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INTRODUCTION

Silage is known as “canned grass” for ruminants, pro-
viding them with green fodder throughout the year; 
it can aid in preserving green plants and has been 
studied for almost 180 years as recorded (Wilkinson 
et al.,  2003). In conventional fermentation of silage, 
water-soluble carbohydrates (WSC) are primarily con-
verted to organic acid mixtures by epiphytic lactic acid 
bacteria (LAB); this lowers pH and preserves forage 
under anaerobic conditions (Broberg et al.,  2007). 
In order to further improve the fermentation quality, 
different silage LAB additives have been developed 
to improve the quality of silage fermentation and the 
effects of these LAB on silage fermentation, aero-
bic stability, and animal productivity have been well 

summarised (Kim et al., 2021; Muck et al., 2018; Shah 
et al., 2017, 2018). Lactic acid bacteria are involved in 
the preservation and fermentation of forage crops in 
inoculated silages.

Typically, the ensiling process of forage crops is 
dominated by LAB, and alterations in microbial com-
munities are closely related to silage fermentation 
(Figure 1; Driehuis et al., 2018). In addition, poorly fer-
mented or contaminated silage can serve as a source 
of pathogenic bacteria or other undesirable microbes 
(Driehuis et al., 2018; Queiroz et al., 2018). Lactic acid 
bacteria inoculants are widely used to ensure silage 
quality by improving the fermentation process and aer-
obic stability of silage. Numerous studies have demon-
strated that the application of LAB inoculants during 
ensiling could reduce silage pH and enhance silage 
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preservation (Muck et al., 2018). Thus, changes in si-
lage bacterial communities must be profiled to enhance 
our understanding of the contribution of LAB inocu-
lants to silage fermentation. Corroborating this notion, 
Bai et al. (2021) and Xu, Wang, et al. (2021) reported 
that LAB inoculants could modulate microbial commu-
nity dynamics and functional shifts during the ensiling 
process. Moreover, the complex metabolic pathways 
during ensiling are regulated by inoculants through the 
degradation of forage substrates and the transforma-
tion of metabolites (Xu, Wang, et al., 2021). The metab-
olites produced by LAB in silage directly affect silage 
fermentation quality; furthermore, the assessment of 
metabolites of ensiling systems can provide important 
information regarding nutritional value and fermen-
tation quality of the silage, and its impacts on animal 
health and welfare (Figure  1; Xu, Ding, et al.,  2019). 
With advances in technology, the roles of LAB in silage 
can be explored continuously through studies of the 
microbiome and metabolome.

Currently, research on silage LAB is driven by novel 
innovations to fulfil human requirements, such as food 
safety, feed nutritional value, health benefits, and even 
animal welfare (Queiroz et al., 2018). For instance, at 
the XVIII International Silage Conference, Wilkinson 
and Muck (2018) proposed some approaches to using 
LAB during ensiling to improve silage hygiene and sus-
tainably increase silage nutrient availability. Moreover, 
Leandro et al.  (2021) suggested the investigation of 

novel strains of LAB with specific functions from infre-
quently explored sources, which may reveal strains that 
are more promising in terms of probiotic potential and 
may be useful for industrial and animal health applica-
tions. In this context, research on functional LABs, also 
known as silage LABs with such properties, has ad-
vanced significantly over the past few years. Besides 
organic acid, LAB produces 1,2-propanediol, bac-
teriocins, 3-phenyllactic acid, aromatic compounds, 
exopolysaccharides, enzymes, and vitamins, as well 
as exhibit other properties, such as pesticide degrad-
ability and relatively high antioxidant activity (Broberg 
et al., 2007; Ding et al., 2017; Florou-Paneri et al., 2013; 
Leroy & De Vuyst,  2004; Mohammadi et al.,  2021). 
These LAB present at least one functional property, 
contributing in improving the fermentation process, en-
hance the silage quality, and increase the digestibility 
and safety of end silage to confer health benefits for 
both humans and other animals.

To this end, the present review discusses the im-
pacts of LAB on silage microbiome and metabolome, 
which further affect silage fermentation quality and 
aerobic stability. Furthermore, we summarise the novel 
functions of silage LAB by screening and focussing on 
recent literature pertaining to silage production and its 
potential impacts on animal health and productivity as 
well as animal product quality. Therefore, the present 
review offers novel insights into and sheds light on the 
roles of LAB in crop silage.

F I G U R E  1   Associations among lactic acid bacteria, silage, and animals.
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LACTIC ACID BACTERIA 
MODULATING MICROBIAL 
COMMUNITY STRUCTURE AND 
FUNCTION IN SILAGE

To uncover the structure and composition of microbial 
communities in fresh and ensiled forages, molecular 
technologies, such as denaturing gradient gel electro-
phoresis (DGGE), real-time PCR, ribosomal intergenic 
spacer analysis, and terminal restriction fragment length 
polymorphism (Brusetti et al., 2011; Li & Nishino, 2011; 
Pang et al., 2011; Stevenson et al., 2006), have been 
used over past decades. However, these techniques 
only displayed partial microorganisms that researchers 
aimed to detect. Next-generation sequencing (NGS) 
and PacBio single-molecule real-time sequencing 
technology (SMRT) offer high-throughput and enable 
the discovery of a vast majority of microbiota and rela-
tive abundances of various microbes in the community 
to the genus and species precision (Mayo et al., 2014; 
McAllister et al., 2018; Schloss et al., 2016). The pre-
sent section primarily focused on the roles of LAB in 
microbial communities in silages, as revealed by NGS 
and SMRT. Notwithstanding, many of the epiphytic mi-
crobiomes in forages before ensiling cannot be classi-
fied to the genus level.

Lactic acid bacteria modulating microbial 
communities in corn silage

Whole-plant corn silage is the predominant forage 
used in ruminant dairy ration worldwide and can be 
naturally fermented due to its high WSC content and 
sufficient epiphytic LAB abundance. Generally, most 
epiphytic bacteria of fresh whole-plant corn are unde-
sirable microorganisms, such as Xanthomonadaceae, 
Sphingobacteriaceae, Enterobacteriaceae, Mora­
xellaceae, and Meyerozyma, Acinetobacter, Klebsiella, 
Acremonium, Agrobacterium, Microbacterium, Chry­
seobacterium, Klebsiella, and Candida genus (da 
Silva et al.,  2020; Guan et al.,  2018; Guan, Shuai, 
Yan, et al.,  2020; Keshri et al.,  2018; Xu, Ding, 
et al., 2019; Xu, Wang, et al., 2021). Although there 
are great differences in the composition of epiphytic 
microbial communities in whole-plant corn silage, the 
constellation of the microbiome, which develops dur-
ing the ensilage process, differs markedly from that of 
the epiphytic one (Gharechahi et al., 2017); as such, 
the relative abundance of LAB often increases after 
ensiling, and they dominate silage fermentation at the 
later stages. NGS analysis revealed that corn silage 
is mainly dominated by the LAB genera Lactobacilli, 
Leuconostoc, Pediococcus, and Weissella at the 
initial stage of ensiling (Guan et al.,  2018; Wang, 
Gao, et al., 2021; Zhang, Liu, et al., 2020); however, 

Lactobacilli becomes dominant bacteria at the later 
stages (Gharechahi et al., 2017; Sun, Bai, et al., 2021; 
Wang, Franco, et al., 2020).

Recent studies have investigated differences in 
the microbial communities of various LAB-inoculated 
versus untreated corn silages using SMRT. For in-
stance, Xu, Yang, et al.  (2019) found that the addi-
tion of Lactobacillus (Lentilactobacillus) buchneri 
combined with Saccharomyces cerevisiae did not 
affect total yeast, bacterial, and fungal communi-
ties in corn silage during ensiling and aerobic expo-
sure. Meanwhile, the abundance of Lactobacilli in 
silages treated with Lactobacillus acidophilus and 
Lactobacillus (Lactiplantibacillus) plantarum was high 
after 45 and 90 days of ensiling (Jiang et al.,  2020). 
Guan, Shuai, Yan, et al.  (2020) found that inoculat-
ing Lactobacillus (Ligilactobacillus) salivarius 358 and 
Lactobacillus (Lacticaseibacillus) rhamnosus 753 in 
corn silage at 30°C affected bacterial communities 
throughout the ensiling process, resulting in a gradual 
shift in dominant bacterial genera from Pediococcus 
and Lactobacilli to just Lactobacilli. In addition, the 
Lactobacillus (Lactiplantibacillus) plantarum inocu-
lant primarily modulated the bacterial communities 
at the early and middle stages of ensiling, while the 
Lactobacillus (Lentilactobacillus) buchneri inoculant 
modulated the bacterial communities at the late stages 
(Bai et al.,  2021; Xu, Wang, et al.,  2021). Moreover, 
the inoculants modulated the keystone species of LAB 
(independent of abundance) that affect the silage fer-
mentation process. For instance, Lentilactobacillus 
buchneri, Lentilactobacillus parafarraginis (formerly 
Lactobacillus parafarraginis), and Levilactobacillus 
hammesii (formerly Lactobacillus hammesii) in un-
treated corn silage, Limosilactobacillus panis (formerly 
Lactobacillus panis) in Lactobacillus (Lentilactobacillus) 
buchneri-treated silage, and Companilactobacillus 
crustorum (formerly Lactobacillus crustorum) in 
Lactobacillus (Lactiplantibacillus) plantarum-treated 
silage were considered keystone taxa, which play 
crucial roles in the relevant LAB treatments of 
whole-plant corn silages (Xu, Wang, et al.,  2021). 
Moreover, inoculants modified the interaction  
between fermentation quality and microorganisms. For 
instance, Lactobacillus acetotolerans in uninoculated 
silage, Secundilactobacillus odoratitofui (formerly 
Lactobacillus odoratitofui) and Limosilactobacillus 
panis in Lactobacillus (Lentilactobacillus) buchneri-
inoculated silage, and Lentilactobacillus parafarraginis  
and Lentilactobacillus kefiri (formerly Lactobacillus 
kefiri) in Lactobacillus (Lactiplantibacillus) plantarum-
inoculated silage were positively correlated with fer-
mentation quality (Xu, Wang, et al., 2021). Furthermore, 
silages with improved fermentation quality following 
inoculant treatment exhibited simplified bacterial cor-
relation structures (Bai et al., 2021).
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Lactic acid bacteria modulating microbial 
communities in alfalfa silage

According to McAllister et al. (2018), microbial popula-
tions associated with alfalfa silages are more diverse 
than those associated with cereal silages; this results 
in the growth of undesirable microbes during ensiling 
and deterioration of fermentation quality. With advances 
in sequencing technology, studies have found that the 
composition of epiphytic microorganisms on the surface 
of fresh alfalfa is rather diverse due to differences in 
raw material varieties as well as harvesting areas and 
time; however, most of the epiphytic microorganisms 
are mainly undesirable bacteria, and the key species of 
LAB involved in silage fermentation account for only a 
small percentage (Guo et al., 2018; Hu et al., 2020; Yang 
et al., 2019, 2020). Undesirable microorganisms on the 
alfalfa surface before ensiling mainly include Pantoea, 
Streptococcus, Enterobacter, Bacillus, Pseudomonas, 
Exiguobacterium, Massilla, Planococcus, Sphingobium, 
Acinetobacter, and Clostridium (Bai et al., 2021). When 
fermentation is initiated, the dominant flora changes 
rapidly, and the community composition is completely 
altered from undesirable bacteria to LAB that domi-
nate silage fermentation. Lactic acid bacteria that 
dominate alfalfa silage fermentation primarily include 
Lactiplantibacillus and Lentilactobacillus (formerly 
Lactobacillus), Weissella, Lactococcus, Enterococcus, 
and Pediococcus species (Guo et al., 2018; Hu et al., 
2020; Yang et al., 2019, 2020).

The inoculation of LAB remarkably affects the com-
position and succession of microbial communities during 
the ensiling process of alfalfa silage. Lactobacillus 
(Lactiplantibacillus) plantarum is a common LAB addi-
tive to alfalfa silage. Moreover, when alfalfa was inocu-
lated with Lactobacillus (Lactiplantibacillus) plantarum, 
Lactobacilli was the dominant bacterium associated 
with the fermentation of alfalfa silage (Yang et al., 2020). 
Even in high-moisture alfalfa silage, the inoculation of 
Lactobacillus (Lactiplantibacillus) plantarum increased 
the abundance of Lactobacilli and inhibited the growth 
of Clostridium (Yang et al.,  2020; Zheng et al.,  2017). 
A strain of Lactobacillus (Lactiplantibacillus) planta­
rum isolated from rumen fluid and dairy cow faeces 
could increase the relative abundance of Lactobacilli 
in alfalfa silage (Guo et al.,  2020). Interestingly, when 
alfalfa silage was inoculated with Pediococcus pento­
saceus or Lactobacillus (Lactiplantibacillus) plantarum, 
Lactobacillus (Lactiplantibacillus) plantarum decreased 
the relative abundance of Pediococcus pentosaceus, 
while Pediococcus pentosaceus promoted the growth of 
Lactiplantibacillus plantarum during the ensiling process. 
Furthermore, it was reported that different LAB inoculants 
altered the keystone taxa of alfalfa silage, further affecting 
microbiota structure and silage quality. Meanwhile, high-
fermentation quality silage inoculated with LAB showed 
simplified bacterial correlation structures (Bai et al., 2021).

Lactic acid bacteria modulating microbial 
communities in grass silage

In addition to whole-plant corn and alfalfa silages, 
grass silages prepared from barley, ryegrass, oat, and 
other grasses are commonly used as ruminant feed 
worldwide. The ensiling characteristics of grasses dif-
fer from those of legumes (e.g. alfalfa) or whole-plant 
corn. Thus, the microbial composition and changes in 
grass silages are rather different from those in corn 
and alfalfa silages throughout the ensiling process. In 
addition, inoculants evidently affect the composition of 
microbial communities in grass silages.

Barley silage

Barley (Hordeum vulgare) is tolerant to diverse 
growth conditions and is widely cultivated worldwide. 
Owing to its excellent nutritional quality and high pal-
atability, barley is mostly used as animal feed in the 
form of silage (Newton et al.,  2011). Barley is rela-
tively easy to ensile because of its low buffering ca-
pacity and abundant fermentable carbohydrates. 
Furthermore, LABs are often used to improve the 
aerobic stability of barley silage. Liu et al. (2019, 2020) 
reported that in barley silage, Lactobacilli inoculants 
(including Lactobacillus (Lactiplantibacillus) plan­
tarum, Lactobacillus (Lacticaseibacillus) casei, and 
Lactobacillus (Lentilactobacillus) buchneri) decreased 
the diversity of bacterial communities during ensiling, 
while aerobic exposure increased the diversity of fun-
gal communities. Spontaneous barley silages were 
dominated by Lactobacilli, Weissella, and Pediococcus 
species. The addition of Lactobacilli inoculants in-
creased the abundance of Lactobacilli but decreased 
the abundance of Pediococcus and Weissella dur-
ing ensiling, while aerobic exposure decreased the 
abundance of Acinetobacter and Empedobacter (Liu 
et al., 2019, 2020). Moreover, the addition of inoculants 
combined with molasses decreased the abundance of 
Acinetobacter and Enterococcus in barley silage follow-
ing aerobic exposure of 5 and 7 days (Liu et al., 2020).

Ryegrass silage

Ryegrass is the principal grass used to produce silage in 
temperate regions. Annual ryegrass silage is dominated 
by Lactobacilli and Pediococcus species. Meanwhile, 
the inoculation of Lactobacillus (Lactiplantibacillus) plan­
tarum plus Lactobacillus (Lentilactobacillus buchneri) in-
oculants increased the abundance of Sporolactobacillus 
but decreased the abundance of Lactobacilli and 
Pediococcus (Li, Zhang, et al., 2019). Epiphytic bacteria 
in Italian ryegrass include Psychrobacter, Lactococcus, 
Lactobacilli, Pseudomonas, and Camobacterium 
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species (Wang, Sun, et al.,  2020; Yan et al.,  2019). 
Lactobacilli, Lactococcus, and Enterococcus species are 
the dominant bacteria in spontaneous Italian ryegrass 
silage. Following the inoculation of Lactobacillus 
(Lactiplantibacillus) plantarum 694 or commercial 
Lactobacillus (Lactiplantibacillus) plantarum, bacterial 
diversity decreased, and Lactiplantibacillus plantarum 
became the dominant species (Yan et al., 2019). Wang, 
Shao, et al. (2022) investigated the effect of epiphytic mi-
crobiota from alfalfa and red clover on the composition 
of bacterial communities in Italian ryegrass silage and 
found that Lactobacilli was the dominant genus on days 
3 and 60 of ensiling. Furthermore, Parvin et al.  (2010) 
showed that the inoculation of LAB, such as Lactobacillus 
(Lactiplantibacillus) plantarum and Lactobacillus 
(Levilactobacillus) brevis, nearly eliminated indigenous 
bacterial communities in wilted Italian ryegrass silage, 
leaving the inoculated species as the dominant bacteria.

Oat silage

Oat (Avena sativa L.) is distributed in over 40 countries 
worldwide, being primarily concentrated in northern 
regions at approximately 40° north latitudes, including 
Asia, Europe, and North America. Oat silage is an ideal 
feed for providing energy to livestock in cold regions. 
Through high-throughput sequencing analysis, epiphytic 
microorganisms of fresh oat were found to mainly include 
Pantoea, Pseudomonas, Sphingomonas, Clostridium, 
Anaerotruncus, and Lactobacilli (Chen et al.,  2020; 
Cheng, Chen, Chen, & Chen,  2021). After ensiling, 
the microbial composition was completely altered, and 
LAB became the dominant bacteria. According to Chen 
et al.  (2020), the dominant bacteria of oat silage were 
Lactobacilli and Leuconostoc after 30, 60, and 90 days 
of ensiling. In addition, the effects of LAB inoculants on 
oat silage were evident. Inoculation with Lactobacillus 
(Lactiplantibacillus) plantarum decreased the bacte-
rial diversity and increased the relative abundance of 
Lactobacilli in oat silage after ensiling (Cheng, Chen, 
Chen, & Chen, 2021; Xiong et al., 2022). Temperature 
strongly affects the composition of microbial communi-
ties in oat silage. Enterococcus was the only dominant 
bacteria in oat silage when stored at 5°C after 60 days 
of ensiling. The relative abundance of Lactobacilli in-
creased and that of Enterococcus decreased with an 
increase in storage temperature (Li, Chen, et al., 2021).

Leymus chinensis silage

Leymus chinensis is a native cool-season perennial 
grass, which is primarily distributed throughout temper-
ate northern Asia (Zhang & Yu, 2017). As a major for-
age source, Leymus chinensis has been used for silage 
production in meadows and typical steppes of Inner 

Mongolia in Northern China (Zhang et al., 2016). The 
microflora of fresh Leymus chinensis mainly includes 
Pantoea, Escherichia, Kosakonia, Enterobacter, and 
Atlantibacter, while Enterobacteriaceae dominate the 
bacterial community in spontaneous Leymus chinensis 
silage (Xu, Sun, et al., 2021).

In LAB-treated (including Lactobacillus (Lactiplan­
tibacillus) plantarum and Lactobacillus (Lacticasei­
bacillus) casei) Leymus chinensis silage, Lactobacilli 
was the most prevalent bacterial genus (>97%); its 
abundance negatively correlated with that of the 
other major genera (such as Pantoea, Escherichia, 
Atlantibacter, Kosakonia, and Enterobacter) and with 
pH, but positively correlated with concentrations of 
lactic and acetic acid (Xu, Sun, et al.,  2021). Zhang 
et al.  (2016) also reported that high-quality Leymus 
chinensis silage could be obtained with the addition of 
LAB strains during ensiling.

Lactic acid bacteria modulating microbial 
communities in tropical silage

Silage preparation requires special consideration due 
to the peculiar climatic circumstances in tropical areas. 
Clostridium in tropical grass silages prefer humid en-
vironments to effectively inhibit the reduction in pH 
and lead to spoilage of silage. In addition, under warm 
conditions, silages are vulnerable to aerobic spoilage. 
These attributes are mainly affected by epiphytic mi-
crobial communities in tropical forages.

Tropical legume silage

Stylo and alfalfa are critical legume forages for ruminants 
and are widely cultivated in tropical and subtropical re-
gions. However, a lower concentration of WSC in legumes 
renders the preparation of high-quality silage challenging 
(Li et al., 2017). Exiguobacterium was the dominant bac-
teria in tropical stylo and alfalfa before ensiling, whereas 
Exiguobacterium, Lactobacilli, and Enterobacter were 
abundant in spontaneous alfalfa silage (Wang, He, 
Xing, Zhou, Yang, et al., 2019). Zou et al.  (2021) found 
that Cronobacter, Methylobacterium, and Enterococcus 
were the predominated genera in naturally fermented 
stylo silage, whereas Zi et al. (2022) reported Weissella, 
Enterobacter, and Pantoea dominate bacterial communi-
ties in untreated stylo silage. Inoculation of Lactobacillus 
(Lactiplantibacillus) plantarum increased the abundance 
of Lactobacilli to promote stylo ensiling (Chen et al., 2021).

Tropical grass silage

Corn silage is the most common energy source for 
dairy cows in tropical regions (de Oliveira et al., 2017), 
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although the fermentation quality is usually poorer 
than that in cool or temperate regions (Bernardes 
et al., 2018). However, many studies have focused on 
the effects of chemical or LAB inoculants on fermen-
tation quality and aerobic stability; few have focused 
on microbial communities in corn silage under tropi-
cal climate conditions using NGS or SMRT. Hisham 
et al. (2022) reported that Pseudomonas, Leuconostoc, 
and Weissella were the major epiphytic bacteria of 
sweet corn silage, with Lactobacilli becoming the domi-
nant genus after ensiling.

Napier grass is an important tropical grass used as 
animal feed because of its high biomass production 
and wide adaptability. Acinetobacter, Pseudomonas, 
Lactococcus, Mrakiella, and Hannaella were the dom-
inant bacteria in Napier grass cultivated in Chongqing, 
China, while Lactobacilli, Sphingomonas, and Methylo­
bacterium were the predominant bacteria in Napier 
grass cultivated in Guangzhou, China (Wang, Li, 
et al., 2022). In addition, Weissella and Pantoea were 
the dominant genera in Napier grass in Malaysia 
(Hisham et al.,  2022). Interestingly, Weissella and 
Lactobacilli were the dominant genera in Napier grass 
silages from different regions, and LAB inoculants or 
wilting treatments regulated the structure of microbial 
communities (Hisham et al., 2022; Yin et al., 2021; Zi 
et al., 2021).

Sugarcane is a competitive forage with high bio-
mass yield and nutritive value (Daniel et al.,  2017). 
Muraro et al.  (2021) reported that Leuconostoc and 
Pseudomonas were the dominant bacteria in fresh sug-
arcane, while many undesirable microorganisms were 
dominant during the ensiling process, with Lactobacilli 
accounting for <10% of all bacteria in silage. However, 
Leuconostoc was the dominant bacteria in sugarcane 
top silages during the early-to-middle (2–30 days) 
stages of ensiling, and Lactobacilli was dominant at the 
late stages (60–90 days) (Ren et al., 2019; Wang, Teng, 
et al., 2020); Lactic acid bacteria inoculants increased 
the abundance of Lactobacilli.

Tropical woody silage

Tropical woody plants have recently been explored as 
novel sources of fodder for ruminants (Du, Sun, Lin, 
et al., 2021; Wang, Cao, et al., 2021; Wang, He, Xing, 
Zhou, Pian, Yang, et al., 2019). Mulberry has been used 
as feed for ruminants and non-ruminants because of 
its high energy, crude protein content, and digest-
ibility (González-García & Martín-Martín, 2017; Kabi & 
Bareeba, 2008). Chen et al. (2021) reported that most 
of the epiphytic microorganisms of mulberry leaf silage 
were unclassified, with Methylobacterium accounting for 
5% of all bacteria. Following fermentation, silages from 
Sichuan, China, were dominated by Lactobacilli, while 
those from Guangdong were dominated by Kosakonia 

and Lachnoclostridium; gallic acid and Lactobacillus 
(Lactiplantibacillus) plantarum inoculation promoted 
the growth of Lactobacilli and Weissella during ensil-
ing (Chen et al.,  2021; Li, Chen, et al.,  2022; Wang, 
Teng, et al., 2020). In addition, Li, Chen, et al.  (2022) 
investigated microbial communities of mulberry silage 
from Guangdong, China, and found that mulberry si-
lage was dominated by Lactobacilli species (96%), 
particularly dominated by Lactobacillus acetotolerans, 
Levilactobacillus hammesii, Companilactobacillus 
farciminis (formerly Lactobacillus farciminis), and 
Lentilactobacillus buchneri.

Moringa oleifera Lam. (MOL) is widely distributed 
almost worldwide, and its leaves are rich in vitamins, 
phenolics, fatty acids, and amino acids (Guillén-
Román et al., 2018). MOL has been proven to improve 
animal feed utilisation, productivity, and health (Kholif 
et al., 2018). MOL silage has been exploited as a novel 
functional feed for ruminants. Regarding microbial 
communities in MOL before or after ensiling, Wang, 
He, Xing, Zheng, Zhou, et al. (2019), Wang, He, Xing, 
Zhou, Pian, et al.  (2019) reported that Lactobacilli, 
Enterobacter, and Xanthomonas were the domi-
nant genera in fresh MOL, while Lactobacilli became 
dominant during the ensiling process (Tian, Wang, 
et al., 2021; Wang, He, Xing, Zheng, Zhou, et al. 2019; 
Wang, He, Xing, Zhou, Pian, et al. 2019); Lactic acid 
bacteria inoculants promoted MOL fermentation by 
Lactobacilli. However, Wang et al. (2018) reported that 
Exiguobacterium, Acinetobacter, and Pseudomonas 
were the most abundant bacterial genera in MOL, both 
before and after fermentation, and that Lactobacillus 
(Lactiplantibacillus) plantarum inoculation did not affect 
microbial community composition. In addition, adding 
MOL could enhance fermentation quality by decreasing 
the abundance of Clostridium and Enterobacter and in-
creasing the abundance of Lactobacilli in alfalfa, stylo, 
and rice straw silages (He, Lv, et al., 2020; He, Zhou, 
et al., 2020; Wang, He, Xing, Zhou, Yang, et al., 2019).

As a nutrient-rich woody plant, paper mulberry 
(Broussonetia papyrifera L.) has also been used as 
a novel forage source to cope with the challenges of 
feed shortage and rapid development of the livestock 
industry in the tropics (Du, Sun, Chen, et al.,  2021; 
Zhang et al.,  2019). Studies have shown that mi-
crobial diversity was higher in fresh paper mulberry 
than in silages (Du, Sun, Chen, et al., 2021). Silage 
fermentation resulted in a dynamic shift in domi-
nant bacteria from gram-negative to gram-positive 
strains; for instance, lactic acid bacteria became 
the most dominant genera and species that affected 
fermentation quality in terminal silages (Du, Sun, 
Chen, et al., 2021). Enterobacter, Enterococcus, and 
Lactobacilli were identified as the major drivers of 
fermentation in spontaneous whole-plant paper mul-
berry silages (Cheng, Chen, Bai, et al.,  2021; Hao 
et al., 2022), while Lactobacilli was a dominant genus 
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in LAB (including Lactobacillus (Lacticaseibacillus) 
rhamnosus, Lactobacillus (Lentilactobacillus) buch­
neri, and their combination) treatments (Cheng, Chen, 
Bai, et al., 2021; Sun et al., 2022). Guo et al. (2021) 
reported that wilting reduced the abundance of 
Enterobacter whereas increased the abundance of 
Lactobacilli in paper mulberry silage; they further 
detected Lacticaseibacillus rhamnosus after wilting, 
which showed a positive correlation with lactic acid 
content of silage.

Lactic acid bacteria modulating microbial 
community functions in silage

Investigation of functional shifts based on the functional 
predictions of the microbiome has allowed us to evalu-
ate the metabolic pathways of microbial communities 
during ensiling. The major pathways closely related to 
silage fermentation include amino acid, carbohydrate, 
nucleotide, and energy metabolisms (Bai et al., 2022; 
Hisham et al.,  2022; Liu et al.,  2019, 2020; Wang, 
Shao, et al.,  2022; Xu, Wang, et al.,  2021). Amino 
acids and their utilisation play physiological roles of 
LAB, such as energy regulation and resistance to en-
vironment stress (Fernandez & Zuniga,  2006). Using 
KEGG pathway analysis, the fermentation process was 
separated into three phases based on bacterial meta-
bolic pathways (Figure 2; 0–3 days was the I phase of 
fermentation; 3–14 days was the II phase of fermen-
tation; 14–60 days was the III phase of fermentation) 
(Bai et al., 2022). During the initial 14 days of ensiling, 
functional genes-related nucleotide and carbohydrate 
metabolisms were rapidly upregulated, while those 
related to energy and amino acid metabolisms were 
rapidly downregulated, with day 3 being the intersec-
tion. After 14 days of ensiling, functional genes related 
to nucleotide and carbohydrate metabolisms tended 
to be downregulated, while those related to energy 

and amino acid metabolisms continued to be upregu-
lated. Lactobacillus (Lactiplantibacillus) plantarum and 
Lactobacillus (Lentilactobacillus) buchneri enhanced 
the ensiling process by upregulating carbohydrate me-
tabolism (Bai et al., 2022; Xu, Wang, et al., 2021). In ad-
dition, the bacterial community function was evidently 
affected by the storage temperature (Bai et al., 2022). 
However, the effects of inoculants or their combina-
tion on carbohydrate metabolism in alfalfa silages 
were different. In particular, the relative abundance 
of carbohydrate metabolism genes was relatively 
high on days 1, 3, and 14 of ensiling in Lactobacillus 
(Lactiplantibacillus) plantarum plus Pediococcus 
pentosaceus-treated silage and on day 60 of ensiling 
in Lactobacillus (Lactiplantibacillus) plantarum plus 
Pediococcus pentosaceus and Enterococcus faecalis-
inoculated alfalfa silage (Bai et al.,  2021). In a study 
on metabolic pathways during the ensiling process and 
after air exposure, lactic acid bacteria were found to 
alter the metabolic pathways in barley; the LAB inocu-
lants enhanced fructose and mannose metabolism, 
pyruvate metabolism, pentose phosphate and glycoly-
sis pathways, amino acid metabolism pathways of ala-
nine aspartate and glutamate, and energy pathways of 
methane metabolism on day 5 of aerobic exposure (Liu 
et al., 2019). In addition, during the aerobic stage of bar-
ley silage, inoculants mixed with molasses enhanced 
the metabolism of starch, sucrose, and glycolysis, as 
well as amino acid (alanine aspartate and glutamate 
metabolism, pyruvate metabolism, and amino sugar 
and nucleotide sugar metabolism) (Liu et al., 2020).

Ensiling is characterised by the transformation of 
carbohydrates to organic acids. The dominant LAB in 
ensiling can metabolise monosaccharides (glucose, ga-
lactose, xylose, and fructose) and some disaccharides 
(sucrose and maltose) in forages (Pahlow et al., 2003). 
The efficiency of polysaccharide degradation largely af-
fects the fermentation process and final quality of silage. 
However, with very few exceptions, LAB is unable to fer-
ment biomass like starchy or lignocellulosic feedstocks 
(Tarraran & Mazzoli, 2018). You et al. (2022) predicted 
the presence of carbohydrate-active enzyme (CAZyme) 
genes in the alfalfa silage microbiome and found that 
LAB in silage presented the highest abundance of glu-
coside hydrolases, with Latilactobacillus curvatus (for-
merly Lactobacillus curvatus), Levilactobacillus brevis, 
and Lactiplantibacillus plantarum and Weissella (e.g. 
Weissella cibaria, Weissella hellenica, and Weissella 
kandleri) carrying a higher number of CAZyme genes 
for degrading starch, arabinoxylan, and cellulose. In 
addition, silage bacteria have been found to contain 
the crucial enzymes oligosaccharide depolymerising 
β-xylosidases and endoacting-b-1,4-arabinoxylanases 
(Peng et al.,  2016). This suggests that these species 
have the ability to break down starch, cellulose, and 
hemicellulose if starch, arabinoxylan and cellulose are 
degraded to hexoses or pentoses, which are homo- or 

F I G U R E  2   Dynamics of nucleotide, carbohydrate, amino 
acid, and energy metabolisms in whole-plant corn silage; the 
fermentation process (0–60 days) could be separated into three 
phases, 0–3 days was the I phase of fermentation; 3–14 days was 
the the II phase of fermentation; 14–60 days was the III phase of 
fermentation.
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hetero-fermented by LAB to produce lactate, acetate, 
and ethanol (Figure 3; Gänzle, 2015; You et al., 2022). 
Although such predictions of functional pathways have 
offered information on functional shifts in microbial 
communities during ensiling, the precise details or 
mechanisms underlying these changes mediated by 
LAB inoculation remain unclear and warrant further re-
search in the future.

ROLES OF FUNCTIONAL LAB IN 
SILAGE PREPARATION

In general, inoculants are selected for their ability to 
rapidly lower silage pH through the fermentation of 
WSC to lactic acids, which further inhibits proteolytic 
activity and preserves nutrients. At present, attempts 
are underway to design inoculants (functional inocu-
lants) that not only improve silage quality but also posi-
tively affect animal health, production, stress tolerance 
and enhance silage intake and digestibility. Some stud-
ies have demonstrated that inoculated silages indi-
rectly increased the milk production of cows compared 
with non-inoculated silages (Mayne,  1990; Meeske 
et al., 2002); however, the underlying mechanisms re-
main unclear. In this section, we introduce progress 
related to several attractive functional inoculants of 
silage. These inoculants positively affect silage safety 
while maintaining fermentation quality and decreasing 

pH. Moreover, these inoculants improve animal perfor-
mance, increase feed intake and digestibility, and even 
enhance animal product quality (Figure 4).

Feruloyl esterase-producing LAB

The utilisation of dietary fibre fractions by ruminants 
depends on the ability of rumen microorganisms to pro-
duce cellulase and hydrolyse plant cell walls. However, 
the utilisation of feed with high dry matter (DM) and fibre 
content is generally inefficient (Badhan et al.,  2018). 
Exogenous fibrolytic enzymes are applied as rumi-
nant nutrients to alleviate this problem, particularly 
on ensiled materials, to improve feed utilisation. This 
strategy could indeed improve substrate availability in 
ensiled forages, ultimately increasing animal perfor-
mance, in addition to the lactic acid concentration and 
nutritive quality of silage (Adesogan et al.,  2014; Arif 
et al., 2019). They can be prepared using either a single 
enzyme group; combination of various enzyme groups, 
such as hemicellulases, cellulases, amylases, pecti-
nases, and proteases; or combination of enzymes and 
bacterial inoculant. However, most of the enzyme addi-
tives available on the market are primarily composed of 
cellulases and hemicellulases, and their activity is lim-
ited to the corresponding cell wall fractions (Weinberg 
et al., 2007). None of these commercial additives con-
tains enzymes that act on the lignin fraction of fibres. 

F I G U R E  3   Schematic diagram showing simplified fermentation pathways of plant carbohydrate degradation; homofermentative 
metabolism of hexoses via the Emden–Meyerhoff pathway; heterofermentative metabolism of hexoses via the phosphoketolase pathway; 
homofermentative metabolism of pentoses via the pentose phosphate pathway; and heterofermentative metabolism of pentoses via the 
phosphoketolase pathway.
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Lignocellulose in plants is composed of cellulose, 
hemicellulose, lignin, and other components, which are 
cross-linked via feruloyl ester bonds (Yu et al., 2005). 
The feruloyl ester bonds between lignin and hemicel-
lulose act as a physical barrier to microbial invasion, 
rendering the hydrolysis of lignocellulose by microbial 
enzymes difficult during ensiling and rumen fermen-
tation (Aboagye et al., 2015; de Oliveira et al., 2015). 
Thus, to prepare high-quality silage with strong digesti-
bility, degradation of the plant cell wall during ensiling is 
essential; this can be achieved by supplementing vari-
ous biological additives that can effectively degrade the 
lignocellulosic structure of forages.

In recent years, extensive research has elucidated 
the positive effects of carboxylesterase on degrading 
feruloyl ester linkages and modifying the matrix struc-
ture of forage lignocellulose (Addah et al., 2012; Nsereko 
et al., 2008). Studies have shown that inoculation with 
feruloyl esterase-producing LAB during ensiling pro-
moted forage lignocellulose degradation with a concom-
itant increase in silage-free ferulic acid concentration (Li, 
Ding, et al., 2021; Li, Ke, et al., 2020). In addition, break-
age of the link between lignin and cell wall carbohydrates 
facilitated further degradation of forage in the rumen. Li, 
Ding, et al. (2019); Liu et al. (2020) and Usman et al. (2022) 
have confirmed the positive effects of feruloyl esterase-
producing Lactobacillus (Lactiplantibacillus) plantarum 
A1 on silage enzymatic digestibility in vitro. Moreover, 
Kang et al. (2009) and Jin et al. (2015) have reported im-
provement in the DM and neutral detergent fibre (NDF) 

digestibility of silages treated with feruloyl esterase-
producing Lactobacillus (Lentilactobacillus) buchneri 
in situ. Furthermore, animal trials have revealed that in 
addition to improving silage fermentation and digestion, 
feruloyl esterase-producing bacteria enhanced the an-
tioxidant and immune properties of animals (Li, Zhang, 
et al., 2022). Addah et al. (2012) also demonstrated that 
inoculation of whole-crop barley silage with a mixed 
culture of homolactic bacteria and feruloyl esterase-
producing Lactobacillus (Lentilactobacillus) buchneri at 
ensiling improved the efficiency of body weight (BW) gain 
in growing feedlot steers. In addition, in dairy goats that 
were fed alfalfa silage inoculated with feruloyl esterase-
producing LAB, milk fat, and milk protein concentrations 
were increased (Li, Zhang, et al., 2022).

Lactic acid bacteria with antimicrobial  
properties

Excessive mycotoxins and massive amplification of 
pathogenic bacteria in silage are common public health 
concerns in animal husbandry (Ogunade et al., 2018). 
In general, lactic acid bacteria are used to facilitate 
fermentation and prevent mildew of silage by con-
trolling microbial events during fermentation (Gallo 
et al., 2022; Wambacq et al., 2016). In particular, bac-
teriocin produced by LAB is an important antimicrobial 
product with biopreservation and antibacterial proper-
ties, which allows the bacteria to regulate the growth of 

F I G U R E  4   Functions of lactic acid bacteria and their effects on silage and ruminants.
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spoilage microorganisms in silage (Gollop et al., 2005; 
Li et al., 2015). As reported in previous studies, bacteri-
ocin can form pores on the surface of cell membrane, in-
crease the permeability of cell membrane, dissipate the 
cytoplasmic membrane potential and transmembrane 
pH gradient, and destroy the integrity of cell membrane, 
causing cell content to flow out and cell death (Wang 
et al., 2019; Zhang et al., 2016). These attributes may 
enhance the safety and quality of food/feed and their by-
products (Balciunas et al., 2013; O'Sullivan et al., 2002). 
Thus, trials involving LAB inoculants with antimicrobial 
properties have garnered much attention in the global 
dairy industry. Moreover, strains producing bacterioc-
ins have been proven useful in inhibiting spoilage mi-
croorganisms in silage. Some preliminary studies have 
indicated that bacteriocins produced by LAB may be a 
potential and an effective alternative to classical antibi-
otics used in animal husbandry (Joerger, 2003; Santoso 
et al., 2006; Shen et al., 2017). In a previous study, a 
selective bacteriocin, pediocin SA-1, could be used as 
an additive to control Listeria monocytogenes in maize 
silages (Amado et al.,  2016). Forage inoculated with 
bacteriocin-producing bacteria, such as Lactococcus 
lactis CECT 539 and Pediococcus acidilactici NRRL  
B-5627, was more effective than non-inoculated con-
trols in improving the fermentation quality of silages 
and inhibiting the growth of Listeria monocytogenes 
(Amado et al., 2012). Silva et al. (2016) reported that the 
inoculation of alfalfa silage with a potential bacterioci-
nogenic Pediococcus pentosaceus strain improved the 
fermentation profile under tropical conditions, although 
they did not observe any antimicrobial effect. Recently, 
Chikindas et al. (2018) suggested that bacteriocins are 
involved in different activities against similar bacterial 
species and other microorganisms, such as eukary-
otic cells, some viruses, and mycobacteria. Similarly, 
Li, Ding, et al.  (2020) reported that the inoculation of 
alfalfa silage with class IIa bacteriocin-producing LAB 
effectively inhibited the growth of yeast and moulds and 
improved the aerobic stability of the silage. Thus, it is 
important to explore promising LAB strains that pos-
sess antimicrobial properties and such inoculants may 
improve the microbial safety of silage. In addition, lactic 
acid bacteria strains that exhibit antifungal activity may 
serve as another tool to improve the quality of silage 
that is susceptible to fungal attack. However, it was not 
clear how the bacteriocin contributed to the inhibition 
of fungi since bacteriocins are known to inhibit homolo-
gous bacteria, but not fungi (Silva et al., 2016). Thus, 
more research is needed to confirm the role of bacteri-
ocins in inhibiting the growth of spoilage fungi.

Furthermore, 3-phenyllactic acid is a small-molecule 
organic acid that is ubiquitous in nature. It presents 
antifungal activity and is an important preservative 
in the feed, food, pharmaceutical, and cosmetic in-
dustries (Dieuleveux et al.,  1998; Strom et al.,  2002). 
3-phenyllactic acid has been reported to exhibit 

positive bioactivities when fed to animals. For instance, 
3-phenyllactic acid could replace 70.1% phenylalanine in 
the diets of chicks and mice; furthermore, it showed pos-
itive effects on the immunity of hens and pigs (Boebel & 
Baker, 1982; Wang, He, Xing, Zhou, Yang, et al., 2019; 
Wang, Wang, Wang, Meng, Duan, et al.,  2019). 
Reportedly, 3-phenyllactic acid is present in corn, alfalfa, 
and grass silages (Broberg et al.,  2007; Wang, Gao, 
et al., 2020; Xu, Ding, et al., 2019). Furthermore, several 
LAB strains were found to produce 3-phenyllactic acid in 
grass silage (Broberg et al., 2007). Xu, Ding, et al. (2019) 
inferred that Lactobacillus acetotolerans could pro-
duce 3-phenyllactic acid in silage. Strom et al.  (2002) 
isolated Lactobacillus (Lactiplantibacillus) planta­
rum MiLAB 393 from grass silage, and 3-phenyllactic 
acid produced by this strain suppressed the growth of 
Fusarium sporotrichioides, Aspergillus fumigatus, and 
Kluyveromyces marxianus in culture. Similarly, Wu 
et al. (2020) screened two 3-phenyllactic acid-producing 
strains, namely, Lactobacillus (Lactiplantibacillus) plan­
tarum M1 and M2, from silages and pickles. Inoculation 
of these two strains improved fermentation quality and 
prevented protein degradation during the ensiling pe-
riod. Therefore, similar to bacteriocin-producing LAB, 
3-phenyllactic acid-producing LAB may serve as useful 
additives for improving the quality of silage fermentation 
and ensuring the quality and safety of forage grass in 
the future. In particular, as an alternative to antibiotics, 
these LAB hold great promise for preventing mildew of 
silage. The inhibition activity of 3-phenyllactic acid was 
related to its capacity to harm cell membranes and dis-
rupt energy metabolism, which led to intracellular com-
ponent leakage and decreased ATP synthesis, which in 
turn severely inhibited spore growth and even caused 
cell death (Li, Yao, & Meng, 2022). In addition, scanning 
electron microscope studies showed that the bacteria 
exposed to 3-phenyllactic acid had damaged, even bro-
ken cell wall structure (Mu et al., 2012).

Lactic acid bacteria with high 
antioxidant potential

Ruminants, such as dairy cows or dairy goats, are 
more susceptible to oxidative stress due to their inten-
sive metabolic requirements for maintenance and pro-
duction, resulting in metabolic and infectious diseases 
(Sordillo & Aitken, 2009; Tian et al., 2019). Thus, improv-
ing the antioxidant capacity of ruminants is of great sig-
nificance to their health and productivity. The addition of 
exogenous antioxidants (e.g., ferulic acid, anthocyanins, 
catechin, pycnogenol, astaxanthin, and flavonoids) to 
ruminant diets is an effective strategy to mitigate oxi-
dative stress (Khosravi et al.,  2018; Nisar et al.,  2013; 
Pandey & Negi,  2016; Wang, Wang, Wang, Meng, 
Duan, et al., 2019). Based on this, feed antioxidant ad-
ditives are widely used for improving the survival rate 
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of newborn poultry, health and productivity of livestock, 
and shelf life of meat and milk products (Chew, 1996; 
Soberon, Cherney, et al., 2012; Soberon, Cherney, Liu, 
et al., 2012). However, the application of antioxidants is 
limited by their high cost and low output from extraction. 
Therefore, natural antioxidant compounds in ensiled 
forage have received considerable attention in recent 
years (Kotsampasi et al., 2017; Santos et al., 2014; Tian 
et al., 2019). The quality of silage affects all aspects of 
ruminant nutrition, ranging from voluntary intake, pal-
atability, and nutritive value to animal health and prod-
uct quality (Lozicki et al.,  2015). A previous study has 
shown that extreme environmental conditions, such as 
high altitude, hypoxia, cold temperatures, and strong 
ultraviolet radiation in Qinghai-Tibet plateau provide an 
alternative and a readily available substrate to screen 
for LAB strains with attractive functional characteristics, 
particularly antioxidant properties (Ding et al., 2017). In 
recent studies, some LAB isolated from fermented food 
or silage have been confirmed to have good antioxidant 
properties (Ding et al., 2017; Pourramezan et al., 2018). 
It has been speculated that silage LAB with high anti-
oxidant properties hold immense potential because their 
discovery has offered novel insights into the improve-
ment of silage quality and animal antioxidant capacity. 
For instance, Zhang, Ke, et al. (2020, 2021) reported that 
the inoculation of alfalfa with the screened antioxidant 
strains Lactobacillus (Lactiplantibacillus) plantarum 24–7 
or Pediococcus acidilactici J17 could improve the antioxi-
dant status of silages with different DM contents. Zhang 
et al. (2022) tested six LAB strains with high antioxidant 
activity in alfalfa silage. All six strains improved the total 
antioxidant capacity of silages and reduced α-tocopherol 
and β-carotene losses compared with those observed 
in the reference strain. In addition, Li, Ding, et al. (2021) 
reported that feruloyl esterase-producing Lactobacillus 
(Lactiplantibacillus) plantarum A1 showed a high antioxi-
dant capacity by degrading lignocellulose in alfalfa; this 
antioxidant capacity was attributed to free ferulic acid re-
leased during ensiling. Although Zhang, Ke, et al. (2020, 
2021) and Zhang et al.  (2022) have demonstrated that 
fermentation using LAB with high antioxidant activity im-
proved the antioxidant capacity of alfalfa silage. However, 
whether silage treated with such inoculants can improve 
the antioxidant status of ruminants and ruminant prod-
ucts remain unclear. At present, only one of our previous 
studies proved that the application of feruloyl esterase-
producing strain Lactobacillus (Lactiplantibacillus) plan­
tarum A1 to silage could improve the antioxidant status 
of lactating dairy goats because of the free ferulic acid 
produced during ensiling (Li, Zhang, et al., 2022).

Pesticide-degrading LAB

Pesticides are frequently used to prevent or control 
pests, illnesses, and other plant pathogens in order to 

reduce the loss of green fodder caused by diseases 
and pests (Koli & Bhardwaj, 2018; Meissle et al., 2010). 
Hence, pesticides have played an important role in 
increasing the productivity and yield of forage crops. 
However, despite their significant role in agricultural 
activities, when pesticides are used excessively or in-
appropriately, their footprint on the ecosystem due to 
residual accumulation over time poses a serious health 
threat (Narenderan et al., 2020).

Pesticide residues in green fodder are the major 
source of pesticides in silage. In addition to the great 
health risk to ruminants and humans, the types and 
initial concentrations of pesticides affect the fermen-
tation quality of silage (Ge et al.,  2021). Zhang, Yu, 
et al.  (2017) found that both chlorpyrifos and chlo-
rantraniliprole increased the butyric acid concentra-
tion of alfalfa silage when these two pesticides were 
sprayed on the surface of alfalfa before ensiling. In 
recent years, strategies aimed at reducing or elim-
inating these naturally existing toxic compounds 
through biodegradation and biodetoxification have 
garnered attention, and some genera of LAB, such 
as Lactobacilli and Leuconostoc, have been proven to 
possess the metabolic ability to utilise insecticides as 
a source of carbon and energy (Cho et al., 2009; Choi 
et al.,  2004; Islam et al.,  2010; Kumral et al.,  2020; 
Zhao & Wang, 2012). Thus, the use of LAB as detox-
icants may offer an innovative strategy for the biode-
toxification and biodegradation of toxic compounds in 
silage. Practically, some studies using different mi-
crobial strains as detoxification tools have been con-
ducted on various fermented materials. For instance, 
Đorđević, Šiler-Marinković, et al.  (2013) found that 
Lactobacillus (Lactiplantibacillus) plantarum could 
degrade 81% of pirimiphos-methyl (pesticide) during 
wheat fermentation without affecting bacterial growth 
and fermentation activity. In another study, Đorđević, 
Siler-Marinkovic, et al. (2013) found that Lactobacillus 
(Lactiplantibacillus) plantarum could degrade pyre-
throid insecticides and bifenthrin during fermentation 
of milled wheat. The bifenthrin degradation activ-
ity was attributed to the metabolic hydrolysis of the 
carboxylic ester linkage. This result corroborates 
the report by Zhou et al.  (2015) that Lactobacillus 
(Lactiplantibacillus) plantarum dissipated approxi-
mately 96.2–99.7% of four organophosphate pes-
ticides, including chlorpyrifos, dichlorvos, phorate, 
and trichlorphon, in pickled Chinese cabbage. In si-
lage, a novel strain, Lactobacillus (Lacticaseibacillus) 
casei WYS3, was screened for pesticide degradation 
in rice straw silage contaminated with chlorpyrifos, 
and the inoculation of this strain was found to pro-
mote chlorpyrifos removal after ensiling when com-
pared with that after inoculation with control (Wang 
et al.,  2016). Similarly, Liu et al.  (2022) screened a 
novel beta-cypermethrin (beta-cyp)-degrading strain, 
Lactobacillus (Lactiplantibacillus) pentosus 3–27, 
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from beta-cyp-contaminated alfalfa silage; the strain 
could degrade 96% of beta-cyp (50 mg L−1) in MSM 
medium after 4 days of culture. Moreover, when used 
as an inoculant, the strain not only improved the fer-
mentation quality of alfalfa silage but also degraded 
beta-cyp. However, inconsistent with previous re-
ports, Zhang, Yu, et al. (2017) indicated that the addi-
tion of Lactobacillus (Lactiplantibacillus) plantarum to 
silage delayed chlorpyrifos dissipation. Although the 
precise cause remains unclear, the strain may lack 
pesticide-degrading properties, as mentioned in pre-
vious studies. Therefore, screening and application of 
pesticide-degrading LAB are of great practical value 
to reduce pesticide residues in silage and improve 
fermentation quality.

Lactic acid bacteria producing 
1,2-propanediol

Typically, Lactobacillus (Lentilactobacillus) buchneri 
is considered the dominant LAB for maintaining the 
aerobic stability of silage, as acetic acid produced by 
this bacterium plays an important role in improving 
the aerobic stability of silage (Nishino et al., 2003). In 
recent years, 1,2-propanediol has been found at high 
levels in screened Lactobacillus (Lentilactobacillus) 
buchneri-inoculated silages; but, naturally occur-
ring populations of Lactobacillus (Lentilactobacillus) 
buchneri occasionally result in low concentrations 
of 1,2-propanediol in silages (Huang et al.,  2021). 
Previous studies have indicated that at concentration 
between 0.25% and 1.5%, 1,2-propanediol in silage 
prolonged its aerobic stability (Kung et al.,  2018). 
Huang et al.  (2021) have successfully isolated and 
screened two strains of LAB, namely, Lactobacillus 
(Lentilactobacillus) buchneri 9–2 and 10–1, which 
produced a high concentration of 1,2-propanediol 
from baled alfalfa and corn silages stored for 1 or 
2 years depending on physiological and biochemical 
characteristics. After 90 days of fermentation, the con-
centration of 1,2-propanediol in corn silages treated 
with Lactobacillus (Lentilactobacillus) buchneri 9–2 
and 10–1 reached 34.7 and 34.6 g kg−1 DM, respec-
tively, and these values were significantly higher than 
that (19.5 g kg−1 DM) in silages treated with the ref-
erence strain (Lactobacillus (Lentilactobacillus) bu­
chneri 40,788). Furthermore, these bacterial strains 
improved the aerobic stability of silage compared with 
the reference strain. Likewise, Nishino et al.  (2003) 
have reported that abundant 1,2-propanediol 
(49.4  g kg−1 DM) was accumulated in Lactobacillus 
(Lentilactobacillus) buchneri NK01-treated corn  
silage stored for 120 days. Interestingly, a previous 
study has shown that 1,2-propanediol exhibits no 
antifungal action (Driehuis et al.,  2001). According 
to Krooneman et al.  (2002) and Selwet  (2020), 

1,2-propanediol in silage is metabolised by other mi-
croorganisms to 1-propanol and propionic acid, and 
propionic acid is known to produce a stronger inhibi-
tory effect than acetic acid against fungi. Thus, the 
prolonged aerobic stability of silage inoculated with 
1,2-propanediol-producing Lactobacilli may be attrib-
uted to the increased concentration of propionic acid 
in the silage rather than the direct antifungal effect of 
1,2-propanediol.

Nonetheless, glucogenic 1,2-propanediol is used 
in veterinary practice for the treatment of clinical keto-
sis (Zielińska et al., 2017). Upon consumption by dairy 
cows, 1,2-propanediol could be absorbed and con-
verted to glucose in the liver or converted to propionic 
acid in the rumen (Kung et al.,  2018). Thus, continu-
ous intake of silage containing 1,2-propanediol may be 
a viable method for the prevention of ketosis in dairy 
cows (Nishino et al., 2003). Currently, 1,2-propanediol 
is produced using chemical methods; however, vari-
ous microorganisms, such as LAB, can ferment sug-
ars to 1,2-propanediol or degrade lactic acid to acetic 
acid and 1,2-propanediol under anaerobic conditions 
(Elferink et al.,  2001). Regular consumption of such 
LAB-inoculated silages may affect the performance 
and energy efficiency of ruminants. Thus, screening of 
1,2-propanediol-producing LAB and their application in 
silage production are of great importance for extending 
aerobic exposure time and alleviating dairy cow ketosis 
during practical production.

Low-temperature-tolerant LAB

Silage is the product of LAB-dominated fermenta-
tion. LABs grow at 5–50°C, with optima between 
25°C and 40°C (Driehuis et al.,  2003). However, in 
cold regions, there is a long and harsh winter follow-
ing a short and cool growing season. Although the 
ambient temperatures are usually above 15°C during 
the day, they can drop significantly during the night 
(Bernardes et al., 2018). Bernardes et al.  (2018) re-
viewed the challenges of silage preparation in cold 
regions and proposed ambient temperature as one of 
the major limiting factors for silage quality because 
fermentation triggered by epiphytic and inoculated 
LAB could be functionally impaired at lower tempera-
tures. Moreover, Bai et al. (2022) reported that whole-
plant corn silages stored at 30°C presented lower 
pH as well as lower bacterial diversity and network 
complexity than those stored at 20°C, indicating that 
low temperature (20°C) slowed down the fermenta-
tion of whole-plant corn silages. Thus, uncontrollable 
climate-related factors that are common or specific to 
cold regions can adversely affect silage production 
and utilisation.

Most efforts are focused on acid-based addi-
tives for preserving green forage in low-temperature 
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regions. Bernardes et al. (2018) have reviewed the ef-
fects of these additives on silage preparation in cold 
regions. In recent years, increasing attention has been 
paid to the development of low-temperature-tolerant 
silage LAB for forage preservation in cold regions. 
For instance, Lactobacillus (Lacticaseibacillus) rham­
nosus GG6 and Lactobacillus (Lactiplantibacillus) 
plantarum GG7 isolated from Italian ryegrass si-
lage could grow well at 5°C (Ali et al.,  2017); the 
addition of these two inoculants at ensiling better 
promoted lactic acid fermentation at 10°C and 15°C 
than that seen with the reference LAB Lactobacillus 
(Lactiplantibacillus) plantarum MTD/1. Similarly, 
Wang et al.  (2017) added four LAB strains isolated 
from straw silages to Italian ryegrass at ensiling and 
found that Lactobacillus (Lactiplantibacillus) planta­
rum, Lactobacillus (Loigolactobacillus) coryniformis, 
and Pediococcus pentosaceus improved silage fer-
mentation quality at both 10°C and 15°C. Xu, Ke, 
et al.  (2019) isolated Pediococcus pentosaceus Q6 
from Elymus nutans growing on the Tibetan Plateau 
and reported that this strain could grow at 4°C and 
promote silage fermentation at low temperatures 
(10°C or 15°C). Zhang, Lv, et al. (2017) ensiled wheat 
straw with low-temperature-tolerant Lactobacillus 
(Lactiplantibacillus) plantarum strains, which im-
proved silage fermentation at 5°C compared with the 
reference strain. However, all these ensiling exper-
iments were conducted only in laboratory silos. In 
practice, Chen et al. (2020) treated oat silage with a 
low-temperature-tolerant LAB inoculant comprising 
Lactobacillus (Lactiplantibacillus) plantarum BP18, 
Pediococcus pentosaceus HS1, and Lactobacillus 
(Lentilactobacillus) buchneri LP22 in round bales and 
reported that the inoculant enhanced silage fermen-
tation and optimised bacterial community structure at 
low-temperature environment. Overall, from these re-
sults, development of low-temperature-tolerant silage 
LAB strains is of great significance and a potentially 
promising method for controlling silage fermentation 
in cold regions in the future.

LACTIC ACID BACTERIA AFFECT 
METABOLITES OF SILAGE

The ensiling process of silage involves both the mi-
crobiome and metabolome. Using conventional meth-
ods, metabolites, such as lactic acid, acetic acid, 
butyric acid, propionic acid, and ethanol are com-
monly detected to evaluate fermentation quality and 
aerobic stability. As the key bacteria, lactic acid bac-
teria strains produce specific substances, such as 
2,3-butadione, reuterin, acetaldehyde, 3-phenyllactic 
acid, and 3-hydroxydecanoic acid (Schnu,  2005; 
Sjögren et al., 2003; Strom et al., 2002). Moreover, LAB 
can produce a multitude of amino acids, fatty acids, 

vitamins, and oligosaccharides (Sun et al., 2012), sug-
gesting that silages contain many other metabolites. 
Broberg et al.  (2007) investigated metabolites pro-
duced by LAB in silage and detected p-hydrocoumaric 
acid, hydroferulic acid, and p-coumaric acid were pro-
duced by Lactobacillus (Lactiplantibacillus) plantarum 
MiLAB393 and MiLAB14 inoculants in grass. In ad-
dition, the results of Fourier-transform infrared spec-
troscopy conducted by Johnson et al. (2004) revealed 
that inoculants altered the characteristics of biochemi-
cal data; amides reflected the change in amino acids 
and proteins during ensiling, and these could be dis-
tinguished between control and inoculant-treated red 
clover and grass silages.

Recently, metabolomics has been applied to 
several studies on silage to identify novel bioactive 
metabolites that can serve as indicators of silage 
quality, including amino acids, fatty acids, vitamins, 
and flavour compounds, as well as bioactive sub-
stances that are beneficial to animal health and wel-
fare. Various metabolites in different silages possess 
the potential to improve animal meat quality or alter 
the metabolomic profile of milk (Lanza et al.,  2021; 
Wang, Zhao, et al.,  2022). In silage, hundreds of 
metabolites have been detected, which are primar-
ily composed of organic acids, sugars, amino acids, 
polyols, and volatile chemicals (Guan, Shuai, Ran, 
et al., 2020; Guo et al., 2018; Hu et al., 2020; Scherer 
et al., 2021; Xu et al., 2020; Xu, Ding, et al., 2019; Xu, 
Wang, et al.,  2021). Lactic acid bacteria inoculants 
could modulate silage metabolome by modifying mi-
crobial communities (Zhang, Guo, et al., 2021). The 
inoculants Lactobacillus (Lactiplantibacillus) planta­
rum, Lactobacillus (Lentilactobacillus) buchneri, and 
Lactobacillus (Lacticaseibacillus) casei enhanced the 
relative concentrations of some organic acids and 
polyols in alfalfa silage, and the concentrations of 
most of the organic acids were positively correlated 
with the abundances of Lactobacilli, Lactococcus, 
Weissella, and Enterococcus (Guo et al.,  2018; Hu 
et al.,  2020). In whole-plant silage, Lactobacillus 
(Lactiplantibacillus) plantarum or Lactobacillus 
(Lentilactobacillus) buchneri inoculants increased the 
concentrations of some amino acids (e.g. phenylala-
nine, lysine, tyrosine, and glycine), phenolic acids (e.g. 
4-hydroxycinnamic acid and 3,4-dihydroxycinnamic 
acid), flavour compounds (gluconic lactone), and or-
ganic acids (lauric acid, 3-hydroxypropionic acid, pen-
tadecanoic acid, oxamic acid, and isocitric acid) (Xu, 
Ding, et al., 2019; Xu, Wang, et al., 2021). In a study 
of silage odour, Zhang, Guo, et al. (2021) focused on 
volatile chemicals in stylo and rice straw silages and 
found that Lactobacillus (Lactiplantibacillus) planta­
rum decreased the concentrations of certain volatile 
substances, which were positively correlated with the 
abundances of undesirable bacteria but negatively 
correlated with the abundance of Lactobacilli.



80  |      GUO et al.

Interestingly, some biofunctional metabolites, such 
as bacteriostatic, antioxidant, anti-inflammatory com-
pounds, and neurotransmitters have been detected in 
silage (Guo et al.,  2018; Tian, Zhu, et al.,  2021; Xia 
et al., 2022; Xu, Ding, et al., 2019; Xu, Wang, et al., 2021). 
Such metabolites may improve animal health and wel-
fare, and inoculants may elevate their levels. For in-
stance, levels of metabolites with anti-inflammatory 
(glycitin, lithospermic acid, and psoralidin), antioxi-
dant (ferulic acid, isoferulic acid, sinapinic acid, and 
moslosooflavone), antimicrobial (phenyllactic acid), 
and anti-tumour (alnustone) activities were elevated 
by the LAB inoculation of mixed silage of Sesbania 
cannabina and sweet sorghum (Xia et al.,  2022). 
Furthermore, metabolites with antimicrobial activity 
(methylbutanoic acid, 1,2-propanediol, and tiglic acid) 
were detected in LAB-treated Napier grass silage 
(Guan, Shuai, Ran, et al.,  2020). Compounded LAB 
increased the relative concentrations of antioxidant 
substances (e.g. 7-galloylcatechin) and antibacterial 
compounds (e.g. ferulic acid) in Cyperus esculentus 
L. leaf silage (Sun, Wang, et al.,  2021). In addition, 
our research group investigated comprehensive me-
tabolome profiles of whole-plant corn silage inocu-
lated with or without Lactobacillus (Lactiplantibacillus) 
plantarum using integrated metabolomics with solid-
phase microextraction (SPME)–gas chromatography/
mass spectrometry (GC/MS) as well as GC/MS and 
liquid chromatography/mass spectrometry (LC/MS). 
We identified 2087 metabolites in corn silage. Notably, 
inoculation with Lactobacillus (Lactiplantibacillus) 
plantarum remarkably altered silage volatile organic 
compounds as well as elevated the levels of some 
essential amino acids (l-isoleucine, lysine, and thre-
onine), pyridoxine, acetylcholine, and compounds with 
antioxidant (alpha-linolenic acid and luteolin), anti-
inflammatory (alpha-linolenic acid), and antimicrobial 
(3-phenyllactic acid and cinnamaldehyde) activities 
in corn silage (unpublished data). Correlation analy-
sis between metabolites and bacterial species indi-
cated that Lactobacillus (Lentilactobacillus) buchneri 
potentially produces specific amino acids, particularly 
the neurotransmitter of 4-aminobutyric acid (Guo 
et al., 2018; Xu, Ding, et al., 2019).

However, in some studies, lactic acid bacteria in-
oculants showed little effect on silage metabolome. 
For instance, Guan, Shuai, Ran, et al. (2020) reported 
that in Napier grass silage, differences in metabo-
lome among treatments were more closely related 
to fermentation period rather than LAB inoculations. 
Moreover, Lactobacillus (Lactiplantibacillus) plan­
tarum mainly affect metabolites related to carbohy-
drate and nitrogen pathways in sainfoin silage (Xu 
et al.,  2020). However, additional details and mech-
anisms underlying the effects of LAB on the micro-
biome and metabolome should be explored in future 
studies.

SUMMARY

In summary, LAB plays pivotal roles in the forage ensil-
ing process and are mainly dominated by Lactobacilli, 
Weissella, and Pediococcus species in corn, alfalfa, 
grass, and tropical crop silages. These LAB species 
serve various functions depending on forage type, mi-
crobial community, and storage practices. In various 
silages, LAB inoculants modulate microbial community 
composition through different routes depending on the 
epiphytic microbiota of fresh forage. Basically, LAB in-
oculants simplify the correlations among bacterial spe-
cies to enhance the fermentation quality. It is worth 
noting that functional LABs are very promising sources 
of novel products and applications, specifically those 
that can satisfy the increasing consumer demands for 
natural products as well as functional silage and foods. 
Despite recent advances, research on silage LAB and 
their functional components remains at the nascent 
stage, and their full potential is yet to be realised, ne-
cessitating extensive efforts to explore the links of LAB 
with silage, animal, and animal products. Based on the 
current knowledge on silage metabolites, there are great 
opportunities to develop silage not only as a fermented 
feed but also as a vehicle of delivery of probiotic sub-
stances for animal health and welfare in the future.
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