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The Special Issue “Advanced Computational Methods for Oncological Image Analy-
sis”, published for the Journal of Imaging, covered original research papers about state-of-
the-art and novel algorithms and methodologies, as well as applications of computational
methods for oncological image analysis, ranging from radiogenomics to deep learning.
Interesting review articles were also considered.

Nowadays, the amount of heterogeneous biomedical data is constantly increasing, owing
to the advances in image acquisition modalities and high-throughput technologies [1–3].
In particular, this trend applies to oncological image analysis [4]. Cancer is the second
most common cause of death worldwide and encompasses highly variable clinical and
biological scenarios. Some of the current clinical challenges are (i) early disease diagnosis
and (ii) precision medicine, which allows for treatments targeted at specific clinical cases.
The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis
with the most suitable therapies [5].

The automated analysis of these large-scale datasets creates new compelling challenges
that require advanced computational methods, ranging from classic machine learning
techniques [6,7] to deep learning [8,9].

The developed reliable computer-assisted methods (i.e., artificial intelligence), to-
gether with clinicians’ unique knowledge, can be used to properly handle typical issues
in evaluation/quantification procedures (i.e., operator dependence and time-consuming
tasks) [10]. These technological advances can significantly improve result repeatability in
disease diagnosis and act as a guide towards appropriate cancer care. Indeed, the need
for applying machine learning and computational intelligence techniques to effectively
perform image processing operations —such as segmentation, co-registration, classification,
and dimensionality reduction, and multi-omics data integration—has steadily increased.

This Special Issue collects 13 papers related to oncological image analysis, including
10 original contributions and 3 review articles.

In the last few years, the role of medical image computing and quantification has been
remarkably growing. Several areas have benefited from these advances, including oncol-
ogy, since the advancement of computational techniques provides a technological bridge
between radiology and oncology. This aspect could significantly accelerate the adoption
of precision medicine. Regarding medical imaging focusing on traditional image analysis
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tasks—such as registration, fusion, and segmentation—in recent years we have witnessed
the advances of model-based medical image processing for biomarker development [11].

Among sex-related cancers, breast cancer for women and prostate cancer for men are
major causes of disease and death.

Concerning breast cancer, methods to predict its risk or to stratify women in differ-
ent risk levels could help achieve early diagnosis and consequently, mortality reduction.
Literature reviews are useful in providing a comprehensive vision of computer-assisted
approaches to support the clinical process, especially for young scientists [12,13]. In par-
ticular, [14] reviews extraction methods of textural features from mammograms, where
machine learning and deep learning algorithms are used to infer knowledge from the
features and assess breast cancer risk. The accurate diagnosis of breast cancer is very
challenging due to the increasing disease complexity, such as changes in treatment proce-
dures and patient population samples. Improving the performance with suitable diagnosis
techniques could lead to personalized care and treatment, thus reducing and controlling
cancer recurrence [15].

Even though magnetic resonance (MR) has a better capability to differentiate soft
tissues, mammography is the primary imaging modality used for the screening and early
detection of breast cancer. The analysis of mammography images starts with detecting
regions of interest around tumors. Those regions are then delimited through segmentation
and classified as probably benign or malignant tumors. Meanwhile, the manual detection
and delimitation of masses in images is time consuming and error prone. Therefore,
integrated computer-aided detection systems have been proposed to assist radiologists in
the process [16].

Along with the well-known imaging modalities, such as MR, CT, PET, US, which
are now consolidated and used in clinical routine, recently new modalities have emerged
that exploit techniques initially born in non-clinical contexts, such as microwaves [17,18].
When the aim is to reconstruct the dielectric/conductivity profile of the tissue under
examination, “quantitative” algorithms must be adopted. In these cases, the reconstructions
are basically optimized iteratively to consider the non-linearity. Among linear imaging
methods, commonly addressed as radar approaches, beam forming (BF) is probably the
most popular in microwave breast imaging. Basically, it consists of time-shifting the
signals received over the measurement aperture to isolate signals scattered from (and hence
to focus at) a particular synthetic focal point belonging to the imaged spatial area [17].
Microwave-based tomography is a model-based imaging modality that approximately
reconstructs the actual internal spatial distribution of a breast's dielectric properties over a
reconstruction model consisting of discrete elements. Breast tissue types are characterized
by their dielectric properties, so the complex permittivity profile could help distinguish
different tissue types [18].

Prostate cancer is one of the most diagnosed cancers in men and can often cause bone
metastases. In this case, the most common imaging technique for screening, diagnosis,
and the follow-up of disease evolution is bone scintigraphy, due to its high sensitivity and
widespread availability in nuclear medicine facilities. To date, the assessment of bone scans
relies solely on the interpretation of an expert physician who visually assesses the scan.
This time-consuming task is also subjective, due to the lack of well-established criteria
to identify bone metastases and quantify them using a straightforward and universally
accepted procedure. The aim of the work in [19] was to provide the physician with a fast,
precise, and reliable tool to quantify bone scans and evaluate disease progression/response
to treatment.

Immunotherapy is one of the most significant breakthroughs in cancer treatment.
Unfortunately, only a few patients respond positively to the treatment. Moreover, to date,
no efficient biomarkers exist for discriminating patients eligible for this treatment in an
early stage. To help overcome these limitations, the development of tools for discriminating
between patients with high chances of response and those with disease progression is
needed [20].
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Among tumors, brain lesions are one of the foremost reasons for the rise in mortality
among children and adults. A brain tumor is a mass of tissue that propagates out of control
of the normal forces that regulate growth inside the brain [21]. The quantitative analysis
of brain tumors provides valuable information for understanding tumor characteristics
and planning better treatment. The manual segmentation of brain tumors is a challenging
and time-consuming task. The accurate segmentation of lesions requires multiple image
modalities with varying contrasts. As a result, manual segmentation, which is arguably
the most accurate segmentation method, would be impractical for more extensive studies.
Moreover, automated brain tumor classification on MRI is non-invasive, so that it avoids
biopsy and makes the diagnosis process safer. The effort of the research community
to propose automatic brain tumor segmentation and classification methods has been
tremendous. As a result, ample literature exists on segmentation using region growing,
traditional machine learning and deep learning methods [22,23]. Similarly, a number of
tasks have been successfully conducted in the area of brain tumor classification into their
respective histological type.

Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-
up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds
are currently emerging in clinical practice as a non-invasive technology for therapy. Indeed,
the sound waves can increase the temperature inside the target solid tumors, leading to the
apoptosis or necrosis of neoplastic tissues. The MR-guided focused ultrasound surgery
(MRgFUS) technology represents a valid application of this ultrasound property, mainly
used in oncology and neurology [24]. Patient safety during MRgFUS treatments was
investigated because temperature increases during the treatment are not always accurately
detected by MRI-based referenceless thermometry methods. For these reasons, in-depth
studies about these aspects are needed to monitor temperature and improve safety during
MRgFUS treatments.

Deep learning approaches represent state-of-the-art techniques in many clinical sce-
narios, allowing for excellent performance. In the clinical setting, the main problem derives
from their black-box approach (i.e., the nature of neural networks)—understanding and
interpreting their internal mechanisms are difficult. Moreover, they require a training phase
on large-scale datasets. These drawbacks undermine their immediate clinical feasibility.
Apart from that, deep learning architectures, specifically convolutional neural networks
(CNNs), are well-established in image analysis, processing, and representation. They can
optimize feature design tasks that are essential to automatically analyze different types of
medical images [25–27]. Various approaches have been developed using CNN architectures,
aiming to support the clinical routine, such as tumor segmentation [16], skin melanoma
prediction [28], and the estimation of the immunotherapy treatment response [20].
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