
value of XFS was presented in Table 1. The fixed carbon
content of XFS was as high as 31.78%, indicating its potential
recovery value for the coal gasification plants. Besides, the
volatile content of 3.94% indicated the lower reactivity, and
therefore, it was not suitable for direct gasification. The high
heating value was calculated according to the relation: HHV =
—0.03 Ay — 0.11 M,4+0.33 V,4 + 0.35 FC,;.*" XFS-0(0)-C,
XFS-0(0)-M, and XFS-0(0)-T referred to the concentrates,
middlings, and tailings obtained after the conventional wet
sieving separation, respectively. On the other hand, XFS-
270(4)-C, XFS-270 (4)-M and XFS-270(4)-T represented the
concentrates, middlings, and tailings obtained after the wet
sieving separation with 270 W ultrasonic pretreatment for 4
min.

2.2. Ultrasonic Pretreatment Process. Mixing 60 g of
XFS and 600 mL of water in a beaker stirred at low speed for 2
min. A TL-1800Y ultrasonic equipment was applied in the
ultrasonic pretreatment for the coal gasification slag. The
ultrasonic output power range was 0—1800 W and the
frequency was 20 kHz, and the magnitude of the ultrasonic
output energy was represented by the percentage of the
maximum ultrasonic output power. In this study, 0, 90, 180,

https://doi.org/10.1021/acsomega.2c05220
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270, and 360 W ultrasonic output powers were selected for the
pulp pretreatment over a period of 4 min and the samples
signed as XFS-0(0), XFS-90(4), XFS-180(4), XFS-270(4), and
XFS-360(4), respectively. Furthermore, the samples pretreated
by ultrasonic time of 0, 2, 4, 6, and 8 min at 270 W were
defined as XFS-0(0), XFS-270(2), XFS-270(4), XES-270(6),
and XFS-270(8), respectively.

2.2.1. Farticle Size Distribution Analysis. The particle size
distribution analyses of the samples were conducted based on
the Chinese National Standard GB/T 477-2008. The tests
were carried out using a set of sieves, including 500, 250, 125,
75, and 45 pm. Each particle size fraction was sequentially
filtered, dried, and weighed, and then, the ash content was
measured. The tests were repeated three times, with the
average value of the test results reported as the final value.

2.2.2. Apparent Morphology of the Particle Fractions.
Using a GP-660V industrial CCD camera, each particle size
fraction for the conventional and ultrasonic pretreatment (270
W for 4 min) wet sieving was imaged, and the changes in
apparent morphologies for each fraction were compared. The
corresponding scales have been marked in the images.

2.3. Calculation of Concentrate Parameters. The
separated products were divided into three types after different
ultrasonic pretreatment conditions. The fraction below 125 ym
contained the fine particles with high ash content, named as
tailings. The product in the range 125—500 pm included the
medium diameter particles with low ash content, termed as
concentrates. The fraction with >500 pm particles consisted of
the coarse particles with medium ash content, denoted as
middlings. The yield of concentrates y(%) and AR are
calculated by using Egs 1 and 27

m
1o(%) = —= X 100%

Mg 1
AR(%) = 100 — Ash recovery(%) in concentrates
oA
= 100 — *%¢
Ag (2)

where, mc, my, Ac, andAg represent the concentrates mass (g),
the feed weight (g), the ash content of the concentrates (%),
and the feed ash content (%), respectively.

The wet sieving separation experiment process and the
research flow are shown in Figure 3.

2.4. Thermogravimetric Analysis. 2.4.1. TGA Equip-
ment and Test Method. To verify the combustibility of XFS
and ultrasonically pretreated wet sieving products, their
combustion characteristics were investigated by TG-DTG
curves. The XFS was sieve separated by using two sieves of size
125 and 500 um in the conventional and ultrasonic
pretreatment wet sieving processes for obtaining the
representative samples. Three products for each method
were subsequently obtained.

HCT-2 TGA unit was used for the TGA. About 10 mg of
dry samples were weighed for the combustion experiment. The
TGA experiments were conducted in an air environment from
25.5 to 900 °C with the heating rate of 7 °C/min and an
airflow rate of 50 mL/min. The mass loss (%) curves were
plotted as a function of the temperature, and the derivative
thermogravimetric (%/°C) curves were obtained by differ-
entiating the TG curves, followed by the generation of the
DTG (%/min) curves for the final analysis by multiplying the

derivative curves with the heating rate.”’ Each sample was
tested at least twice to confirm the reproducibility.

2.4.2. Determination of Combustion Characteristic
Parameters. The combustion characteristic parameters could
be determined from the TG-DTG curves,*>*® including
ignition temperature (T,), maximum weight loss rate temper-
ature (Tpeak), corresponding maximum weight loss rate
(dW,.y), burnout temperature (T}), average weight loss rate
(dW ean), and so forth. Figure 4 gives the TG-DTG curves and
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Figure 4. TG-DTG curves and related characteristic parameters of
XFS.

the related characteristic parameters for the XFS sample. A
vertical line was drawn along the lowest point of the DTG
curve, intersecting with the TG curve. Then, a tangent line was
drawn at the intersection that intersected the horizontal line of
the initial combustion phase. The temperatures corresponding
to the two points were considered as T, and T;, respectively.
Based on these parameters, the flammability index (C) and
composite combustion characteristic index (S) of the sample

can be calculated by using Eqs 3 and 4

dWmaX
C= —
T (3)
dwmax‘dwmean
S=—"F
T oT, (4)

The higher the C value, the better the ignition stability of the
sample. Besides, the S value reflected comprehensively the
ignition and burnout performance of the sample. Moreover,
the larger the S value, the superior the comprehensive
combustion performance of the sample.*

3. RESULTS AND DISCUSSION

3.1. Variation in the Particle Size Distribution of the
Samples. 3.1.1. Undersize Cumulative Yield. Figure Sa shows
the undersize cumulative yield for each ultrasonic output
power and Figure Sb demonstrates the undersize cumulative
yield as a function of the ultrasonic pretreatment time. On
enhancing the output power and pretreatment time, the
undersize cumulative yield curve was noted to move to the left
as a whole, and the dg, value decreased accordingly. The
cleaning, crushing, and dispersion action associated with the
ultrasonic treatment effectively reduced the particle size and

https://doi.org/10.1021/acsomega.2c05220
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thus reducing the content of the coarse particles and enhancing
the content of the fine particles.”® Therefore, the ultrasonic

pretreatment exerted a significant effect on the particle size
distribution of XFS.
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Figure 8. Yield, ash content, and AR of the concentrates as a function of the ultrasonic output power (a) and ultrasonic pretreatment time (b).

3.1.2. Morphology of the Different Particle Size Fractions.
The apparent morphological features of the different particle
size fractions are compared in Figure 6, with obviously visible
effect of the ultrasonic treatment. Except for the 45—0 um
particle size fraction, all other fractions were observed to
become “clean” after ultrasonic pretreatment, that is, the gray-
white material (high ash fine particles) attached on the surface
of larger particles was greatly reduced, thus, exposing more
dark surfaces. The result was mainly due to the dispersion and
cleaning effect of the ultrasonic radiations peeling off a large
number of the high ash fine particles attached to the particle
surface and subsequently exposing the intrinsic color of the
large particles.'® Moreover, compared with the conventional
wet sieving, the +45 um fractions were noted to be more
“angular”, probably due to the breakage of the particles caused
by the ultrasonic crushing effect and subsequent generation of
the new dissociation surface.

3.1.3. Yield and Ash Content in the Different Particle Size
Fractions. As can be seen from Figure 7, with the increase in
the ultrasonic output power and pretreatment time, the yield of
the +250 um fractions reduces, while that of the 45—0 um
fraction increases monotonically. However, the ash content of
the +500 pm fraction increases on enhancing the ultrasonic
output power, and the ash content of the fractions decreases
except for the 250—125 ym fraction (the coarse particles with
high ash content are dissociated by the ultrasonic treatment of
high output power, for instance, 360 W), as shown in Figure
7a. This was probably owing to the reason that the increasing
ultrasonic output power led to the fragmentation of a high
extent of large particles with low ash content, or the diameter
of the low ash content particles decreased, attributing to their
inclusion in a smaller particle size fraction.”” Besides, in Figure
7b, on extending the ultrasonic pretreatment time, the ash
content of the +500 pm fraction first increases and
subsequently decreases to some extent, whereas the ash
content of the four 500—4S um fractions shows an opposite
trend. Therefore, the ultrasonic treatment for a long duration
fragments the coarse particles with high ash content, resulting
in their incorporation into smaller particle size fractions.

3.1.4. Residual Carbon Transfer Characteristics in Differ-
ent Particle Size Fractions. The XFS exhibited obvious
residual carbon enrichment characteristics in the particle size
distributions in the natural state and after ultrasonic pretreat-
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ment. First, the low ash particles were mainly concentrated in
the 500—250 pm fraction in the particle size distribution in the
natural state. It was not cost-effective to separate this fraction
by sieving, as it involved a two-stage wet sieving separation
process, and the ash content and yield of the product were too
high and low, respectively. Second, the ultrasonic pretreatment
had a significant effect on the particle size distribution. The dg,
value was noted to be significantly reduced, with the low ash
particles more significantly enriched in the 500—250 gm and
250—125 um fractions. Third, after ultrasonic pretreatment,
the ash content of the +500 ym fraction increased, while that
of the 125—75 um fraction decreased. The ash content of the
two fractions was basically identical and could be combined
into the medium ash product; however, it was not appropriate
considering the complicated separation process. Besides,
although the yield of the 125—7S pm fraction was low,
however, due to its high ash content, the overall content
increased significantly on combining it in the concentrates.
Therefore, the 125—75 pm fraction could be classified as the
high ash particles and subsequently incorporated into the
tailings. Fourth, although the yield of the +500 ym fraction was
low, however, due to its high ash content, the overall content
increased on combining it in the concentrates too. Moreover,
the sieving separation of the 500 ym was straightforward and
efficient; thus, the +500 ym fraction could be separately sieved
as the middlings for further processing. In summary, the
sample could be wet sieved into three products, including
middlings containing the coarse particles with medium ash
content (+500 ym), concentrates composed of the medium
diameter particles with low ash content (500—125 gm) and
tailings comprising of the fine particles with high ash content
(125—0 um). However, it was worth noting that there was an
optimal set of conditions for ultrasonic pretreatment by
quantifying the yield, quality, and AR of the concentrates.
3.2. Calculation of Concentrate Parameters.
3.2.1. Yield, Ash Content, and AR of Concentrates. As
shown in Figure 8a, with the increase of the ultrasonic output
power, the yield and ash content of the concentrates first
decrease and then show a slight increase. At 270 W, AR was
noted to reach its highest values, followed by a slight reduction.
Similarly, in Figure 8b, on enhancing the ultrasonic pretreat-
ment duration, the yield of the concentrates first decreases
sharply for the ultrasonic output sustained at 270 W, followed
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Figure 9. TG-DTG curves of the products of the conventional wet sieving (a) and ultrasonic wet sieving (b) separation processes.

by a gradual reduction. Furthermore, the ash content of the
concentrates decreased obviously, whereas AR attained the
highest value at 4 min. Therefore, the high ultrasonic output
power and long pretreatment time did not result in a superior
wet separation effect. At a low ultrasonic output power (0-90
W) or a short pretreatment time (0—2 min), the main effect of
ultrasonication on the particle groups was cleaning and
dispersion. At this stage, the high ash fine particles adhered
on the surface of the low ash particles were transferred to the
tailings due to the ultrasonic peeling and dispersion and thus
sharply reducing the yield and ash content of the concentrates.
Meanwhile, the low ash particles in the middlings were also
stripped and dispersed by the ultrasonic action, subsequently
transferring to the concentrates. This dynamic transfer made
the AR of the concentrates to increase sharply. On increasing
the ultrasonic output power or extending the ultrasonic
pretreatment time, at a medium ultrasonic output power
(90—270 W) or a medium pretreatment time (2—4 min),
besides cleaning and dispersing, the main effect of the
ultrasonic treatment on particle groups also included the
fragmentation effect, which allowed a fraction of the low ash
particles to transfer to the tailings. Meanwhile, the low ash
particles in the middlings were stripped and dispersed by the
ultrasonic action, followed by their transfer to the concentrates,
which led to an enhanced ash content in the middlings. This
comprehensive effect caused the AR of the concentrates to
continue to increase slowly. However, at a higher ultrasonic
output power (270—360 W) or a longer pretreatment time
(4—8 min), the main effect of the ultrasonic treatment on
particle groups also included the over-fragmented effect,
resulting in a large extent of the low ash particles to be sieved
to the tailings. Similarly, some high ash particles in the
middlings were sieved to the concentrates and thus increasing
the ash content and reducing the AR of the concentrates.
3.2.2. Determination of Optimum Sieving Separation
Conditions. The pretreatment condition of ultrasonic output
power of 270 W for 4 min was noted to be optimal considering
the yield, ash content, and AR of the concentrates. Under this
condition, the yield of the concentrates was 26.72%, indicating
a reduction of 7.99% as compared to the conventional wet
sieving. However, the observed reduction in yield was
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considered to be benign due to many reasons. On the one
hand, the content of the fixed carbon for XFS was 31.78%,
which indicated that a high yield of concentrates reflected a
high ash content. On the other hand, the ultrasonic action
reduced the adhesion of high-ash microbeads to low-ash
particles, thus reducing ash entrainment in the concentrates.>®
Simultaneously, the ash content of the concentrates was
27.27%, which exhibited a reduction of 14.96% as compared to
the conventional wet sieving. Besides, the AR of concentrates
was 88.51%, which was increased by 11.63% as compared to
the conventional wet sieving. Hence, the quality of the
concentrates and residual carbon enrichment efficiency were
significantly improved by the wet sieving separation with
ultrasonic pretreatment.

3.3. Combustion Characteristics of the Samples.
3.3.1. hermogravimetric Analysis. Figure 9 illustrates the
TG-DTG curves of the products after the conventional and
ultrasonic wet sieving separation processes. The XFS-0(0)-T
exhibited the lowest weight loss, indicating the low residual
carbon content of the tailings in the conventional sieving.
Although the extent of weight loss in XFS-0(0)-C was noted to
be higher than that of XFS-0(0)-M, however, the overall
weight loss in the samples was very low. The result indicated
that the concentrates and middlings in the conventional sieving
had not been separated effectively. However, in the case of the
products of the ultrasonic pretreatment wet sieving separation,
as shown in Figure 9b, XFS-270(4)-T shows the lowest weight
loss, as some low ash particles are transferred to the tailings.
Simultaneously, the weight loss percentage in XFS-270(4)-M
was observed to be significantly lower than that of XFS-0(0)-
M, as the residual carbon in the middlings transferred to the
concentrates after ultrasonic pretreatment. Besides, XFS-
270(4)-C had the highest weight loss percentage and carbon
content. It should be noted that both XFS-0(0)-M and XFS-
270(4)-M exhibited an obvious negative weight loss (weight
gain) process before 400 °C as the chemical oxygen absorption
of the sample exceeded the low-temperature oxidation of the
samples, which might be related to the unique structure and
composition of the coarse particles.

3.3.2. Characteristic Combustion Parameters. The char-
acteristic combustion parameters of the tested samples are
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Table 2. Characteristic Combustion Parameters From the TG-DTG Curves

samples T,/°C Tpear/ °C T,/°C dW,,../%-min~" AW, ean/%-min " C/%-min~'-°C™2 S/%*min~2-°C ~3
XES 513.68 548.63 581.03 3.09 0.29 1.17 x 107° 5.78 X 1077
XFS-0(0)-M 534.12 572.36 597.04 5.54 0.52 1.94 x 107° 1.69 x 107*
XFS-0(0)-C 536.04 574.79 597.30 6.40 0.53 223 X 107° 1.97 x 107*
XFS-0(0)-T 506.73 550.82 578.50 1.68 0.16 6.56 x 107¢ 178 x 1077
XFS-270(4)-M 532.25 581.25 602.70 429 0.38 1.51 x 107° 9.59 x 107°
XFS-270(4)-C 544.25 596.90 615.57 7.33 0.79 248 X 107° 3.17 X 107®
XFS-270(4)-T 51191 550.40 579.19 2.57 0.18 9.82 X 107¢ 3.00 X 1077

compared in Table 2. It was noted that the ignition and
burnout point temperatures for the XFS, XFS-0(0)-C, and
XFS-270(4)-C were 513.68 and 581.03, 536.04 and 597.30,
and 544.25 and 615.57 °C, respectively, which increased with
the increase in the carbon content (as shown in Table 1).
Meanwhile, the dW,,,, and dW,,.,, for the XFS-270(4)-C at
7.33 and 0.79, respectively, were higher than those of XFS and
XFS-0(0)-C. This result might be related to the generation of
the fine cinders during coal gasification as well as the transfer
rule of the residual carbon and residue in the gasifier. Wu et
al.’” reported that the residual carbon in the entrained-flow
gasification coal fine slag mainly included three parts, viz.
“partial volatile matter of raw coal pyrolysis”, “partly gasified
carbon”, and “unreacted pyrolytic carbon”. The partial volatile
matter of the raw coal pyrolysis mainly existed below 75 pm,
which contained a small residual carbon content and was not
swiftly gasified in the gasifier due to being wrapped by the
inorganic molten ash. Thus, it resulted in the volatile
substances being retained in the particles, forming residual
carbon. The partly gasified carbon mainly existed in the
medium particle size fractions, and the content was much
higher mainly due to the short residence time in the gasifier
and incomplete gasification. The unreacted pyrolytic carbon,
the unburnt char captured by the flowing slag, was wrapped in
the inorganic ash which cannot be directly combined with the
gasification agent, and its particle size was generally large.
Moreover, the relevant studies have shown that the reactivity
of the three residual carbons followed the following sequence:
partial volatile matter of raw coal pyrolysis > unreacted
pyrolytic carbon > partly gasified carbon. Therefore, although
XFS-0(0)-T had the lowest carbon content, it had the highest
Vi and the lowest ignition point and burnout point
temperatures. The XFS-270(4)-T contained a higher extent
of the low activity carbon content than XFS-0(0)-T, which led
to a slight enhancement in the ignition point and burnout
point temperatures. In addition, it could be inferred that, after
ultrasonic pretreatment, a part of the low activity residual
carbon in XFS-0(0)-M was transferred to the concentrates,
which reduced the carbon content, ignition point, and burnout
point temperature of the middlings. In other words, XFS-
270(4)-C had a high extent of the enriched low activity
residual carbon, leading to the enhanced ignition point and
burnout point temperatures and reduced activity of the
concentrates.

Despite the lowest reactivity and Vg, XFS-270(4)-C
exhibits a low ash content (27.27%), a high carbon content
(nearly 70%), the highest maximum weight loss rate (7.33%-
min~'), and the highest C, S, and HHV values, as shown in
Table 1. These results indicated that the concentrates in the
ultrasonic pretreatment wet sieving separation displayed the
optimal combustion performance. Therefore, ultrasonic
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pretreatment had a positive effect on the residual carbon
enrichment in the concentrates.

4. CONCLUSIONS

In this work, the residual carbon in the entrained-flow
gasification coal fine slag was enriched via employing a
combination of ultrasonic pretreatment and wet sieving
process, along with achieving the reduced ash content and
improved combustion performance of the concentrates. The
findings from this work provided new solutions for the
separation and utilization of the coal gasification fine slag. The
following conclusions could be drawn:

1 After the ultrasonic pretreatment, the residual carbon
enrichment pattern in the particle size distribution for
coal gasification fine slags was mainly enriched toward
the 500—250 ym and 250—125 um particle size classes,
as compared to conventional wet screening.

2 Considering the yield, ash content, and AR of the
concentrates, the optimal ultrasonic pretreatment
conditions for wet sieving process were 270 W for 4
min. Under these conditions, the yield and ash content
of the concentrate were 26.72 and 27.27% respectively,
with an AR rate of 88.51%.

TG-DTG confirmed that the concentrates from the
ultrasonic pretreatment (270 W for 4 min) wet sieving
separation could reduce the chemical reactivity of the
experimental samples. Meanwhile, they also had the
lower ash content (27.27%) and the higher carbon
content (nearly 70%), maximum weight loss rate
(7.33%'min""'), and HHV.

The combustion characteristics analysis showed that the
residual carbon was enriched in the concentrate and its
combustion performance was significantly improved.
The composite combustion characteristic index of 3.17
X 107® for the wet screening concentrate after ultrasonic
pretreatment was significantly higher than the values of
578 X 107° and 1.97 x 107° for the raw and
conventional screening concentrates, respectively.

Therefore, the combination of ultrasonic pretreatment and
wet sieving process is an effective way to achieve the goal of
“harmlessness, recycling, and utilization” for the coal gas-
ification slags.
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