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Abstract: Most contemporary drug discovery projects start with a ‘hit discovery’ phase where small
chemicals are identified that have the capacity to interact, in a chemical sense, with a protein target in-
volved in a given disease. To assist and accelerate this initial drug discovery process, ’virtual docking
calculations’ are routinely performed, where computational models of proteins and computational
models of small chemicals are evaluated for their capacities to bind together. In cutting-edge, contem-
porary implementations of this process, several conformations of protein targets are independently
assayed in parallel ‘ensemble docking’ calculations. Some of these protein conformations, a minority
of them, will be capable of binding many chemicals, while other protein conformations, the majority
of them, will not be able to do so. This fact that only some of the conformations accessible to a
protein will be ’selected’ by chemicals is known as ’conformational selection’ process in biology. This
work describes a machine learning approach to characterize and identify the properties of protein
conformations that will be selected (i.e., bind to) chemicals, and classified as potential binding drug
candidates, unlike the remaining non-binding drug candidate protein conformations. This work also
addresses the class imbalance problem through advanced machine learning techniques that maximize
the prediction rate of potential protein molecular conformations for the test case proteins ADORA2A
(Adenosine A2a Receptor) and OPRK1 (Opioid Receptor Kappa 1), and subsequently reduces the
failure rates and hastens the drug discovery process.

Keywords: drug discovery; class imbalance; machine learning; protein conformation selecton; drug
candidates; ADORA2A; OPRK1

1. Introduction

The core concept of any drug discovery application involves, in most cases, a protein
biological target which binds with a chemical (known as ’ligand’) to achieve a biological
function. The ligand is most often, although not always, a small organic chemical that
binds to the protein target and modulates its function in a way that achieves a therapeutic
benefit to the patient. Indeed, drug discovery can be inferred as the process of identification
of small molecules that will bind selectively and safely to specific protein targets that are
responsible for diseases.

The modern-day drug discovery and development timeline is a complex process that
starts with protein target identification and ends with an FDA approval, and that takes
an average of 12–15 years and costs more than $1 billion until the launch of the finished
product. These time and cost issues are mostly due to (i) the time it takes in the early
stage to identify drug candidates effective against a protein target, and (ii) the inflated
failure rates of over 90% during later clinical trial stages, where the identified potential
drug candidate proteins fail to succeed during various stages of developmental clinical
trials. The prominent cause of these late-stage failures is that the potential drug candidates
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often have a tendency to bind off-target proteins, instead of only binding to their intended
protein targets. This off-target drug binding can lead to a spectrum of adverse effects
ranging from lack of potency and selectivity to more serious issues of drug toxicity [1].

A popular and efficient approach to identify in silico chemicals that have the potential
to bind to specific proteins is called docking. In docking, computational models of chemicals
are used together with computational models of the protein of interest to compute their
respective binding free energies. These chemicals that are predicted to bind strongly to the
protein of interest would be prioritized for further experimental testing. This approach
has been historically used in many early-scale drug discovery projects. Thanks to the
availability of supercomputers, this process is now beginning to be applied to the prediction
of later-stage clinical trial outcomes, predicting not only of the chemicals of interest can
bind to the protein of interest, but also if they can bind to several proteins known to be
responsible for many clinical trial failures because of off-target binding [1].

A recent major development of this docking approach is the use of ensemble dock-
ing [2]. In ensemble-docking, more than one computational model of the protein target is
used, combinatorially, to predicted the binding affinities of chemicals against the protein.
The idea behind ensemble-docking is that, in the living cells, proteins are not static objects,
but they undergo constant conformational dynamics that change their shapes to a signifi-
cant extent at the atomistic level, and hence the binding affinities of chemicals. We have
shown that in the many conformations that a protein can adopt, some, a small minority,
will be much better at binding chemicals than others, confirming the chemical concept of
conformational selection of protein conformations by their ligands [1]. In order to describe
the range of conformations that the target proteins can adopt, various approaches such
as molecular dynamics (MD) simulations Monte Carlo or Markov-State models are often
employed [3]. However, the use of MD simulations to emulate the protein-ligand docking
process has its own share of challenges beyond the knowledge of the structure of both the
target protein and ligands [3]. In the context of ensemble docking, the most important
challenge is how to identify, among a large number of conformational variations of a
protein structure, the few ones that will end up being selected by the drugs for binding [1].
This work aims at addressing this important question by looking at physical and data
properties of protein conformations that are associated with conformational selection. MD
simulations do not provide data-driven insights into the identification of data-patterns
such as the biophysical or chemical properties of ligand at-large that enables the selection
of specific target protein conformations over the others. These problems highlight the need
for advanced machine learning (ML) techniques that can analytically determine a precise
binding with the least amount of time, cost expended with minimal pre-clinical lab trials
and reduced failure rates at much early-stages in the drug discovery pipeline.

In literature, commonly used ML techniques based on characterizing protein con-
formational selection include root mean squared deviation (RMSD) clustering, Perron
cluster analysis (PCCA+), and Markov-clustering (MCL) methods [4]. RMSD is a least
squares approach that computes protein conformational RMSD values to generate clusters
or protein conformational states based on a user-defined threshold. PCCA+ is a fuzzy
clustering algorithm that performs clustering on the eigenvalues of the protein conforma-
tional transitions. MCL is a graph based clustering algorithm that uses the probability
of a random walker to transition to a particular sequence of states. Strecker and Meyer
performed clustering methods such as K-Means and hierarchical clustering (with average
linkage) analysis on the cluster representatives to measure the docking performance in
terms of binding pose prediction, screening utility and scoring accuracy [5]. Other mutual
information based methods [6,7] and dimensionality reduction methods have also been
proposed for information extraction [8].

However, the current ML methods do not address the caveats of statistically ill-
conditioned and limited real-world data availability scenarios. This brings us to the class
imbalance problem, where the detection of smaller sample-size potential drug-binding
protein conformations is dominated by the larger population of non-drug-binding protein
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conformations. Consequently, most of the ML techniques employed for data-learning on
such a biased population dataset will result in a high risk that the smaller population of
potential drug candidate protein conformations (minority class samples) will be misclassi-
fied/ misidentified as the non-drug candidate protein conformations. In practice, this class
imbalance problem could lead to serious effects where the researchers arrive at erroneous
conclusions on the probable subset of proteins that will generate, from docking, a correct
and useful list of chemicals predicted to bind to the protein targets, thereby drastically
reducing the impact and reliability of analytical solutions for drug discovery applications.
Therefore, to address the challenges in drug discovery domain, this paper introduces a
two-stage sampling-based classifier drug discovery system. This system uses sampling
strategies to study the class imbalance problem, to maximize the detection of potential
drug-candidate conformations and recommend them to the biologists/pharmacologists
during in vitro analysis. It also suggests the non-drug candidate protein conformations
that could be discarded during the clinical trials, thus reducing the substantial investment
of resources.

The novel contributions of this work are outlined as below:

• This research work studies the class imbalance problem in drug discovery applications,
and how it affects the detection rates of potential drug-binding protein conformations.

• It introduces new ML strategies and presents a case study to study the effects of
class imbalance problem, counter them, and maximize prediction rates of potential
drug-binding molecular conformations for target proteins ADORA2A and OPRK1.

• This work is the first step toward the design of a new comprehensive drug discovery
system, which optimizes the detection of both non-drug-binding protein conforma-
tions that could be discarded and potential drug-binding protein conformations that
should be retained for further used in docking.

• The proposed drug discovery approaches can help with reducing the time and cost of
drug discovery, which is particularly desirable in global pandemic situations.

The rest of the paper is organized as follows: background and related work is dis-
cussed in Section 2 followed by the proposed two-stage sampling based ML classification
framework in Section 3. In Section 4, we experimentally demonstrate and validate the
efficacy of the two-stage sampling based ML classification framework in identification of
potential drug candidate protein conformations. Finally, we summarize the effectiveness
of our proposed automated ML-based models for prediction of potential drug candidate
protein conformational selection in Section 5.

2. Background and Related Work
2.1. Class Imbalance Problem

In real-world drug discovery applications, most of the biomedical datasets observed
are imbalanced in nature. The training phase of a supervised classifier constitutes data-
learning performed on the given unequal distribution of representative samples from the
imbalanced dataset. Here, the classifier aims to achieve a good classification/prediction
performance without any consideration for the data distribution of each class. Hence,
the resultant decision-making process tends to be more biased towards the majority class
(which in the present case would be protein conformations that will not bind drugs),
thereby leading to the misclassification of minority class samples (which in the present
case would be protein conformations that will bind the drugs) [9]. Thus, the penalty cost
of misclassification of minority samples is higher than the majority samples for a class
imbalance problem [10]. Especially in drug discovery application, the class imbalance
problem is of great consequence, since it leads to a higher risk of discarding the smaller
population of protein conformations that can successfully bind to drugs due to them being
misclassified as non-drug-binding protein conformations. In drug discovery literature,
ensemble learning techniques have been proposed as a solution to handle the within- and
between-class imbalance problem for prediction of drug–target interaction [11]. The main
difference between our approach and other approaches is that, in our work, we tackle the



Molecules 2022, 27, 594 4 of 22

class imbalance problem and also introduce a new perspective to maximize the detection
of both potential drug candidate conformations and non-drug candidate conformations
via the proposed two-stage sampling-based classifier system. The remainder of this paper
discusses more about the proposed method, design of the two-stage sampling-based
classifier system, and its experimental efficacy.

2.2. Sampling Strategies

The two broad categories of sampling strategies often employed are: (1) Undersam-
pling approach: where sampling is performed by removal of additional data instances from
the majority class samples and (2) Oversampling approach: where sampling is performed
by the addition of artificial data instances to the minority class samples [10]. One of the
most popular undersampling techniques is a random undersampling approach, wherein
N samples are selected at random from the majority class to be included as part of a new
smaller training set that consists of equal distribution (same N number of samples) of
minority class samples. The main drawback of the undersampling approach is that it
entails a substantial risk of loss of important information due to elimination of a large
amount of original data samples from the new training phase [10,12,13], whereas the over-
sampling approach has no loss of information involved since all the original data samples
are retained in the training phase. The oversampling approach generates artificial data
samples of the minority class and adds them to the new training dataset to obtain the
desired well-balanced data, which consists of equal distribution of majority and minority
class data samples [10]. A synthetic minority oversampling technique (SMOTE) proposed
by Chawla [14] creates new synthetic data samples of the minority class and adds them
to the new training data set, thus reducing the overfitting problem that arises due to data
replication. For this, SMOTE identifies K nearest neighbors for each data sample belonging
to the minority class and then performs regression to fit the data samples to a line in order
to generate the new synthetic data samples for the minority class [14]. The only problem
with oversampling approach is that, for larger datasets, the increase in training data size
also implies a corresponding increase in time-complexity of the data-learning phase. In the
remainder of this paper, we will discuss several existing supervised ML techniques and
introduce our novel ML approaches that leverage the sampling strategies to alleviate the
class imbalance problem and maximize detection of potential drug-candidate molecular
conformations for proteins ADORA2A and OPRK1.

2.3. Datasets Description

In this work, proteins ADORA2A (Adenosine A2a Receptor) and OPRK1 (Opioid Re-
ceptor Kappa 1) are considered for case study and experimental validation of the proposed
method. The conformations of these two proteins have been extensively characterized, and
the protein conformations that (i) will bind ligands and (ii) will not bind ligands are known
and have been documented and published [1]. The conformations of the proteins were col-
lected from 0.6 microsecond molecular dynamics simulations using full protein, membrane,
and hydration environments on the Moldyn High Performance Cluster, and the docking
was performed on the Titan Supercomputer at the Oak Ridge National Laboratory in Oak
Ridge, TN, USA and on the Newton Supercomputer at the University of Tennessee, using
the VinaMPI docking engine as described in Evangelista et al. The protein conformations
that were docking the protein ligands with a high score were identified as described in [1].
Each protein MD trajectory consisted of 3000 protein conformations.

ADORA2A: This gene encodes a member of the guanine nucleotide-binding protein
(G protein)-coupled receptor (GPCR) superfamily, which is subdivided into classes and
subtypes. The given dataset consists of 50 attributes with 3000 molecular conformations
among which 850 conformations have the potential to bind with the protein and 2147 con-
formations do not bind with the protein. Here, the imbalance ratio is 3:1 i.e., or every
datasample belonging to minority class, there are three data samples belonging to the
majority class.
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OPRK1: This gene encodes an opioid receptor, and is a member of the 7 transmem-
brane spanning GPCR family.This is a Protein Coding gene. The given dataset consists of
50 attributes with 2999 molecular conformations among which 137 conformations have the
potential to bind with the protein and 2862 conformations do not bind with the protein.
Here, the imbalance ratio is 20:1 i.e., for every datasample belonging to minority class, there
are 20 datasamples belonging to the majority class.

For each of the conformations of the ADORA2A and OPRK1 proteins described in
Table 1, the molecular descriptors were calculated using the protein descriptors of the
program MOE [15]. These descriptors are used to quantify various physical and chemical
properties of the protein conformations. These descriptors are mostly based on the whole
protein conformations, i.e., they are not limited to the small part of the protein where the
ligands do bind. These descriptors have been found useful to characterize proteins and their
conformations in ways that can distinguish them from other proteins or conformations [16].

Table 1. Protein descriptors for ADORA2A and OPRK1 datasets.

Protein Property Description

pro_mass Protein Mass

pro_pI_3D Structure-based pI Prediction

pro_coeff_fric Frictional Coefficient

pro_coeff_diff Diffusion coefficient

pro_r_gyr Radius of Gyration

pro_r_solv Hydrodynamic Radius

pro_sed_const Sedimentation Constant

pro_eccen Protein Eccentricity

pro_asa_vdw Water Accessible Surface Area

pro_asa_hyd Hydrophobic Surface Area

pro_asa_hph Hydrophilic Surface Area

pro_volume Protein Volume

pro_mobility Protein Mobility

pro_helicity Protein Helix Ratio

pro_henry Henry’s Function f(ka)

pro_net_charge Protein Net Charge

pro_app_charge Protein Charge at Debye Length

pro_dipole_moment Protein Dipole Moment

pro_hyd_moment Hydrophobicity moment

pro_zeta Zeta Potential

pro_zdipole Zeta Dipole Moment

pro_zquadrupole Zeta Quadrupole Moment

pro_patch_hyd Area of hydrophobic protein patch(es)

pro_patch_hyd_1 Area of largest hydrophobic protein patch(es)

pro_patch_hyd_2 Area of 2 largest hydrophobic protein patch(es)

pro_patch_hyd_3 Area of 3 largest hydrophobic protein patch(es)

pro_patch_hyd_4 Area of 4 largest hydrophobic protein patch(es)
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Table 1. Cont.

Protein Property Description

pro_patch_hyd_5 Area of 5 largest hydrophobic protein patch(es)

pro_patch_hyd_n Count of hydrophobic protein patch(es)

pro_patch_ion Area of ionic protein patch(es)

pro_patch_ion_1 Area of largest ionic protein patch(es)

pro_patch_ion_2 Area of 2 largest ionic protein patch(es)

pro_patch_ion_3 Area of 3 largest ionic protein patch(es)

pro_patch_ion_4 Area of 4 largest ionic protein patch(es)

pro_patch_ion_5 Area of 5 largest ionic protein patch(es)

pro_patch_ion_n Count of ionic protein patch(es)

pro_patch_neg Area of negative protein patch(es)

pro_patch_neg_1 Area of largest negative protein patch(es)

pro_patch_neg_2 Area of 2 largest negative protein patch(es)

pro_patch_neg_3 Area of 3 largest negative protein patch(es)

pro_patch_neg_4 Area of 4 largest negative protein patch(es)

pro_patch_neg_5 Area of 5 largest negative protein patch(es)

pro_patch_neg_n Count of negative protein patch(es)

pro_patch_pos Area of positive protein patch(es)

pro_patch_pos_1 Area of largest positive protein patch(es)

pro_patch_pos_2 Area of 2 largest positive protein patch(es)

pro_patch_pos_3 Area of 3 largest positive protein patch(es)

pro_patch_pos_4 Area of 4 largest positive protein patch(es)

pro_patch_pos_5 Area of 5 largest positive protein patch(es)

pro_patch_pos_n Count of positive protein patch(es)

The goal is to identify the maximum number of molecular conformations related to the
ADORA2A and OPRK1 proteins to recommend the identified smaller subset of potential
drug candidate conformations for more efficient docking calculations.The datasets have an
active binding feature as the “dependent variable” which has 2 classes labeled as either 0
or 1 to indicate the binding outcome. Class 0 describes that known ligands do not bind well
to the given protein conformation, and class 1 conveys that known ligands bind well to the
given protein conformation. In this work, we have explored seven supervised ML classifica-
tion models: Methodology 1 classification using LR, Methodology 2 classification using GB
and KNN, re-balance the dataset using SMOTE followed by Methodology 2 classification
techniques: SMOTE-GB, and SMOTE-KNN, and decision fusion using LR+SMOTE-GB and
LR+SMOTE-KNN techniques. Their performance evaluation was conducted on 10%, 20%
and 30% of training data sizes, where the training samples were randomly chosen from
the original dataset. This training set range was chosen because, in reality, there are only a
smaller number of conformations available for data-learning and training the supervised
classifier. The LR classifier hyperparameter was empirically chosen as C = 5. In the context
of protein conformational selection for drug discovery application, a confusion matrix
presents the summary of prediction/classification results of a given protein conformation
as belonging to one of the below four cases:
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• True positives (TP): The cases for which the classifier predicted “Active Binding”
(drug candidate) and the conformations were actually bounded to the target protein.

• True negatives (TN): The cases for which the classifier predicted “Inactive Binding”
(non-drug candidate) and the conformations were actually not bounded to the target protein.

• False negatives (FN): The cases for which the classifier predicted “Inactive Binding”
(non-drug candidate) but the conformations were actually bounded to the target protein.

• False positives (FP): The cases for which the classifier predicted “Active Binding”
(drug candidate), but the conformations were actually not bounded to the target protein.

2.4. Logistic Regression

Logistic regression (LR) is one of the popular ML techniques that is used to perform
predictive analysis of data, when the data are categorical or has binary classes. The goal
of LR is to determine the best fitting model that describes the relationship between one
dependent binary variable against a group of independent variables [17]. LR models the
transformed probability as a linear relationship of independent variables. Let y be the
binary outcome indicating failure/success (not belong to the class/belongs to the class) with
0/1, respectively, and p be the probability of y = 1 as p = prob(y = 1). Conversely, y = 0
can be expressed as 1− p. Then, LR models the outcome y based on linear combination of
the independent data variables x1, x2, ..., xk and their respective parameter/weight values
β1,β2,...,βk via maximum likelihood method as given by:

f (p) = log
p

p− 1
= β0 + β1x1 + β2x2 + β3x3 + ... + βkxk (1)

For an accurate LR model with minimum error, we determine the cost function J(θ)
such that the square error between the actual values of y and its predicted values ŷ is
minimized. Thus, using mean squared error formulation for LR makes the cost function
J(θ) non-convex with multiple local minima. Therefore, we use cross entropy based LR
formulation, where cross entropy H is defined as the dissimilarity measure between the
probability p corresponding to actual values y and predicted probability p̂ corresponding
to the predicted values ŷ can be calculated as:

H(p, p̂) = −∑
i

pi log p̂

= −y log ŷ− (1− y) log(1− ŷ)
(2)

From Equation (2), the new cross entropy based LR cost function is formulated as:

J(θ) = − 1
N

N

∑
n=1

H(p, p̂)

= − 1
N

N

∑
n=1

[
y log ŷ + (1− y) log(1− ŷ)

] (3)

2.5. Gaussian Naive Bayes Classifier

Naive Bayes classifier is another commonly used ML supervised technique for data
classification purposes. It follows the principle of maximum a posteriori probability (MAP)
estimation for a probabilistic classification of data. Let y ∈ {0, 1} be the binary class
outcome for a given new data point x. According to Bayes theorem, the posterior proba-
bility P(y|x) can be expressed in terms of prior probability P(y) and likelihood P(y|x) as
described by:

P(y|x) = (P(x|y) ∗ P(y))/P(x) (4)

where

• P(y|x) is the probability of outcome y given the data point x. This is called the
posterior probability.
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• P(x|y) is the probability of data point x given that the outcome y was true. This is
called the likelihood.

• P(y) is the probability of outcome y being true across all of the data. This is called the
prior probability of y.

• P(x) is the probability of the data averaged over all of the outcomes.

Therefore, the posterior probability for different classes can be calculated from Equation (4).
The class with highest probability is chosen for classifying the new data point x. This strategy
is called the MAP estimation as formulated below:

max(P(y|x)) = max(P(x|y) ∗ P(y)) (5)

Gaussian Naive Bayes (GB) classifier is used when the features have continuous values
and follow Gaussian or normal distribution [18]. The likelihood of features is assumed to
be Gaussian and is given by

P(x|y) = 1√
2πσ2

y

exp
(−(x− µy)2

2σ2
y

)
(6)

where µy denotes the mean of class y and σ2
y gives the variance of class y. The standard

normal distribution N (µ, σ) is a bell shaped density described by its mean µ = 0 and
standard deviation σ = 1.

2.6. K-Nearest Neighbor Classifier

K-nearest neighbor (KNN) classifier is a widely used ML technique for its easy inter-
pretation and low calculation time for both classification and regression problems. Given
a new data point x which has to be assigned to one of the classes y ∈ {0, 1}, the KNN
algorithm performs the classification task as described by the following steps [19]:

• Choose the K neighbors.
• Calculate the K nearest neighbors yi of the new data point x: D(x, yi) =

√
(x− yi)2

where Euclidean distance is used as a metric to determine the “nearness” or “closeness”
criteria.

• Choose the K nearest neighbors of x in accordance to the minimum Euclidean distance
between x and its K closest neighbors as defined by min D(x, yi).

• Among these chosen K neighbors, count the number of data points in each category
of class.

• Assign the new data point x to the category where the neighborhood count is maximum.

2.7. SMOTE Algorithm

SMOTE is a popular oversampling technique which creates new synthetic data points
rather than by oversampling with replacement or redundant samples of the minority class
data [9]. SMOTE algorithm is detailed below [12,14,20]:

• Choose K neighbors.
• The minority class is oversampled by taking the difference between each minority

class sample (feature vector) and its K nearest neighbors.
• Multiply this difference by a random weight between 0 and 1, and add it to the feature

vector. This causes the selection of a random point along the line-of-fit model between
the two specific features.

• Thus, the synthetic data points of minority class samples are created for the desired
well-balanced dataset.

3. Proposed Methodologies

Among several classifiers applied to the training phase of the dataset, it was experi-
mentally found that LR had excellent classification performance in detection of maximum
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non-drug conformations and GB classifier provided better detection of potential binding
drug candidate conformations compared to other classifiers from our previous work [21].
For classification purposes, we denote the non-drug molecular conformation samples that
have inactive binding to target proteins as belonging to class 0 and potential drug candidate
molecular conformations that have active binding to target proteins as class 1 samples.
Thus, this is a binary classification problem. We use this as a basis to design our com-
prehensive drug-candidate conformation detection system that leverages the detection of
both potential drug- and non-drug conformations for expedited clinical trials. This system
comprises of two stages:

• Methodology 1: This first stage is responsible for maximizing the detection of non-
drug conformations (class 0 samples) using an LR classifier.

• Methodology 2: The second stage comprises of a classification system using GB
classifier (GB) and KNN classifier (KNN). They are responsible for maximizing the
detection of potential binding drug candidate conformations/class 1 samples.

Two-Stage Sampling-Based Classifier Algorithm

• Initially, methodology 1 is applied to our original training data which inherently
has a biased population that consists of a large number inactive binding non-drug
conformations/class 0 samples. Both the identified class 0 and class 1 samples are
recorded as methodology 1 results.

• A new training dataset is obtained by random undersampling of class 0 samples
and oversampling of desired class 1 samples using the SMOTE algorithm. This
process tackles the class-imbalance problem and maximizes the detection rate of active
binding drug candidate conformations/class 1 samples. For consistency, the size of
new training dataset is kept the same as the size of original training dataset. Hence,
there is no increase in the data-learning time and the effect of overfitting is reduced
because of the SMOTE technique.

• Methodology 2 classification system is then applied to our new training dataset which
is biased with class 1 samples. We denote the corresponding technique of generating
a new balanced dataset using SMOTE followed by the methodology 2 classification
system as SMOTE-GB and SMOTE-KNN techniques. This step of methodology 2 clas-
sification is performed to reaffirm the active binding and inactive binding molecular
conformations that are identified by methodology 1 for a more robust drug-candidate
conformation detection system. Since methodology 2 has greater affinity towards
detection of potential active binding drug-candidate conformations, the new unique
class 1 samples identified are recorded in methodology 2 results.

• Finally, a decision fusion strategy via majority voting is implemented to uniquely iden-
tify the total number of potential active binding drug candidate- and inactive binding
non-drug molecular conformations acquired from methodology 1 and methodology
2 classification models. The corresponding decision fusion strategies are denoted by
LR+SMOTE-GB and LR+SMOTE-KNN techniques. Figure 1 depicts a flowchart of
the proposed two-stage tailored drug conformation classification system.

The motivation behind using methodology 1 is to identify the maximum number of
non-drug protein conformations, whereas methodology 2 is used to provide an additional
layer of security to reconfirm the potential-drug conformations identified by the methodol-
ogy 1 along with the identification of new potential-drug conformations through decision
fusion strategy. This form of two-stage tailored binary classification system ensures maxi-
mum detection of both potential drug candidate- and non-drug protein conformations at
each step. Consequently, it aims to reduce the failure rates incurred during the clinical trials
involved in the drug development process. The identified protein conformations can con-
sidered by the clinicians for informed decision-making to discard the non-drug candidate
protein conformations and retain only the potential drug-candidate protein conformations
for in vitro experimental approaches, thus reducing the substantial investment of resources



Molecules 2022, 27, 594 10 of 22

that include time, cost, and rigorous lab testing trials.

Figure 1. Flowchart of the proposed two-stage sampling-based classifier.

4. Results and Discussion
4.1. Datasets Description

In our initial experiments, several ML classifiers such as support vector machines
(SVMs), GB, LR, and KNN classifiers were explored. Most of them yielded a good classi-
fication performance with a high detection of non-drug conformations/TNs, but a very
low detection of drug candidate conformations/TPs. This was mainly because of the class
imbalance problem, due to which the performance of ML classification models was more
biased towards the majority class; (i.e., class 0 samples). This prompted us to design a
system specifically to tackle the class imbalance problem and maximize the detection of TPs
and TNs, and evaluate the performance of our proposed methods through the standard
classification metrics that adequately represent the model performance.
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4.2. Performance Evaluation

This section comprises of three test cases, namely, Case 1: Training set with biased
population of class 0 samples. Case 2: Training set with biased population of class 1
samples. Finally Case 3: Decision fusion strategy. The quantitative performance analysis of
the proposed classification techniques for each of the test cases are conducted using the
measures as defined below:

Classification Accuracy (Acc): The accuracy of a test is defined as the ability to differ-
entiate the “Active Binding” and “Inactive Binding” cases correctly. Mathematically, it
is given by

Classification Accuracy =
TP + TN

N
× 100

where
N = TP + TN + FP + FN

Sensitivity (Se): The sensitivity of a test is defined as the ability to determine the
“Active Binding” cases correctly. Mathematically, it is given by

Sensitivity =
TP

TP + FN

Specificity (Sp): The specificity of a test is defined as the ability to determine the
“Inactive Binding” cases correctly. Mathematically, it is given by

Specificity =
TN

TN + FP

Performance Evaluation using AUC-ROC Curve: ROC curve (or receiver operating
characteristic curve) is a plot that summarizes the performance of a binary classification
model on the positive class and the area under the curve (AUC) represents degree or
measure of separability. It measures the capability of the model to distinguish between
the classes. AUC can be calculated to give a single score for a classifier model across all
threshold values. Higher AUC represents better prediction or classification capabilities
of the model. The ROC curve is plotted with True Positive Rate (TPR) against the False
Positive Rate(FPR) where TPR is on y-axis and FPR is on the x-axis.

4.3. Computational Evaluation on the ADORA2A Dataset

Case 1: Training set biased population of class 0 samples: Table 2 gives the per-class
samples present in accordance with the various training sizes considered.

Table 2. Number of class 0 samples and class 1 samples in the original training dataset.

Training Class 0 Samples Class 1 Samples

Size Training Testing Training Testing

10 202 1945 97 753

20 413 1734 186 664

30 628 1519 271 579

From Table 3, it can be noted that LR identified 151 TPs from 579 samples of class 1 and
1313 TNs from 1519 samples of class 0 for a training size of 30%. Thus, the observed results
across all cases validate our argument that LR has the best classification performance for
detection of TNs or non-drug conformations.
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Table 3. Classification performance of Methodology 1-LR on the original training dataset.

Training Methodology 1 Classifier—LR

Size TP1 TN1 FN1 FP1 Acc Se Sp

10 222 1577 531 368 66.7 0.29 0.81

20 188 1449 476 285 68.2 0.28 0.83

30 151 1313 428 206 69.7 0.26 0.864

From Table 4, it can be seen that GB identified 279 TPs from 579 samples of class 1 and
1059 TNs from 1519 samples of class 0. Similarly, KNN identified 149 TPs from 579 samples
of class 1 and 1245 TNs from 1519 samples of class 0 for training size of 30%. Thus, it
can be noted that overall GB had the best classification performance in methodology 2
and gave better detection rates of TPs or potential drug candidate conformations over the
KNN classifier.

Table 4. Classification performance of Methodology 2—GB and KNN on the original training dataset.

Training Methodology 2—GB

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 463 1185 290 760 61.08 0.614 0.6

20 331 1165 333 569 62.3 0.49 0.67

30 279 1059 300 460 63.7 0.48 0.69

Training Methodology 2—KNN

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 224 1578 529 367 66.7 0.29 0.81

20 188 1424 476 310 67.2 0.28 0.82

30 149 1245 430 274 66.4 0.25 0.81

Case 2: New training set with biased population of class 1 samples: This case studies
the effects of induced class imbalance on the prediction rates of molecular conformations.
The goal here is to maximize the detection of TPs identified by methodology 2 via the
two stage sampling based approach in order to improve the model performance. For
this, we perform SMOTE oversampling of class 1 samples and undersampling of class
0 samples, such that the new training data size is consistent with the original training data
size. Methodology 2 is then employed for data-learning on the resultant new training set.
Table 5 gives the per-class distribution in the new training dataset. From Table 5 results, we
observe that the size of the new training dataset is the same as that of the original training
dataset. For instance, the original training dataset had 628 class 0 samples and 271 class
1 samples for training size of 30%. The new training dataset has the same number of class
0 samples = 271 and number of class 1 samples = 628 for 30% training size.

Table 5. Number of class 0 samples and class 1 samples in the new training dataset.

Training Class 0 Samples Class 1 Samples

Size Training Testing Training Testing

10 97 1945 202 753

20 186 1734 413 664

30 271 1519 628 579
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Table 6 describes the overall improved classification performance of the proposed
two-stage classification system and the effects of induced class imbalance of class 1 data
population. From Table 6, SMOTE-GB identified 384 TPs, which is more than the 279 TPs
identified using the original training dataset in Table 4 for training size of 30%. In particular,
the SMOTE-KNN classifier had the best methodology 2 classification performance, wherein
it identified 504 TPs, which is more than the 149 TPs identified using the original training
dataset in Table 4 for training size of 30%. The affable effects of induced class imbalance
are evident from the boost in classification performance of methodology 2 techniques. In
particular, the SMOTE-KNN technique works on the concept of nearest neighbor algorithm
and more induced neighbors via oversampling of class 1 samples implies better statistical
conclusion of the underlying population distribution of the potential drug candidate
conformations.

Table 6. Classification performance of SMOTE-GB and SMOTE-KNN on the new training dataset.

Training Methodology 2 Classifier—SMOTE-GB

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 479 1114 274 831 59.04 0.636 0.572

20 420 943 244 791 56.8 0.63 0.54

30 384 800 195 719 56.4 0.66 0.52

Training Methodology 2 Classifier—SMOTE-KNN

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 632 504 121 1441 42.1 0.839 0.25

20 592 408 72 408 41.7 0.89 0.23

30 504 373 75 1146 41.8 0.87 0.24

Table 7 describes the overall TPs and TNs reconfirmed and identified, including
the unique TPs identified by Methodology 2. For the training size of 30%, SMOTE-GB
reconfirmed on 134 TPs identified by methodology 1 apart from identifying 250 new
TPs. Thus, in total, it identified 384 TPs using the new training dataset. The SMOTE-
KNN classifier reconfirmed the 140 TPs identified by methodology 1 classifier aside from
identifying 364 new TPs. Thus, in total, 504 TPs were identified using the new training
dataset. Thereby, Table 7 further demonstrates the effectiveness of the proposed two-stage
sampling-based classification approach.

Table 7. Reconfirmation and identification of new TP by Methodology 2—SMOTE-GB and SMOTE-
KNN.

Training Methodology 2—SMOTE-GB

Size New TP2 New TN2 TP2 Reconfirmed

10 298 84 181

20 262 46 158

30 250 22 134

Training Methodology 2—SMOTE-KNN

Size New TP2 New TN2 TP2 Reconfirmed

10 427 28 205

20 413 26 179

30 364 11 140
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Case 3: Decision Fusion: This case explores a decision fusion strategy via a majority
voting scheme as a means to assimilate the classification conclusions from methodology
1—LR with the results from the methodology 2 system: SMOTE-GB and SMOTE-KNN
techniques to arrive at a global consensus of the overall identified molecular conformations
that possess active binding property. The quantitative performance of proposed decision
fusion method is determined in terms of the below measures:

Total accuracy =
TN1 + TP1 + New TN2 + New TP2

Ntest

where Ntest represents the total number of class 1 and class 0 samples in the test set.

Total TP accuracy (TPacc) =
TP1 + New TP2

N1
test

where N1
test represents the total number of class 1 samples in the test set.

Total TN accuracy (TNacc) =
TN1 + New TN2

N0
test

where N0
test represents the total number of class 0 samples in the test set.

Table 8 demonstrates the overall classification performance of the proposed decision
fusion case. From Table 8 and Figures 2–4, it can be inferred that the overall classification
performance of the proposed methods: LR+SMOTE-GB and LR+SMOTE-KNN techniques
were significantly superior to individual classification performance of LR, GB, and KNN
classifiers as given in Tables 3 and 4. From Figures 2–4, especially, LR+SMOTE-KNN had
excellent classification performance for identification of the molecular conformations for
protein ADORA2A in terms of overall classification accuracy and TP accuracy measures.

Table 8. Decision fusion of Methodology 1 and Methodology 2: LR+SMOTE-GB and LR+SMOTE-
KNN.

Decision Fusion: LR+SMOTE-GB

%Training Size Total Accuracy TPacc TNacc

10 80.8 69 85.3

20 81.1 67.7 86.2

30 82.7 69.2 87.8

Decision Fusion: LR+SMOTE-KNN

%Training Size Total Accuracy TPacc TNacc

10 83.5 86.1 82.5

20 86.5 90.5 85

30 87.6 88.9 87.1
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Figure 2. Plot of overall classification accuracies across varying training sizes for case 1, case 2, and
decision fusion for protein ADORA2A.

Figure 3. Plot of TP accuracies across varying training sizes for case 1, case 2, and decision fusion for
protein ADORA2A.

4.4. Computational Evaluation on the OPRK1 Dataset

Case 1: Training set biased population of class 0 samples: Table 9 gives the per-class
distribution in accordance with the various training sizes considered.

Table 9. Number of class 0 samples and class 1 samples in the original training dataset.

Training Class 0 Samples Class 1 Samples

Size Training Testing Training Testing

10 289 2573 10 127

20 574 2288 25 112

30 858 2004 41 96
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Figure 4. Plot of TN accuracies across varying training sizes for case 1, case 2, and decision fusion for
protein ADORA2A.

From Table 10, the observed results across all cases validate our argument that LR has
the best classification performance for detection of TNs or non-drug conformations due to
the class imbalance problem.

Table 10. Classification performance of Methodology 1-LR on the original training dataset.

Training Methodology1 Classifier—LR

Size TP1 TN1 FN1 FP1 Acc Se Sp

10 3 2531 124 42 93.8 0.02 0.98

20 1 2282 111 6 95.1 0 0.99

30 0 2001 96 3 95.2 0 0.99

From Table 11, it can be seen that GB identified 51 TPs from 96 samples of class 1 and
804 TNs from 2004 samples of class 0 for a training size of 30%. Similarly, KNN could not
identify any TPs from 96 samples of class 1 but identified 100% of TNs of class 0 samples for
a training size of 30% due to the class imbalance problem. Thus, it can be noted that overall
GB had the best classification performance as in Methodology 2 with better detection rates
of TPs or potential drug candidate conformations over the KNN classifier.

Case 2: New training set with biased population of class 1 samples: Table 12 gives
the per-class distribution in the new training dataset. From Table 12, it can be noted that
the size of new and original training datasets are the same. From Table 13, SMOTE-GB
identified 61 TPs and SMOTE-KNN identified 93 TPs, which is more than the TPs identified
using the original training dataset in Table 11 for the training size of 30%. The effects of
induced class imbalance are evident from the boost in classification performance of both of
the methodology 2 classifiers. From Table 14 for the training size of 30%, methodology 1
could not identify any TP, but methodology 2 classifiers—SMOTE-GB identified 61 new
TPs and the SMOTE-KNN classifier identified 93 new TPs.
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Table 11. Classification performance of Methodology 2—GB and KNN on the original training dataset.

Training Methodology 2- GB

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 27 1983 100 590 74.44 0.21 0.77

20 45 1186 67 1102 51.2 0.4 0.51

30 51 804 45 1200 40.7 0.5 0.40

Training Methodology 2- KNN

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 0 2573 127 0 95.2 0 1

20 0 2287 112 1 95.2 0 0.99

30 0 2004 96 0 95.4 0 1

Table 12. Number of class 0 samples and class 1 samples in the new training dataset.

Training Class 0 Samples Class 1 Samples

Size Training Testing Training Testing

10 41 2004 858 96

20 25 2288 574 112

30 41 2004 858 96

Table 13. Classification performance of SMOTE-GB and SMOTE-KNN on the new training dataset.

Training Methodology 2 Classifier—SMOTE-GB

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 59 1420 68 1153 54.7 0.46 0.55

20 81 498 31 1790 24.1 0.72 0.21

30 61 602 35 1402 31.5 0.63 0.30

Training Methodology 2 Classifier—SMOTE-KNN

Size TP2 TN2 FN2 FP2 Acc Se Sp

10 125 68 2 2505 7 0.98 0.02

20 109 60 3 2228 7 0.97 0.02

30 93 48 3 1956 6.7 0.96 0.02

Case 3: Decision Fusion: Table 15 demonstrates the overall classification performance
of the proposed decision fusion case. From Table 15 and Figures 5–7, LR+SMOTE-KNN
had excellent classification performance for identification of the molecular conformations
for protein OPRK1 in terms of overall classification accuracy and TP accuracy measures.
Therefore, it can be surmised that this work presents a new avenue that successfully
leverages the class imbalance problem to design a novel and effective drug conformation
detection system for efficient clinical trials in drug discovery application.
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Table 14. Reconfirmation and identification of new TP by Methodology 2—SMOTE-GB and SMOTE-
KNN.

Training Methodology 2—SMOTE-GB

Size New TP2 New TN2 TP2 Reconfirmed

10 56 13 3

20 80 0 1

30 61 2 0

Training Methodology 2—SMOTE-KNN

Size New TP2 New TN2 TP2 Reconfirmed

10 122 0 3

20 108 1 1

30 93 0 0

Performance evaluation using ROC curves, AUC, and F1 scores: To further quan-
titatively validate the efficacy of our proposed methodologies, statistical measures such
as ROC curves, F1, and AUC scores were computed. Figure 8 presents the ROC curves
and Table 16 gives the AUC scores and F1 scores for the proposed ML methodologies
for protein ADORA2A. It can be noted that the proposed LR+SMOTE-GB approach has
the best performance in terms of AUC score = 0.638, whereas the other proposed method
LR+SMOTE-KNN had better F1 score = 0.792 for protein ADORA2A. Similarly, Figure 9
illustrates the ROC curves for the proposed ML methodologies and Table 17 gives the
AUC scores obtained for protein OPRK1. It can be noted that both LR+SMOTE-GB and
LR+SMOTE-KNN had performed well and has the best area under the curve with an AUC
score of 0.475 and 0.470 respectively. Similarly, the proposed method LR+SMOTE-KNN
had the best F1 score = 0.968 than the LR+SMOTE-GB method with F1 score = 0.770. These
results corroborate our argument that it is highly beneficial to look into a comprehensive
drug discovery system that maximizes detection of both the potential drug and non-drug
protein conformations for efficient drug discovery process.

Table 15. Decision fusion of Methodology 1 and Methodology 2: LR+SMOTE-GB and LR+SMOTE-
KNN.

Decision Fusion: LR+SMOTE-GB

%Training Size Total Accuracy TPacc TNacc

10 96.4 46.4 98.8

20 98.4 72.3 99.7

30 98.2 63.5 99.9

Decision Fusion: LR+SMOTE-KNN

%Training Size Total Accuracy TPacc TNacc

10 98.3 98.4 98.3

20 99.6 97.3 99.7

30 99.7 96.8 99.8
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Figure 5. Plot of overall classification accuracies across varying training sizes for case 1, case 2, and
decision fusion for protein OPRK1.

Figure 6. Plot of TP accuracies across varying training sizes for case 1, case 2, and decision fusion for
protein OPRK1.

Table 16. AUC Score and F1 Score of the proposed ML methodologies for ADORA2A.

Proposed ML Methodologies AUC Score F1 Score

LR 0.649 0.323

SMOTE-GB 0.638 0.456

SMOTE-KNN 0.588 0.452

LR+SMOTE-GB 0.638 0.684

LR+SMOTE-KNN 0.590 0.792
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Figure 7. Plot of TN accuracies across varying training sizes for case 1, case 2, and decision fusion for
protein OPRK1.

Figure 8. Plot of ROC curve for ADORA2A protein for a training size of 30%

Table 17. AUC Score and F1 score of the proposed ML methodologies for OPRK1.

Proposed ML Methodologies AUC Score F1 Score

LR 0.496 0.030

SMOTE-GB 0.475 0.078

SMOTE-KNN 0.470 0.086

LR+SMOTE-GB 0.475 0.770

LR+SMOTE-KNN 0.470 0.968
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Figure 9. Plot of ROC curve for OPRK1 protein for a training size of 30%

5. Conclusions

In this paper, we introduced a novel two-stage sampling-based ML classification
techniques to overcome the class imbalance problem and maximize the prediction of
non-drug-binding and potential drug-binding molecular conformations for the target
proteins ADORA2A and OPRK1. The motivation of this work is to accelerate the drug
discovery process. Applied to novel protein targets, this approach will lead to reducing
of the failure rates in clinical trials for an efficient drug development process, as it will
allow for identifying the drug-binding conformations of frequent off-target proteins. It
was experimentally evaluated that the proposed decision fusion techniques: LR+SMOTE-
GB and LR+SMOTE-KNN demonstrated superior classification performance compared
to the individual classifier ML models: LR, GB, and KNN. In particular, LR+SMOTE-
KNN outperformed other methods and gave the maximum prediction rate of molecular
conformations for proteins ADORA2A and OPRK1 with a total accuracy of 87.6% and
99.7% for training size 30%. This work further highlights the need and advantages of ML
techniques to hasten the drug discovery process.

6. Future Scope

Random undersampling could lead to a high probability of important information
loss pertinent to non-drug molecular conformations. Hence, as a future endeavor, this work
will be a foundation for improved drug discovery system design that will preserve the
information present in both potential drug- and non-drug conformations.

Author Contributions: Conceptualization, V.S.A., V.M. and J.B.; methodology, V.S.A. and V.M.;
software, and validation, V.S.A. and V.M.; formal analysis, investigation, V.S.A., V.M., and J.B.;
resources,data curation, J.W. and J.B.; writing—original draft preparation, review and editing, V.S.A.,
V.M. and J.B.; visualization, V.S.A. and J.W.; supervision, V.M. and J.B.; project administration, V.M.
and J.B.; funding acquisition, V.M. All authors have read and agreed to the published version of
the manuscript.

Funding: Publication costs were supported by an Early Career Research Fellowship from the Gulf
Research Program of the National Academies of Sciences, Engineering, and Medicine.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Statistical and computational models used are fully detailed in the
main text. Data will be made available upon personal requests to authors.



Molecules 2022, 27, 594 22 of 22

Acknowledgments: This research work was supported by an Early Career Research Fellowship from
the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine for
supporting this work. DISCLAIMER: “The content is solely the responsibility of the authors and does
not necessarily represent the official views of the Gulf Research Program of the National Academies
of Sciences, Engineering, and Medicine”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Evangelista, W.; Weir, R.L.; Ellingson, S.R.; Harris, J.B.; Kapoor, K.; Smith, J.C.; Baudry, J. Ensemble-based docking: From hit

discovery to metabolism and toxicity predictions. Bioorg. Med. Chem. 2016, 24, 4928–4935. [CrossRef] [PubMed]
2. Amaro, R.E.; Baudry, J.; Chodera, J.; Demir, Ö; McCammon, J.A.; Miao, Y.; Smith, J.C. Ensemble Docking in Drug Discovery.

Biophys. J. 2018, 114, 2271–2278. [CrossRef] [PubMed]
3. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395.

[CrossRef] [PubMed]
4. Malmstrom, R.D.; Lee, C.T.; Van Wart, A.T.; Amaro, R.E. Application of molecular-dynamics based markov state models to

functional proteins. J. Chem. Theory Comput. 2014, 10, 2648–2657. [CrossRef] [PubMed]
5. Strecker, C.; Meyer, B. Plasticity of the binding site of renin: optimized selection of protein structures for ensemble docking.

J. Chem. Inf. Model. 2018, 58, 1121–1131. [CrossRef] [PubMed]
6. Ding, Y.; Tang, J.; Guo, F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. BMC

Bioinform. 2016, 17, 1–13. [CrossRef] [PubMed]
7. Abrams, C.; Bussi, G. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-

acceleration. Entropy 2014, 16, 163–199. [CrossRef]
8. Kozakov, D.; Li, K.; Hall, D.R.; Beglov, D.; Zheng, J.; Vakili, P.; Schueler-Furman, O.; Paschalidis, I.C.; Clore, G.M.; Vajda, S.

Encounter complexes and dimensionality reduction in protein–protein association. Elife 2014, 3, e01370. [CrossRef] [PubMed]
9. Liu, Y.; Yu, X.; Huang, J.X.; An A. Combining integrated sampling with SVM ensembles for learning from imbalanced datasets.

Inf. Process. Manag. 2011, 47, 617–631. [CrossRef]
10. Abd Elrahman, S.M.; Abraham, A. A review of class imbalance problem. J. Netw. Innov. Comput. 2013, 1, 332–340.
11. Ezzat, A.; Wu, M.; Li, X.L.; Kwoh, C.K. Drug-target interaction prediction via class imbalance-aware ensemble learning. Sens.

Imaging 2016, 17, 267–276. [CrossRef]
12. Hernandez, J.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. An empirical study of oversampling and undersampling for instance

selection methods on imbalance datasets. In Iberoamerican Congress on Pattern Recognition; Springer: Berlin/Heidelberg, Germany,
2013; pp. 262–269.

13. Shelke, M.S.; Deshmukh, P.R.; Shandilya, V.K. A review on imbalanced data handling using undersampling and oversampling
technique. Int. J. Recent Trends Eng. Res. 2017, 3, 444–449.

14. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

15. Chemical Computing Group. Molecular Operating Environment (MOE); 2019. Available online: https://www.chemcomp.com/
Products.htm (accessed on 20 December 2021).

16. Dale, J.B.; Smeesters, P.R.; Courtney, H.S.; Penfound, T.A.; Hohn, C.M.; Smith, J.C.; Baudry, J.Y. Structure-based design of broadly
protective group a streptococcal M protein-based vaccines. Vaccine 2017, 35, 19–26. [CrossRef] [PubMed]

17. Peng, C.Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14.
[CrossRef]

18. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. A non-parametric mixture of Gaussian naive Bayes classifiers based on local
independent features. In Proceedings of the 2017 Artificial Intelligence and Signal Processing Conference (AISP), Shiraz, Iran,
25–27 October 2017; pp. 209–212.

19. Sun, S.; Huang, R. An adaptive k-nearest neighbor algorithm. In Proceedings of the 2010 Seventh International Conference on
Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; Volume 1, pp. 91–94.

20. More, A. Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv 2016,
arXiv:1608.06048.

21. Akondi, V.S.; Menon, V.; Baudry, J.; Whittle, J. Novel K-means clustering-based undersampling and feature selection for drug
discovery applications. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San
Diego, CA, USA, 18–21 November 2019; pp. 2771–2778.

http://doi.org/10.1016/j.bmc.2016.07.064
http://www.ncbi.nlm.nih.gov/pubmed/27543390
http://dx.doi.org/10.1016/j.bpj.2018.02.038
http://www.ncbi.nlm.nih.gov/pubmed/29606412
http://dx.doi.org/10.1124/pr.112.007336
http://www.ncbi.nlm.nih.gov/pubmed/24381236
http://dx.doi.org/10.1021/ct5002363
http://www.ncbi.nlm.nih.gov/pubmed/25473382
http://dx.doi.org/10.1021/acs.jcim.8b00010
http://www.ncbi.nlm.nih.gov/pubmed/29683661
http://dx.doi.org/10.1186/s12859-016-1253-9
http://www.ncbi.nlm.nih.gov/pubmed/27677692
http://dx.doi.org/10.3390/e16010163
http://dx.doi.org/10.7554/eLife.01370
http://www.ncbi.nlm.nih.gov/pubmed/24714491
http://dx.doi.org/10.1016/j.ipm.2010.11.007
http://dx.doi.org/10.1186/s12859-016-1377-y
http://dx.doi.org/10.1613/jair.953
https://www.chemcomp.com/Products.htm
https://www.chemcomp.com/Products.htm
http://dx.doi.org/10.1016/j.vaccine.2016.11.065
http://www.ncbi.nlm.nih.gov/pubmed/27890396
http://dx.doi.org/10.1080/00220670209598786

	Introduction
	Background and Related Work
	Class Imbalance Problem
	Sampling Strategies
	Datasets Description
	Logistic Regression
	Gaussian Naive Bayes Classifier
	K-Nearest Neighbor Classifier
	SMOTE Algorithm

	Proposed Methodologies
	Results and Discussion
	Datasets Description
	Performance Evaluation
	Computational Evaluation on the ADORA2A Dataset
	Computational Evaluation on the OPRK1 Dataset

	Conclusions
	Future Scope
	References

