

Conversion of Methane with Oxygen to Produce Hydrogen Catalyzed by Triatomic Rh₃⁻ Cluster Anion

Yi Ren,[†] Yuan Yang,[†] Yan-Xia Zhao,* and Sheng-Gui He

Cite This: JACS Au 2022, 2, 197-203 **Read Online** ACCESS III Metrics & More Article Recommendations **SUPPORTING Information** ABSTRACT: Metal catalysts, especially noble metals, have frequently been prepared CH upon downsizing from nanoparticles to subnanoclusters to catalyze the important reaction of partial oxidation of methane (POM) in order to optimize the catalytic performance and conserve metal resources. Here, benefiting from mass spectrometric experiments in conjunction with photoelectron spectroscopy and quantum chemical calculations, we successfully determine that metal cluster anions composed of only three Rh atoms (Rh₃⁻) can catalyze the POM reaction with O_2 to produce $2H_2$ + CO_2 under thermal collision conditions (~300 K). The interdependence between CH_4 and O_2 to protect Rh_3^- from collapse and to promote conversion of $CH_4 \rightarrow 2H_2$ has been clarified. This study not only provides a promising metal cluster displaying

strictly molecular-level mechanism of direct partial oxidation for the production of hydrogen, a promising renewable energy source in the 21st century.

good catalytic behavior in POM reaction under mild conditions but also reveals a

KEYWORDS: methane, partial oxidation, rhodium clusters, mass spectrometry, quantum chemistry calculations

1. INTRODUCTION

Hydrogen, a clean and renewable energy source, is of great practical importance for fuel cells as well as the synthesis of chemicals such as ammonia, methanol, and Fischer-Tropsch products.¹⁻⁴ Nowadays, the feedstock of natural abundant methane, with a high H/C ratio, accounts for 48% of industrial hydrogen production through steam reforming of methane (SRM)⁵ the reaction of which is highly endothermic and energy-intensive. Contrary to the SRM reaction, the partial oxidation of methane (POM) that follows the reaction of CH₄ + $O_2 \rightarrow 2H_2$ + CO_2 enables the generation of highly exothermic H₂ ($\Delta H_{298} = -3.31$ eV) and it is considered as a promising strategy to yield H₂ from an economical perspective.^{6,7} However, limited by the inertness of CH₄ and O2 molecules, the spontaneous POM reaction could occur only at high temperatures (T > 700 °C) in the absence of a catalyst.⁸ Since the first experimental detection of free H₂ from POM reaction catalyzed by Ni/Al₂O₃ in 1929,⁹ various heterogeneous catalysts supported with base and precious metals have been engineered for CH₄ conversion at relatively low temperatures.^{10–14} The dominant size-dependent catalytic behavior of supported metals motivates elaborate controls of metal species spanning from nanoparticles to subnanoclusters, aiming for optimization of the catalytic performance toward the POM reaction and the conservation of metal resources particularly for precious metals (e.g., supported rhodium catalysts with sizes of 30.5 nm \rightarrow 2.5 nm \rightarrow 1.3 nm \rightarrow 0.6 nm have been tailored).^{15–18} However, it remains challenging experimentally to achieve catalytic hydrogen production under

mild conditions. The genuine mechanisms of H_2 production from POM reaction have also not been completely clarified at a strictly molecular level.

CO

Mass spectrometry coupled with the mass selection technique provides a unique approach to distinguish the atomically precise metal clusters in the gas phase and to explore the intrinsic reactivity property of size-specific metal clusters under isolated conditions.¹⁹⁻²⁶ Available experiments demonstrated that base metal clusters are commonly unreactive with CH₄ under thermal collision conditions.^{27–} Although most of the unary base metal clusters (M_r^q) could be facilely oxidized by O_{2} , the generated oxide clusters $(M_r O_v^{q})$ possessing active sites such as oxygen-centered radicals^{19,22} and Lewis acid-base pairs $M^{\delta+} - O^{\delta-22}$ are capable of bringing about thermal methane activation, the process of which generally results in $M_x O_v H_z^q$ product that are difficult to reform back to M_r^q . Although the noble metal clusters $(NM_{x>2}^{q})$ are able to dehydrogenate methane under thermal collision conditions,^{30–32} the catalytic cycle for the reaction of CH₄ with O₂ mediated by metal clusters has not been experimentally identified. So far, only the positively charged atomic Pt⁺ as well as diatomic Au₂⁺ and PtO⁺ were reported to

Received: October 21, 2021 Published: December 3, 2021

catalyze the conversion of CH₄ with O₂ at room temperature.^{33,34} Among these catalytic reactions, only the Pt⁺ system can convert one CH₄ molecule to generate one H₂ molecule, whereas both of Au₂⁺ and PtO⁺ convert CH₄ and O₂ to produce formaldehyde and water. Note that three CH₄ molecules were required to complete the catalytic cycle for the Au₂⁺ system. Herein, we report the first experimental identification that the thermal reaction of one CH₄ molecule with O₂ to produce two H₂ molecules can be achieved by using a Rh₃⁻ cluster as a catalyst.

2. RESULTS AND DISCUSSION

Cluster Reactivity

The reactions of laser ablation generated Rh_3^- cluster anions with CH_4 and O_2 were studied by double ion trap experiments in which methane and molecular oxygen were spatially separated by using two ion trap reactors. After thermalization of the mass-selected Rh_3^- anions by collision with He atoms in the first reactor (Figure 1a), CH_4 was injected and reacted for

Figure 1. Mass spectra for the reactions of mass-selected Rh_3^- with (a) He and (b) 83 mPa CH_4 ; $Rh_3CH_2^-$ with (c) He, (d) 1.33 mPa ${}^{16}O_2$, and (e) 1.05 mPa ${}^{18}O_2$; and Rh_3O^- with (f) He and (g) 0.7 mPa CO under thermal collision conditions. The reaction times are (b) 3.6 ms, (d, e) 1.9 ms, and (g) 3.6 ms. The peaks marked with asterisks in panels d and e can be assigned to $Rh_2O_3^-$ originating from the oxidation of Rh_3O^- by O_2 (Figure S1).

about 3.6 ms. It can be seen from Figure 1b that although the Rh_3^- anions depleted significantly at the CH_4 pressure of 83 mPa, a new strong peak assigned as $Rh_3CH_2^-$ appeared, suggesting that the dehydrogenation of methane with the loss of one H_2 molecule took place (reaction 1):

$$Rh_3^- + CH_4 \rightarrow Rh_3CH_2^- + H_2 \tag{1}$$

The isotopic labeling experiment with CD₄ confirmed the dehydrogenation channel (Figure S1). The rate constant (k_1) of a pseudo-first-order reaction between Rh₃⁻ and CH₄ was determined to be 1.9×10^{-11} cm³ molecule⁻¹ s⁻¹,^{35,36}

corresponding to a reaction efficiency of 1.9%. The kinetic isotopic effect $(k_{1/\text{CH4}}/k_{1/\text{CD4}})$ was estimated to be 7.9.

After Rh₃⁻ reacted with CH₄ in the first reactor, the resulting product ions Rh₃CH₂⁻ were then mass-selected (Figure 1c) and thermalized in the second reactor for reaction with O2. As shown in Figure 1d, upon the interaction of Rh₃CH₂⁻ with 1.33 mPa ${}^{16}O_2$ for about 1.9 ms, a strong product peak with the mass larger than that of $Rh_3CH_2^-$ by 2 amu emerged and it can be assigned as Rh₃¹⁶O⁻, which was further confirmed by the isotopic labeling experiment with ¹⁸O₂ (Figure 1e). In addition, a weak product signal corresponding to Rh3⁻ was clearly identified. Two possible channels could be considered for the generation of Rh3O- or Rh3- in the reaction of $Rh_3CH_2^-$ with O₂. The Rh_3O^- could be produced by either the successive desorption of H₂ and CO molecules (reaction 2a) or the direct evaporation of a CH_2O molecule (reaction 2b). Likewise, the successive liberation of H_2 and CO_2 molecules results in the formation of Rh_3^- (reaction 3a). The Rh₃⁻ may also originate from the evaporation of CH₂O₂ (reaction 3b).

$$\operatorname{Rh}_{3}\operatorname{CH}_{2}^{-} + \operatorname{O}_{2} \to \operatorname{Rh}_{3}\operatorname{O}^{-} + \operatorname{H}_{2} + \operatorname{CO}$$
(2a)

$$\rightarrow \text{Rh}_3\text{O}^- + \text{CH}_2\text{O}$$
 (2b)

$$\rightarrow Rh_3^- + H_2 + CO_2 \tag{3a}$$

$$\rightarrow Rh_3^- + CH_2O_2 \tag{3b}$$

Further theoretical calculations (see below) support that the Rh₃O⁻ and Rh₃⁻ are more likely to be generated through the channels involving liberation of H₂ and CO/CO₂ molecules (reactions 2a and 3a). The measured k_1 (Rh₃CH₂⁻ + O₂) is 7.2 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ that is larger than k_1 (Rh₃⁻ + CH₄) by more than 1 order of magnitude.

Further experiments demonstrated that the produced Rh₃O⁻ (Figure 1f) in reaction 2a could be very efficiently reduced to Rh₃⁻ by CO (Figure 1g and reaction 4) with k_1 of 1.6×10^{-9} cm³ molecule⁻¹ s⁻¹. As a result

$$Rh_3O^- + CO \rightarrow Rh_3^- + CO_2 \tag{4}$$

on the basis of reactions 1, 2a, 3a, and 4, it can be concluded that the reaction of CH_4 with O_2 can produce two H_2 molecules with concomitant formation of CO_2 under thermal collision conditions catalyzed by the Rh_3^- cluster. Furthermore, two pathways (i and ii) to complete the catalytic cycle are identified at a strictly molecular level, as shown in Figure 2.

Structures of Reaction Intermediates and Reaction Mechanisms

The ground-state structure of Rh_3^- cluster was previously characterized to have an isosceles triangle in the quintet state.^{35,37} To explore the mechanistic details for the reaction of CH_4 with O₂ catalyzed by Rh_3^- , we conducted the photoelectron spectroscopy (PES) experiments and density functional theory (DFT) calculations with PBE functional³⁸ in an attempt to determine the structures of the important reaction intermediates $Rh_3CH_2^-$ and Rh_3O^- involved in the catalytic cycles. The comparison between experimental PES spectra and simulated density of states (DOS) spectra of isomeric structures (Figure 3, Figures S3 and S4) shows that (i) the structure of $Rh_3CH_2^-$ can be in the triplet $HRh_3(CH)^-$ by capping a C-H unit on the top of the Rh_3 plane and suspending the second H atom by two Rh atoms; (ii) the

Figure 2. Proposed catalytic cycles for the reaction of $CH_4 + O_2 \rightarrow 2H_2 + CO_2$ mediated by Rh_3^- cluster.

Figure 3. Experimental (Expt.) photoelectron spectra and simulated (Sim.) density of states (DOS) spectra for isomers of $Rh_3CH_2^-$ (left) and Rh_3O^- (right). The DOS spectrum for Rh_3O^- is red-shifted by 0.08 eV. Both the DFT calculated isomers of $Rh_3CH_2^-$ and Rh_3O^- are in the triplet state.

 Rh_3O^- is also in a triplet state that possesses an O atom terminally attached to one Rh atom of the Rh_3 moiety.

The most possible pathways computed with DFT method for the elementary reactions of Rh_3^- with CH_4 (R1) and $Rh_3CH_2^-$ with O_2 (R2) are shown in Figures 4 and S5–S8. The quintet Rh_3^- traps CH_4 by one Rh atom (Rh_{α}) to form encounter complex I1 with a binding energy of 0.20 eV. The oxidative addition of the first C–H bond onto Rh_{α} then takes place with a small energy barrier of 0.12 eV (${}^{5}I1 \rightarrow {}^{5}TS1$), resulting in formation of the $CH_3-Rh_{\alpha}-H-Rh_{\beta}$ moiety. After the bridging H atom (H_b) moves away from Rh_{α} (⁵I2 \rightarrow ⁵I3, Figure S5), the CH₃ moiety that has been bonded with Rh_{α} also connects to the Rh_y atom (${}^{5}I3 \rightarrow {}^{5}I4$) so that the second and the third C–H bonds can be successively activated by Rh_{α} $(I4 \rightarrow TS4 \rightarrow I5)$ and Rh_{ν} (I5 \rightarrow TS5 \rightarrow I6), respectively. Note that a spin inversion from quintet state to triplet state occurs during activation of the second C-H bond (⁵I4 \rightarrow ³TS4, Figure S6). The facile cleavage of three C-H bonds of CH₄ leads to the formation of a more stable intermediate I6, in which each Rh atom is coordinated with a terminal H atom (H_t) . Subsequently, the residual C-H bond in I6 moves toward the Rh_{β} atom and the most stable intermediate I7 is formed by capping a C-H unit on the top of Rh₃ plane. Meanwhile, two of the three H_t atoms in I6 become H_b atoms in I7. The H_t in I7 then combines with the adjacent H_b to form

an H_2 molecule and then desorb from Rh_{γ} (I7 \rightarrow I8 \rightarrow P1), leading to the generation of triplet $Rh_3CH_2^-$ ion.

In the reaction of ${}^{3}Rh_{3}CH_{2}^{-}$ with O₂, the spare Rh_y adsorbs the O₂ molecule to form intermediate ³I9 and 2.55 eV of energy is released. Thus, the ³I9 has enough energy to overcome the barrier (1.05 eV, ${}^{3}I9 \rightarrow {}^{3}TS8$) for cleavage of the O–O bond by cooperation between Rh_{ν} and $Rh_{\beta\nu}$ resulting in the more stable intermediate 3 I10 with an O_t and an O_b attached to Rh atoms. The ³I10 then undergoes a series of structural rearrangements involving H_t transfer from Rh_{α} to Rh_{β} (I10 \rightarrow I11, Figure S7) and rupture of the HC-Rh_y bond (II1 \rightarrow II2). Subsequently, the HC-O_b coupling (³I12 \rightarrow ³I13) occurs, followed by activation of the fourth C–H bond by Rh_a (${}^{3}I13 \rightarrow {}^{3}I14 \rightarrow {}^{3}I15$) and formation of ${}^{3}I15$ that has two H_t atoms coordinated with Rh_{lpha} and Rh_{eta} . After the H_t originally bonded with Rh_{α} transfers to Rh_{β} (³I15 \rightarrow ³I16 \rightarrow ${}^{3}\text{I17} \rightarrow {}^{3}\text{I18}$), the two H_t atoms on Rh_{β} in ${}^{3}\text{I18}$ could make an H₂ unit and are finally evaporated to form triplet Rh₃CO₂⁻ (³I19), the structure of which contains an isolated CO unit and an O_t atom.

It is noteworthy that the production of H_2 in the reaction of ${}^{3}\text{Rh}_{3}\text{CH}_{2}^{-}$ + O₂ is highly exothermic (by 4.59 eV) so the resulting ³Rh₃CO₂⁻ possesses sufficient internal energy to enable the CO desorption and generation of triplet Rh₃O⁻ ion $(I19 \rightarrow Rh_3O^- + CO, P2)$. Alternatively, the CO moiety in ³Rh₃CO₂⁻ could directly couple with the O_t atom to form a CO₂ unit, which is further evaporated to reform quintet Rh₃⁻ through a spin conversion (${}^{3}I19 \rightarrow {}^{3}I20 \rightarrow {}^{3}I21 \rightarrow {}^{5}I22 \rightarrow$ ${}^{5}\text{I23} \rightarrow {}^{5}\text{Rh}_{3}^{-} + \text{CO}_{2}$, P3, Figures S7 and S8). Despite that the channel of CO₂ elimination ($\Delta H_0 = -2.52$ eV) is thermodynamically more favorable than that of CO desorption $(\Delta H_0 = -1.66 \text{ eV})$, the kinetic analysis on the basis of Rice–Ramsperger–Kassel–Marcus (RRKM) theory³⁹ demonstrates that the rate $(6.1 \times 10^{10} \text{ s}^{-1})$ of CO desorption from $Rh_3CO_2^-$ is about six times the rate of internal conversion (1.0 $\times 10^{10} \text{ s}^{-1}$) of I19 \rightarrow TS19 involved in CO₂ formation. Thus, the reaction of Rh₃CH₂⁻ with O₂ should generate Rh₃O⁻ + CO (rather than $Rh_3^- + CO_2$) as the major product, in consistent with the experimental observation (Figures 1d, e). The pathway for direct elimination of CH₂O to produce Rh_3O^- was also considered for the reaction of $Rh_3CH_2^- + O_2$ (Figure S9); however, it is kinetically less favorable than the path of H_2 + CO production. The ${}^{3}Rh_{3}O^{-}$ generated after H_2 + CO desorption can further barrierlessly adsorb and oxidize a CO molecule to CO₂, and ${}^{3}Rh_{3}O^{-}$ is reduced to ${}^{5}Rh_{3}^{-}$ following the same path as I20 \rightarrow P3. As a result, the computational results support the idea that the reaction of CH₄ with O_2 to produce $2H_2 + CO_2$ can be achieved under thermal collision conditions using a Rh₃⁻ catalyst.

Insights into the Gas-Phase Catalysis and Related Condensed-Phase Catalysis

The transformation of important molecules with molecular oxygen mediated by atomic clusters has received considerable attention in gas-phase studies, but only a very limited number of bare metal clusters including $Pt_{3-6}^{-,40} Au_6^{-,41}$ and $Ag_{7,9,11}^{-42}$ have been reported to exhibit catalytic behavior. The elaborate measurement on elementary reactions demonstrated that the completion of catalytic cycles requires preferential adsorption of O₂ onto M_x^- clusters and the resulting $M_xO_y^-$ then oxidizes small molecules (e.g., CO) to reform M_x^- . In this study, we identify the first example for catalytic conversion of CH₄ with O₂ mediated by a metal

Figure 4. DFT calculated potential energy profiles for reactions of ${}^{5}\text{Rh}_{3}^{-} + \text{CH}_{4}$ (R1) and ${}^{3}\text{Rh}_{3}\text{CH}_{2}^{-} + O_{2}$ (R2). The relative energies (ΔH_{0}) are given in eV. The structures of R, I1, I2, I4–I7, I9, I10, I12, I13, I15, I18, I19, I22, P1 (${}^{3}\text{Rh}_{3}\text{CH}_{2}^{-} + \text{H}_{2}$), P2 (${}^{3}\text{Rh}_{3}\text{O}^{-} + \text{H}_{2} + \text{CO}$), and P3 (${}^{5}\text{Rh}_{3}^{-} + \text{H}_{2} + \text{CO}_{2}$) are plotted, whereas those of I3, I8, I11, I14, I16, I17, I20, I21, I23, and TS1–TS20 can be found in the Supporting Information. The superscript denotes the spin multiplicity.

cluster (Rh₃⁻), moreover, a distinct mechanism to complete the catalytic cycle has been definitely determined. The Rh₃⁻ should react with CH_4 at first to produce $Rh_3CH_2^- + H_2$, after which O_2 is dissociatively adsorbed onto the $Rh_3CH_2^$ intermediate, enabling formation of the second H_2 molecule and CO₂ as well as regeneration of Rh₃⁻ cluster. The preferential oxidation of Rh₃⁻ by O₂ has also been experimentally tested. Unfortunately, the Rh₃⁻ rapidly disintegrates into Rh₂O₂⁻ + Rh and RhO₂⁻ + Rh₂ with k_1 of 7.1 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ (Figures S1 and S2). The

stepwise reaction of Rh_3^- with CH_4 and then with O_2 to close the catalytic cycle for production of $2H_2 + CO_2$ (Figure 2) thus implies an interdependence between CH_4 and O_2 that the preferential reaction with CH_4 could protect Rh_3^- cluster from collapse, whereas the O_2 adsorption could promote transformation of CH_4 to two H_2 molecules afterward.

The fundamental mechanism of the POM reaction with molecular oxygen over bulk Rh-based catalysts has been extensively investigated. Some researchers studying the catalysts of supported rhodium nanoparticles or nanoclusters (with the sizes of 0.6–3.3 nm) proposed that the H_2 (and CO) production follows a combustion-reforming mechanism,¹⁵⁻¹⁸ among which CH4 and O2 first undergo combustion to give CO_2 and H_2O and subsequently the steaming (H_2O) or dry (CO₂) reforming of unreacted methane and water-gas shift reactions occur. Alternatively, the direct partial oxidation mechanism with H_2 (and H_2O) as primary products was emphasized on the Rh(111) single crystal surface.⁴³ However, there remains a lack of experimental techniques to characterize the elementary steps in condensed-phase systems and to prove the proposed mechanisms. Herein, benefiting from the wellcontrolled gas phase cluster reactions, we identify that the rhodium cluster composed of only three Rh atoms (Rh_3^{-}) is active enough to catalyze the POM reaction under thermal collision conditions. Furthermore, the mechanism of direct H₂ production has also been certified at a strictly molecular level by following each elementary step of the catalytic cycle (Figure 2). It is noteworthy that the product H_2 has the possibility of being oxidized into H₂O by the Rh₃O⁻ ion, the important intermediate generated during the catalytic reaction. Our further mass spectrometric experiments (Figure S1 and S2) demonstrate that the reaction rate $(5.3 \times 10^{-10} \text{ cm}^3)$ molecule⁻¹ s⁻¹) of $Rh_3O^- + H_2$ is slower than that of Rh_3O^- + CO by a factor of 3, which is advantageous for improving the product yield of H₂. The employment of a hydrogen-permeable membrane reactor in real-life catalysis may further allow the selective separation of H_{2} .⁴

3. CONCLUSION

In summary, the catalytic conversion of CH_4 with O_2 mediated by the atomic cluster Rh_3^- has been experimentally achieved in the gas phase. Although the Rh_3^- cluster is prone to disintegrate upon interaction with O_2 , the preferential thermal reaction of Rh_3^- with CH_4 could generate a H_2 molecule and a $Rh_3CH_2^-$ ion. The resulting $Rh_3CH_2^-$ subsequently reacts with O_2 to produce the second H_2 molecule and CO; meanwhile, the intact $[Rh_3]$ moiety is oxidized to Rh_3O^- that can be further reduced by CO to reform Rh_3^- . Thus, the cycle for partial oxidation of CH_4 with O_2 to $2H_2 + CO_2$ is closed by using the Rh_3^- cluster catalyst. This study not only makes a significant step toward catalytic conversion of methane with O_2 mediated by atomic clusters, but also provides molecular evidence for the direct partial oxidation mechanism for H_2 production from methane under mild conditions.

4. METHODS

Experimental Methods

The negatively charged rhodium clusters (Rh_x^{-}) were generated by laser ablation of a rotating and translating Rh disk in the presence of a 6 atm He carrier gas. The reactivity experiments were carried out in a double ion trap system, which includes two quadrupole mass filters (QMFs) and two linear ion traps (LITs). Among many generated Rh_x^{-} clusters, the triatomic Rh_3^{-} ions of interest were mass-selected

by using the first QMF⁴⁵ and entered into the first LIT reactor,⁴⁶ where they were confined and thermalized by collisions with a pulse of buffer gas He and then reacted with ¹²CH₄ or CD₄. The second QMF mass-selected the product ions (e.g., Rh₃CH₂⁻) resulting from the first LIT to inject into the second LIT for further reaction with ¹⁶O₂ or ¹⁸O₂ molecule. The Rh₃O⁻ cluster was also generated by laser ablation of the Rh disk in the presence of 0.02% ¹⁶O₂/He for reaction with reactant molecules of CO and H₂. The temperature of cooling gas (He), reactant gases, and LIT reactor was around 300 K. A reflectron time-of-flight mass spectrometer⁴⁷ was used to detect the cluster ions ejected from the LIT reactor. The photoelectron imaging spectroscopy⁴⁸ was employed to characterize the structures of reaction intermediates Rh₃CH₂⁻ and Rh₃O⁻. Details on experimental methods can be found in the Supporting Information.

Theoretical Methods

Density functional theory (DFT) calculations using the Gaussian 09 program⁴⁹ were carried out to investigate the structures of reaction intermediates Rh_3X^- (X = CH₂, CO, O) as well as the reaction pathways of $Rh_3^- + CH_4$, $Rh_3CH_2^- + O_2$, and $Rh_3O^- + CO$. The PBE functional³⁸ has been proved to perform well for bare rhodium clusters³⁵ so the results by PBE method are given throughout this work. The TZVP basis sets⁵⁰ for C, H, and O atoms and the D95V basis set combined with the Stuttgart/Dresden relativistic effective core potentials (denoted as SDD in the Gaussian software)⁵¹ for Rh atom were used. The reaction pathway calculations involved geometry optimization of reaction intermediates (IMs) and transition states (TSs) through which the IMs transfer to each other. The zero-point vibration corrected energies (ΔH_0) in units of eV are reported in this work. The Rice-Ramsperger-Kassel-Marcus (RRKM) based theory³⁹ was used to predict the rates of internal conversion of reaction intermediates. The density of states (DOS) simulations based on the generalized Koopmans' theorem⁵² were performed to assign the structures of reaction intermediates through comparison with the photoelectron spectra in the experiment. Details on theoretical methods can be found in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacsau.1c00469.

Method details and additional experimental and theoretical results (spectra, calculated structures, and reaction pathways) (PDF)

AUTHOR INFORMATION

Corresponding Author

Yan-Xia Zhao – State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China; Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China;
orcid.org/0000-0002-4425-5211; Email: chemzyx@ iccas.ac.cn

Authors

- Yi Ren State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Yuan Yang State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- **Sheng-Gui He** State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China; Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China; orcid.org/0000-0002-9919-6909

Complete contact information is available at: https://pubs.acs.org/10.1021/jacsau.1c00469

Author Contributions

[†]Y.R. and Y.Y. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (92061115 and 22173111), the Youth Innovation Promotion Association CAS (2018041), and the K. C. Wong Education Foundation.

REFERENCES

(1) Henrici-Olivé, G.; Olivé, S. The Fischer–Tropsch Synthesis: Molecular Weight Distribution of Primary Products and Reaction Mechanism. *Angew. Chem., Int. Ed. Engl.* **1976**, *15*, 136–141.

(2) Navarro, R. M.; Peña, M. A.; Fierro, J. L. G. Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. *Chem. Rev.* 2007, 107, 3952–3991.

(3) Fan, Z.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Catalytic decomposition of methane to produce hydrogen: A review. *J. Energy Chem.* **2021**, *58*, 415–430.

(4) Yan, G.; Gao, Z.; Zhao, M.; Ma, K.; Ding, Z.; Yang, W.; Ding, X. Mechanism study on CO₂ reforming of methane over platinum cluster doped graphene: A DFT calculation. *Mol. Catal.* 2020, 497, 111205.
(5) Koumi Ngoh, S.; Njomo, D. An overview of hydrogen gas production from solar energy. *Renewable Sustainable Energy Rev.* 2012, 16, 6782–6792.

(6) Christian Enger, B.; Lødeng, R.; Holmen, A. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. *Appl. Catal., A* **2008**, *346*, 1–27.

(7) Elbadawi, A. H.; Ge, L.; Li, Z.; Liu, S.; Wang, S.; Zhu, Z. Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors. *Catal. Rev.: Sci. Eng.* **2021**, *63*, 1–67.

(8) Prettre, M.; Eichner, Ch.; Perrin, M. The Catalytic Oxidation of Methane to Carbon monoxide and Hydrogen. *Trans. Faraday Soc.* **1946**, *42*, 335–340.

(9) Liander, H. The Utilisation of Natural Gases for The Ammonia Process. *Trans. Faraday Soc.* **1929**, *25*, 462–472.

(10) Choudhary, V. R.; Mammon, A. S.; Sansare, S. D. Selective Oxidation of Methane to CO and H_2 over Ni/MgO at Low Temperatures. *Angew. Chem., Int. Ed. Engl.* **1992**, 31, 1189–1190.

(11) Hickman, D. A.; Schmidt, L. D. Production of Syngas by Direct Catalytic Oxidation of Methane. *Science* **1993**, *259*, 343–346.

(12) Zhu, Y.; Zhang, S.; Shan, J.-j.; Nguyen, L.; Zhan, S.; Gu, X.; Tao, F. In Situ Surface Chemistries and Catalytic Performances of Ceria Doped with Palladium, Platinum, and Rhodium in Methane Partial Oxidation for the Production of Syngas. *ACS Catal.* **2013**, *3*, 2627–2639.

(13) Leclerc, C. A.; Gudgila, R. Short Contact Time Catalytic Partial Oxidation of Methane over Rhodium Supported on Ceria Based 3-D Printed Supports. *Ind. Eng. Chem. Res.* **2019**, *58*, 14632–14637.

(14) Wu, C.; Yang, W.; Wang, J.; Li, H.; Gates, I. D. Methane activation on dual-atom catalysts supported on graphene. *Chem. Commun.* 2021, *57*, 12127.

(15) Chin, Y.-H.; Buda, C.; Neurock, M.; Iglesia, E. Selectivity of chemisorbed oxygen in C-H bond activation and CO oxidation and

kinetic consequences for CH₄-O₂ catalysis on Pt and Rh clusters. *J. Catal.* **2011**, 283, 10–24.

(16) Berger-Karin, C.; Wohlrab, S.; Rodemerck, U.; Kondratenko, E. V. The tremendous effect of trace amounts of Rh on redox and catalytic properties of CeO_2 -TiO₂ and Al_2O_3 in CH_4 partial oxidation. *Catal. Commun.* **2012**, *18*, 121–125.

(17) Kondratenko, V. A.; Berger-Karin, C.; Kondratenko, E. V. Partial Oxidation of Methane to Syngas Over γ -Al₂O₃-Supported Rh Nanoparticles: Kinetic and Mechanistic Origins of Size Effect on Selectivity and Activity. *ACS Catal.* **2014**, *4*, 3136–3144.

(18) Hou, Y.; Ogasawara, S.; Fukuoka, A.; Kobayashi, H. Zeolitesupported rhodium sub-nano cluster catalyst for low-temperature selective oxidation of methane to syngas. *Catal. Sci. Technol.* **2017**, *7*, 6132–6139.

(19) Ding, X.-L.; Wu, X.-N.; Zhao, Y.-X.; He, S.-G. C-H Bond Activation by Oxygen-Centered Radicals over Atomic Clusters. *Acc. Chem. Res.* 2012, 45, 382–390.

(20) Luo, Z.; Castleman, A. W.; Khanna, S. N. Reactivity of Metal Clusters. *Chem. Rev.* 2016, *116*, 14456–14492.

(21) Zhang, X.; Liu, G.; Meiwes-Broer, K.-H.; Ganteför, G.; Bowen, K. CO_2 Activation and Hydrogenation by PtH_n^- Cluster Anions. Angew. Chem., Int. Ed. **2016**, 55, 9644–9647.

(22) Schwarz, H.; Shaik, S.; Li, J. Electronic Effects on Room-Temperature, Gas-Phase C-H Bond Activations by Cluster Oxides and Metal Carbides: The Methane Challenge. J. Am. Chem. Soc. 2017, 139, 17201–17212.

(23) Li, Y.-K.; Debnath, S.; Schlangen, M.; Schoellkopf, W.; Asmis, K. R.; Schwarz, H. Direct Identification of Acetaldehyde Formation and Characterization of the Active Site in the $[VPO_4]^+/C_2H_4$ Couple by Gas-Phase Vibrational Spectroscopy. *Angew. Chem., Int. Ed.* **2019**, *58*, 18868–18872.

(24) Hirabayashi, S.; Ichihashi, M. Dehydrogenation of Methane by Partially Oxidized Tungsten Cluster Cations: High Reactivity Comparable to That of Platinum Cluster Cations. *J. Phys. Chem. A* **2019**, *123*, 6840–6847.

(25) Yamaguchi, M.; Zhang, Y. F.; Kudoh, S.; Koyama, K.; Lushchikova, O. V.; Bakker, J. M.; Mafuné, F. Oxophilicity as a Descriptor for NO Cleavage Efficiency over Group IX Metal Clusters. J. Phys. Chem. Lett. **2020**, *11*, 4408–4412.

(26) Levin, N.; Lengyel, J.; Eckhard, J. F.; Tschurl, M.; Heiz, U. Catalytic Non-Oxidative Coupling of Methane on $Ta_8O_2^+$. J. Am. Chem. Soc. **2020**, 142, 5862–5869.

(27) Nakajima, A.; Kishi, T.; Sone, Y.; Nonose, S.; Kaya, K. Reactivity of positively charged cobalt cluster ions with CH_4 , N_2 , H_2 , C_2H_4 , and C_2H_2 . Z. Phys. D: At., Mol. Clusters **1991**, 19, 385–387.

(28) Liyanage, R.; Zhang, X.-G.; Armentrout, P. B. Activation of methane by size-selected iron cluster cations, Fe_n^+ (n = 2-15): Cluster-CH_x (x = 0-3) bond energies and reaction mechanisms. J. Chem. Phys. **2001**, 115, 9747–9763.

(29) Liu, F.; Zhang, X.-G.; Liyanage, R.; Armentrout, P. B. Methane activation by nickel cluster cations, $Ni_n^+(n = 2-16)$: Reaction mechanisms and thermochemistry of cluster-CH_x (x = 0-3) complexes. J. Chem. Phys. **2004**, 121, 10976–10990.

(30) Koszinowski, K.; Schlangen, M.; Schröder, D.; Schwarz, H. CHand NH-activation by gaseous Rh_2^+ and $PtRh^+$ cluster ions. *Int. J. Mass Spectrom.* **2004**, 237, 19–23.

(31) Adlhart, C.; Uggerud, E. Reactions of platinum clusters Pt_n^{\pm} , n = 1-21, with CH₄: to react or not to react. *Chem. Commun.* **2006**, 2581–2582.

(32) Lang, S. M.; Frank, A.; Bernhardt, T. M. Activation and Catalytic Dehydrogenation of Methane on Small Pd_x^+ and Pd_xO^+ Clusters. J. Phys. Chem. C 2013, 117, 9791–9800.

(33) Wesendrup, R.; Schröder, D.; Schwarz, H. Catalytic Pt⁺-Mediated Oxidation of Methane by Molecular Oxygen in the Gas Phase. *Angew. Chem., Int. Ed. Engl.* **1994**, 33, 1174–1176.

(34) Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Landman, U. Temperature-Tunable Selective Methane Catalysis on Au_2^+ : From Cryogenic Partial Oxidation Yielding Formaldehyde to Cold Ethylene Production. J. Phys. Chem. C 2011, 115, 6788–6795.

(35) Ren, Y.; Yang, Y.; Zhao, Y.-X.; He, S.-G. Size-Dependent Reactivity of Rhodium Cluster Anions toward Methane. *J. Phys. Chem. C* 2019, 123, 17035–17042.

(36) Zhao, Y.-X.; Zhao, X.-G.; Yang, Y.; Ruan, M.; He, S.-G. Rhodium chemistry: A gas phase cluster Study. J. Chem. Phys. 2021, 154, 180901.

(37) Beltran, M. R.; Buendia Zamudio, F.; Chauhan, V.; Sen, P.; Wang, H.; Ko, Y. J.; Bowen, K. Ab initio and anion photoelectron studies of Rh_n (n = 1 -9) clusters. *Eur. Phys. J. D* **2013**, 67, 63.

(38) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

(39) Steinfeld, J. I.; Francisco, J. S.; Hase, W. L. *Chemical Kinetics and Dynamics*; Prentice-Hall: Upper Saddle River, NJ, 1999; p 231 and 313.

(40) Shi, Y.; Ervin, K. M. Catalytic oxidation of carbon monoxide by platinum cluster anions. J. Chem. Phys. **1998**, 108, 1757–1760.

(41) Wallace, W. T.; Whetten, R. L. Coadsorption of CO and O_2 on selected gold clusters: Evidence for efficient room-temperature CO_2 generation. J. Am. Chem. Soc. **2002**, 124, 7499–7505.

(42) Socaciu, L. D.; Hagen, J.; Le Roux, J.; Popolan, D.; Bernhardt, T. M.; Woste, L.; Vajda, S. Strongly cluster size dependent reaction behavior of CO with O_2 on free silver cluster Anions. J. Chem. Phys. **2004**, 120, 2078–2081.

(43) Wilson, J. N.; Pedigo, R. A.; Zaera, F. Kinetics and Mechanism of Catalytic Partial Oxidation Reactions of Alkanes on Rhodium Surfaces. J. Am. Chem. Soc. 2008, 130, 15796–15797.

(44) Uemiya, S.; Sato, N.; Ando, H.; Matsuda, T.; Kikuchi, E. Steam reforming of methane in a hydrogen-permeable membrane reactor. *Appl. Catal.* **1990**, *67*, 223–230.

(45) Yuan, Z.; Zhao, Y.-X.; Li, X.-N.; He, S.-G. Reactions of $V_4O_{10}^+$ cluster ions with simple inorganic and organic Molecules. *Int. J. Mass Spectrom.* **2013**, 354–355, 105–112.

(46) Yuan, Z.; Li, Z.-Y.; Zhou, Z.-X.; Liu, Q.-Y.; Zhao, Y.-X.; He, S.-G. Thermal Reactions of $(V_2O_5)_nO^-$ (n = 1-3) Cluster Anions with Ethylene and Propylene: Oxygen Atom Transfer Versus Molecular Association. *J. Phys. Chem. C* **2014**, *118*, 14967–14976.

(47) Wu, X.-N.; Xu, B.; Meng, J.-H.; He, S.-G. C-H bond activation by nanosized scandium oxide clusters in gas-phase. *Int. J. Mass Spectrom.* **2012**, *310*, 57–64.

(48) Liu, Q.-Y.; Hu, L.; Li, Z.-Y.; Ning, C.-G.; Ma, J.-B.; Chen, H.; He, S.-G. Photoelectron imaging spectroscopy of MoC⁻ and NbN⁻ diatomic anions: A comparative study. *J. Chem. Phys.* **2015**, *142*, 164301.

(49) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; M. Cossi, N. R.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Rev. A.1; Gaussian, Inc.: Wallingford, CT, 2009.

(50) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. **1994**, 100, 5829–5835.

(51) Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. *J. Chem. Phys.* **1989**, *90*, 1730–1734.

(52) Tozer, D. J.; Handy, N. C. Improving Virtual Kohn-Sham Orbitals and Eigenvalues: Application to Excitation Energies and Static Polarizabilities. J. Chem. Phys. **1998**, 109, 10180–10189.