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A B S T R A C T

Numerous studies connect beta oscillations in the motor cortices to volitional movement, and beta is known to be
aberrant in multiple movement disorders. However, the dynamic interplay between these beta oscillations,
motor performance, and spontaneous beta power (e.g., during rest) in the motor cortices remains unknown. This
study utilized magnetoencephalography (MEG) to investigate these three parameters and their lifespan trajec-
tory in 57 healthy participants aged 9–75 years old. Movement-related beta activity was imaged using a
beamforming approach, and voxel time series data were extracted from the peak voxels in the primary motor
cortices. Our results indicated that spontaneous beta power during rest followed a quadratic lifespan trajectory,
while movement-related beta oscillations linearly increased with age. Follow-on analyses showed that sponta-
neous beta power and the beta minima during movement, together, significantly predicted task performance
above and beyond the effects of age. These data are the first to show lifespan trajectories among measures of beta
activity in the motor cortices, and suggest that the healthy brain compensates for age-related increases in
spontaneous beta activity by increasing the strength of beta oscillations within the motor cortices which, when
successful, enables normal motor performance into later life.

1. Introduction

Transient human movement is served by a specific pattern of neural
oscillatory activity, particularly in the beta band (14–30 Hz). Briefly,
prior to and during movement, there is a strong decrease in beta ac-
tivity relative to baseline levels, known as the peri-movement beta
event-related desynchronization (ERD), which begins about 1.0 s before
movement onset and dissipates shortly after movement concludes
(Cheyne et al., 2006; Engel and Fries, 2010; Gaetz et al., 2010;
Heinrichs-Graham and Wilson, 2015, 2016; Heinrichs-Graham et al.,
2014b; Jurkiewicz et al., 2006; Pfurtscheller and Lopes da Silva, 1999;
Wilson et al., 2014, 2010, 2011). This response has been reliably as-
sociated with movement planning and execution (Doyle et al., 2005;
Grent-'t-Jong et al., 2014; Heinrichs-Graham et al., 2016; Heinrichs-
Graham and Wilson, 2015; Kaiser et al., 2001; Tzagarakis et al., 2010).
Following the beta ERD, there is a strong resynchronization (above

baseline levels), termed the post-movement beta rebound (PMBR),
which extends from approximately 0.8–2.5 s after movement has
stopped (Cheyne et al., 2006; Gaetz et al., 2010; Heinrichs-Graham
et al., 2014b; Jurkiewicz et al., 2006; Pfurtscheller and Lopes da Silva,
1999; Wilson et al., 2010, 2011). During simple movements, these beta-
band oscillations reliably peak in the precentral gyri bilaterally with
stronger activity contralateral to movement, while more complex
movements (and some simple movements) also induce activity in the
supplementary motor area and bilateral premotor cortices, postcentral
gyri, parietal cortices, and cerebellum (Cheyne et al., 2006, 2008; Fry
et al., 2016; Gaetz and Cheyne, 2006; Gaetz et al., 2010; Heinrichs-
Graham et al., 2016; Heinrichs-Graham and Wilson, 2015, 2016;
Heinrichs-Graham et al., 2014b; Jurkiewicz et al., 2006;
Muthukumaraswamy, 2010; Wilson et al., 2010).

Prior studies have shown that these movement-related oscillatory
patterns change as a function of age (Gaetz et al., 2010; Rossiter et al.,
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2014; Wilson et al., 2010). For example, a magnetoencephalography
(MEG) study of simple movements showed that the beta ERD becomes
stronger (i.e., more negative relative to baseline) and the PMBR linearly
increases from childhood to early adulthood, with young children (aged
4–6 years) exhibiting little-to-no PMBR response (Gaetz et al., 2010).
Another MEG study showed a similar linear increase in beta ERD from
early to late adulthood (Rossiter et al., 2014). Interestingly, this study
also found a significant age-related linear increase in spontaneous (i.e.,
no task) beta activity in the motor cortices (Rossiter et al., 2014). Re-
cently, our laboratory utilized MEG and a motor sequencing task to
directly probe the relationship between spontaneous beta activity and
motor-related oscillations in the context of healthy aging (Heinrichs-
Graham and Wilson, 2016). Consistent with previous findings, we
found that older adults exhibited an almost threefold increase in
spontaneous beta power in the primary motor cortices, as well as sig-
nificantly stronger beta ERD in the same regions compared to younger
adults. Taken together, these studies provide substantial evidence that
there are major neurophysiological changes that occur in the motor
cortices throughout the lifespan.

Importantly, the aforementioned study from our laboratory
(Heinrichs-Graham and Wilson, 2016) also found a direct linear re-
lationship between spontaneous beta power and peri-movement beta
ERD power, such that with greater spontaneous (resting) beta, there
was greater baseline-relative beta suppression (i.e., ERD) during
movement. In addition, we found a significant relationship between
baseline-relative beta ERD and movement duration, such that the
greater the decrease in beta power relative to baseline levels, the longer
the movement duration (Heinrichs-Graham and Wilson, 2016). This
pattern of results suggests that spontaneous beta activity in the primary
motor cortex and movement-related beta ERD power are directly re-
lated, and that the relationship between these two measures affects
motor performance (see Fig. 1). This significant link between sponta-
neous and motor-related beta oscillatory activity also corroborated an
earlier MEG study (Wilson et al., 2014), which investigated the impact
of time-of-day on motor-related oscillatory activity. This study found a
linear increase in peri-movement beta ERD power (i.e., more negative
relative to baseline), coupled with a roughly proportional increase in
spontaneous beta power, as a function of time of day (Wilson et al.,
2014). While not directly investigated in this study, this pattern of re-
sults clearly suggested that the two neurophysiological measures were
linked, as the stronger peri-movement beta ERD during movement
appeared to be offsetting the increased spontaneous beta levels during
both the baseline period and a separately-acquired resting state re-
cording (Wilson et al., 2014).

While these and other studies have independently suggested that
there is a unique change in beta oscillatory activity as a function of age
and that these oscillatory measures are directly related, no study to date
has looked at the nature of this relationship across the lifespan.
Basically, studies have shown differences in movement-related beta

activity from youth to adulthood (Gaetz et al., 2010), while others have
shown differences in beta activity from younger to older adulthood
(Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014), but criti-
cally missing is the developmental trajectory of these measures from
youth to late adulthood. Such information could provide invaluable
data on functional brain maturation, and serve as a baseline by which
pathology could be assessed. Furthermore, examining these responses
across the lifespan would provide a powerful testbed for determining
whether spontaneous beta levels are directly related to the strength of
the beta ERD. In the current study, we used a complex motor sequence
paradigm to study the relationship between spontaneous beta activity
and movement-related beta oscillations in the motor cortices from
preadolescence through late adulthood. We first sought to determine
how spontaneous activity in the motor cortex and movement-related
beta oscillations change as a function of age. Secondly, we aimed to
examine the relationship between spontaneous beta activity and
movement-related oscillations in the context of development and aging
(Fig. 1). We hypothesized that there would be unique developmental
trajectories for both spontaneous and movement-related beta oscilla-
tory responses. Further, we hypothesized that there would be a tight
link between these responses, and that this relationship would mediate
motor performance across the lifespan.

2. Material and methods

2.1. Subject selection

A total of 57 males were enrolled in the study. We focused on males
in this study due to several recent reports of sex differences in the aging
brain (Scheinost et al., 2015; Shaw et al., 2016). All participants were
recruited from the local community. Data from the adults were included
in another recent publication (Heinrichs-Graham and Wilson, 2016);
however, these data were fully re-analyzed as described below. Thus,
all reported results, with the exception of the adult behavioral data, are
unique to this publication. Exclusionary criteria included inability to
perform the task, any medical illness affecting CNS function, neurolo-
gical or psychiatric disorder, history of head trauma, current substance
abuse, any medication known to affect CNS function, and the MEG
Laboratory’s standard exclusion criteria (e.g., dental braces, metal im-
plants, battery operated implants, and/or any type of ferromagnetic
implanted material). After complete description of the study was given
to participants, written informed consent was obtained from the adult
participants and parents of the youth participants, and informed assent
was obtained from the youth participants, following the guidelines of
the University of Nebraska Medical Center’s Institutional Review Board
which approved the study protocol. Six additional youth were re-
cruited, but excluded from analysis due to our standard MEG exclu-
sionary criteria (e.g., movement artifacts, inability to perform the task).

2.2. Experimental paradigm and stimuli

During MEG recording, participants were seated in a nonmagnetic
chair within the magnetically-shielded room, and each participant
rested their right hand on a custom-made five-finger button pad. This
response pad was connected such that each button sent a unique signal
(i.e., TTL pulse/trigger code) to the MEG system acquisition computer,
and thus behavioral responses were temporally synced with the MEG
data. This allowed accuracy, reaction times (i.e., time between the cue
to move and first button press), and movement durations (i.e., how long
it took to complete the tapping sequence) in ms to be computed offline.
Each participant first completed a motor sequencing task, during which
they were instructed to complete a series of finger-tapping sequences as
quickly and accurately as possible. During the motor sequencing task,
participants fixated on a crosshair presented centrally. After a sufficient
baseline period of 3.75 s, a series of three numbers, each corresponding
to a finger on the hand, was presented on the screen in black for 0.5 s.

Fig. 1. Proposed relationship between spontaneous beta power and movement-re-
lated beta oscillations in the primary motor cortex. The central goals of this study
were to identify the dynamic link between spontaneous (i.e., no task) beta power (left)
and movement-related beta oscillations (right), and to determine their combined impact
on motor performance throughout the lifespan. Previous studies have shown that spon-
taneous beta levels in the motor cortices sharply increase in later life (Heinrichs-Graham
and Wilson, 2016; Rossiter et al., 2014).
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After 0.5 s, the numbers changed color, signaling the participant to tap
the fingers corresponding to the motor plan sequentially. The partici-
pant was given 2.25 s to complete the motor plan and return to rest.
This series of slides constituted one trial; Fig. 2 depicts the total time
course of a single trial, as well as the response pad used. A total of 10
practice trials prior to the recording (not analyzed) and 160 trials
during the recording were completed. Following the motor sequencing
task, participants completed six minutes of eyes-closed rest during each
MEG session. Total MEG recording time was ∼22min (including both
tasks).

2.3. MEG data acquisition & coregistration with structural MRI

All recordings were conducted in a one-layer magnetically-shielded
room with active shielding engaged. Neuromagnetic responses were
sampled continuously at 1 kHz with an acquisition bandwidth of
0.1–330 Hz using an Elekta MEG system with 306 magnetic sensors
(Elekta, Helsinki, Finland). Using MaxFilter (v2.2; Elekta), MEG data
from each subject were individually corrected for head motion and
subjected to noise reduction using the signal space separation method
with a temporal extension (Taulu and Simola, 2006; Taulu et al., 2005).
For motion correction, the position of the head throughout the re-
cording was aligned to the individual’s head position when the re-
cording was initiated. Each participant’s MEG data were coregistered
with high-resolution structural T1-weighted MRI data, prior to the ap-
plication of source space analyses (i.e., beamforming), using BESA MRI
(Version 2.0). These anatomic images were acquired with a Philips
Achieva 3T X-series scanner using an eight-channel head coil (adult
participants; TR: 8.09ms; TE: 3.7ms; field of view: 240mm; slice
thickness: 1 mm with no gap; in-plane resolution: 1.0× 1.0 mm), and a
3T Siemens Skyra scanner using a 32-channel head coil (youth parti-
cipants; TR: 24.0ms; TE: 1.94ms; field of view: 256mm; slice thick-
ness: 1 mm with no gap; in-plane resolution: 1.0× 1.0mm). The re-
solution and quality of the resulting images were similar across groups,
and ultimately were used only for coregistration of structural and
functional data. The structural volumes were aligned parallel to the
anterior and posterior commissures and transformed into standardized
space. After beamformer analysis, each subject’s functional images were
also transformed into standardized space using the transform that was
previously applied to the structural MRI volume and spatially re-
sampled.

2.4. MEG preprocessing, time-frequency transformation, & sensor-level
statistics

Prior to analysis, all MEG data were corrected for head motion,
subjected to noise reduction using the signal space separation method
with a temporal extension (Taulu and Simola, 2006), and coregistered
to structural MRI. Cardio-artifacts were removed from the data using
signal-space projection (SSP), which was accounted for during source
reconstruction (Uusitalo and Ilmoniemi, 1997). The continuous mag-
netic time series was divided into epochs of 5.8 s duration, with 0.0 s

defined as movement onset (i.e., first button press; −2.0 s to 3.8 s, 0.0
s=movement onset, −1.8 to −1.2 s baseline). Only correct trials were
used for analysis. Epochs containing artifacts were rejected based on a
fixed threshold method, supplemented with visual inspection. Fol-
lowing artifact rejection, the average number of trials was initially
118.39 (SD: 7.46) for youth, 131.44 (SD: 5.97) for young adults, and
130.24 (SD: 5.91) for older adults. However, this difference was sig-
nificant between groups, F(1,48)= 20.061, p < 0.001, such that youth
had significantly less correct, artifact-free trials than young, t
(32)= 5.298, p < 0.001, and older adults, t(33)= 5.309, p < 0.001.
Such differences in the number of accepted trials can cause signal-to-
noise ratios to be different between groups, and thus bias later stages of
the analysis (e.g., beamformer images). To ameliorate this concern, the
number of accepted trials in the young and older adult groups were
reduced, such that there was no longer a difference in the number of
correct trials used in the subsequent analyses between groups, F
(2,48)= 0.378, p=0.687. Artifact-free epochs were then transformed
into the time-frequency domain using complex demodulation (resolu-
tion: 2.0 Hz, 25ms) and the resulting spectral power estimations per
sensor were averaged over trials to generate time-frequency plots of
mean spectral density. These sensor-level data were normalized by di-
viding the power value of each time-frequency bin by the respective
bin’s baseline power.

The specific time-frequency windows used for imaging were de-
termined by statistical analysis of the sensor-level spectrograms across
the entire array of gradiometers. Each data point in the spectrogram
was initially evaluated using a mass univariate approach based on the
general linear model. To reduce the risk of false positive results while
maintaining reasonable sensitivity, a two stage procedure was followed
to control for Type 1 error. In the first stage, one-sample t-tests were
conducted on each data point and the output spectrogram of t-values
was thresholded at p < 0.05 to define time-frequency bins containing
potentially significant oscillatory deviations across all participants. In
stage two, time-frequency bins that survived the threshold were clus-
tered with temporally and/or spectrally neighboring bins that were also
below the (p < 0.05) threshold, and a cluster value was derived by
summing all of the t-values of all data points in the cluster.
Nonparametric permutation testing was then used to derive a dis-
tribution of cluster-values and the significance level of the observed
clusters (from stage one) was tested directly using this distribution
(Ernst, 2004; Maris and Oostenveld, 2007). For each comparison, at
least 10,000 permutations were computed to build a distribution of
cluster values. Based on these analyses, time-frequency windows that
corresponded to events of a priori interest (e.g., the peri-movement beta
ERD) and contained a statistically significant oscillatory event across all
participants were subjected to the beamforming analysis (i.e., −0.2 to
0.4 s, 16–26 Hz, movement onset= 0.0 s).

2.5. MEG imaging & virtual sensor extraction

Cortical networks were imaged through an extension of the linearly
constrained minimum variance vector beamformer (Gross et al., 2001;

Fig. 2. A) Motor sequencing task. Participants fix-
ated on a crosshair for 3.75 s. After this baseline
period, a series of three numbers (each corre-
sponding to a digit on the finger) appeared on the
screen in black and after 0.5 s the numbers changed
color cueing the participant to move. The participant
then had 2.25 s to complete the motor plan and re-
turn to rest. B) The button pad used during this
task. Each button on the pad corresponded to a
specific finger.
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Hillebrand et al., 2005; Van Veen et al., 1997). MEG pre-processing and
imaging used the Brain Electrical Source Analysis (BESA version 6.1)
software. Normalized source power was computed for the selected time-
frequency bands over the entire brain volume per participant at
4.0× 4.0×4.0mm resolution. Beamformer images per time-frequency
window of interest were then averaged across participants in each
group individually, and coordinates corresponding to the peak re-
sponses were identified. We then extracted virtual sensors for the peak
voxel of these responses, which corresponded to the left and right
precentral gyri. To create the virtual sensors, we applied the sensor
weighting matrix derived through the forward computation to the
preprocessed signal vector, which yielded two time series for each co-
ordinate in source space and we used the time series with the maximal
response for our analyses (Gross et al., 2001). Note that this virtual
sensor extraction was done per participant, once the coordinates of
interest (i.e., one per cluster) were known. Virtual sensors were ex-
tracted from the eyes-closed rest data using the same coordinates and
computational method. Once these virtual sensors were extracted, ab-
solute spontaneous beta activity values (during the eyes-closed rest
recording), and absolute and relative (to baseline) beta activity values
during movement were computed and subject to statistical analyses.

3. Results

A total of 18 healthy youth (mean age: 11.33 (SD: 1.61) years,
range: 9–14 years), 16 healthy younger adults (mean age: 28.31 (SD:
5.44) years, range 20–42 years) and 17 healthy older adults (mean age:
65.41 (SD: 7.09) years, range 54–75 years) were able to successfully
complete the motor task. One-way ANOVAs probing group differences
in accuracy, reaction time, and movement duration were each sig-
nificant (accuracy: F(2,48)= 11.006, p < 0.001; reaction time: F
(2,48)= 13.633, p < 0.001; movement duration: F(2,48)= 10.600,
p < 0.001). Follow-up t-tests showed no significant difference in ac-
curacy between young and older adults, t(31)= 0.237, p=0.814, but
youth were significantly less accurate than both young, t(32)= 3.467,
p=0.002, and older adults, t(33)= 3.909, p < 0.001. There was no
difference in reaction time between young and older adults, t
(31)= 0.712, p=0.482. However, like accuracy, youth had sig-
nificantly slower reaction time than young, t(32)= 4.358, p < 0.001,
and older adults, t(33)= 3.401, p=0.002. Finally, there was a differ-
ence in movement duration between young and older adults, t
(31)= 4.945, p < 0.001, and younger adults and youth, t
(32)= 3.537, p=0.001, with the older adults and youth both ex-
ecuting sequences significantly slower than young adults. Youth and
older adults did not significantly differ in movement duration, t
(33)= 1.250, p=0.220. Behavioral results are shown in Fig. 3. To
control for behavioral differences between groups, MEG data analyses
were synced with movement onset in each trial and all analyses were

focused on the time window preceding and during the early stages of
movement execution.

3.1. MEG sensor-level results

Sensor-level time-frequency spectrograms were statistically ex-
amined using nonparametric permutation testing to derive the precise
time-frequency bins for follow up beamforming analyses. The results
showed significant beta ERD in gradiometers near the left and right
sensorimotor cortices in each group, which extended from approxi-
mately 0.5 s before movement onset until about 0.9 s after movement
onset in the 16–26 Hz range (0.0 s=movement onset; p < 0.001;
corrected). A significant resynchronization (i.e., PMBR) in the same
16–26 Hz band was detected during the 1.1–2.5 s time window (0.0
s=movement onset) in roughly the same gradiometers (p < 0.001;
corrected). The time-frequency windows for the beta ERD and PMBR
are in broad agreement with many previous studies (Cheyne et al.,
2006; Engel and Fries, 2010; Fry et al., 2016; Gaetz et al., 2011, 2010;
Heinrichs-Graham et al., 2017a; Heinrichs-Graham and Wilson, 2015,
2016; Heinrichs-Graham et al., 2014b; Houdayer et al., 2006;
Jurkiewicz et al., 2006; Kaiser et al., 2001; Parkes et al., 2006;
Pfurtscheller and Lopes da Silva, 1999; Reyns et al., 2008; Salenius
et al., 1997; Salmelin et al., 1995; Tzagarakis et al., 2010; Wilson et al.,
2014, 2010, 2011).

3.2. Source imaging & voxel time series results

The time window corresponding to the maximum beta ERD re-
sponse (-0.2 to 0.4 s), and a window of equal bandwidth and duration
from the baseline period (−1.8 to−1.2 s), was imaged using a linearly-
constrained minimum variance beamformer to derive the spatial loca-
tion of significant beta ERD activity for subsequent virtual-sensor
analysis. We then extracted virtual sensors (voxel time series) for the
peak voxel of these responses. Peak peri-movement beta ERD responses
were located bilaterally within the precentral gyri in each group, and
are shown with group-averaged virtual sensor spectrograms in Fig. 4.

3.2.1. Spontaneous beta power
Analysis of beta power during eyes-closed rest was compared using

a mixed-model ANOVA of hemisphere (left, right) as a within-subjects
factor and group (youth, young adults, older adults) as a between-
subjects factor. One youth participant’s data was excluded, as it was
over 3 SD above the group mean. There was a significant effect of
group, F(2,47)= 32.523, p < 0.001, as well as a significant hemi-
sphere-by-group interaction, F(2,47)= 4.115, p=0.023. There was no
significant effect of hemisphere, F(1,47)= 2.401, p=0.128. Follow-up
t-tests showed that youth had significantly greater spontaneous beta
power than young adults in the left, t(31)= 6.258, p < 0.001 and right

Fig. 3. Motor task behavioral results. Significant
differences in accuracy (percentage correct), reaction
time (time between cue to move and first move-
ment), and movement duration (time to complete the
tapping sequence) between groups are denoted with
an asterisk. See legend for color descriptions. Error
bars denote the standard error of the mean (SEM).
*= p < 0.05.
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precentral gyri, t(31)= 7.248, p < 0.001. On the contrary, youth had
significantly less beta power than older adults in the left, t(32)= 5.329,
p < 0.001, and right precentral gyri, t(32)= 4.222 p < 0.001. Young
adults also showed diminished spontaneous beta power compared to
older adults in the left, t(31)= 6.602, p < 0.001, and right precentral
gyri, t(31)= 5.823, p < 0.001. These results are shown in Fig. 5 and
Table 1.

In order to ensure that these baseline levels during the movement
task were not artificially high due to unequal contamination by the
PMBR in any group or hemisphere, we compared baseline beta power
with spontaneous beta power using a mixed-model ANOVA, with task
(eyes-closed rest, motor baseline) and hemisphere (left, right) as within
subjects factors, and group as a between-subjects factor. This analysis
can be found in the Supplementary Material (S1). In short, beta power

at rest and baseline beta power during the movement task were not
significantly different; thus, we are confident that differences in base-
line power between groups during the task were not due to con-
tamination by the PMBR.

3.2.2. Baseline-relative beta power during movement
Group differences in the mean peri-movement beta ERD power

during the −0.2 to 0.4 s time period were assessed using the virtual
sensor data from the left and right precentral gyri, and a mixed-model
ANOVA with hemisphere (left, right) as a within-subjects factor, and
group (youth, young adult, older adult) as a between-subjects factor.
There was a significant main effect of group, F(2,48)= 29.306,
p < 0.001, and hemisphere, F(1,48)= 9.234, p=0.004. There was no
significant hemisphere-by-group interaction, F(2,48)= 0.186,
p=0.831. Follow-up testing of the hemisphere effect showed greater
beta ERD power (i.e., more negative relative to baseline) in the left
compared to the right precentral gyrus across participants, t
(50)= 3.104, p=0.003, which was expected given that the task was
performed with the right hand. Follow-up testing of the group effect
revealed that older adults had significantly stronger baseline-relative
beta ERD power in the left and right precentral gyri compared to
younger adults, t(31)= 5.242, p < 0.001, and youth, t(33)= 8.770,
p < 0.001. There was no significant difference in beta ERD power
between youth and younger adults, t(32)= 1.210, p=0.235 (Fig. 6;
Table 1).

3.2.3. Absolute beta power during movement
Absolute beta power during the same −0.2 to 0.4 s period was also

extracted from the left and right precentral gyri, and group differences
were assessed using another mixed model ANOVA with the same factors
(hemisphere and group). This analysis revealed a significant effect of
group, F(2,48)= 39.917, p < 0.001, as well as a significant hemi-
sphere-by-group interaction, F(2,48)= 4.260, p=0.020. There was no
significant effect of hemisphere, F(1,48)= 0.382, p=0.539. Follow-up
t-tests showed significant differences in absolute beta power during this
time period between all groups in the left precentral gyrus, youth vs.
young adults: t(32)= 5.836, p < 0.001; youth vs. older adults: t
(33)= 5.233, p < 0.001; young vs. older adults: t(31)= 8.255,
p < 0.001. The same was true for the right precentral gyrus, youth vs.
young adults: t(32)= 7.110, p < 0.001; youth vs. older adults: t
(33)= 3.754, p=0.001; young vs. older adults: t(31)= 6.570,

Fig. 4. Identification of peri-movement beta ERD and peak voxel extraction. Group mean beamformer images (pseudo-t; see color bar) of beta activity prior to and during movement
(−0.2 to 0.4 s, 16–26 Hz) for each age group are shown in the top panel, with the peak voxel locations used for the virtual sensor analysis identified with a yellow dot. Note that a
different pseudo-t scale is used in each group. Time-frequency spectrograms of the peak voxel time series are shown on the bottom panel. Time (in s) is denoted on the x-axis, with 0.0 s
defined as movement onset. Frequency (in Hz) is shown on the y-axis. All signal power data (bottom panel) is expressed as the percent difference from baseline, with the color legend
shown to the right. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Spontaneous beta power in the motor cortices. Beta power during eyes-closed
rest was extracted from the voxels of the left and right precentral gyri that were identified
in the motor task. Average power (in nAm2) is shown on the y-axis, while region is
identified on the x-axis. Youth are shown in green, young adults are shown in blue, and
older adults are shown in red. As shown, spontaneous beta activity was much stronger in
older adults compared to youth and young adults. Youth also exhibited greater activity
than young adults. Error bars denote SEM. *p < 0.001. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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p < 0.001 (Fig. 6; Table 1).

3.3. Relationships between measures

A curve estimation analysis was performed to determine the nature
of the relationship between age and physiology. Briefly, while differ-
ences between groups were found on almost every beta metric, a curve
estimation analysis provides a measure of the best-fit line from data
across the lifespan. In other words, it statistically confirms and/or
clarifies the trajectory of age-related differences in beta activity using
age as a continuous variable. The curve estimation analysis between
spontaneous beta power in the left precentral gyrus and age determined
that this relationship was quadratic in nature, F(2,47)= 27.234,
p < 0.001, r2= 0.537, and a similar quadratic relationship was found
between age and spontaneous beta power in the right precentral gyrus,
F(2,47)= 18.862, p < 0.001, r2= 0.445. Quadratic relationships were
also found between absolute beta power during movement and age in
the left and right precentral gyri, left: F(2,48)= 38.106, p < 0.001,
r2= 0.614; right: F(2,48)= 35.367, p < 0.001, r2= 0.596. In con-
trast, curve estimation analysis between baseline-relative beta ERD
amplitude and age was found to be negative and linear in the left, F
(1,49)= 44.689, p < 0.001, r2= 0.477, and right precentral gyrus, F
(1,49)= 50.295, p < 0.001, r2= 0.507, such that with increased age,
there was a stronger (more negative relative to baseline) beta ERD re-
sponse bilaterally (Fig. 6).

Next, correlations between neurophysiological and behavioral
measures were performed, controlling for age. All p-values were cor-
rected for multiple comparisons using the false-discovery rate
(Benjamini and Hochberg, 1995). There was a significant relationship
between movement duration and absolute beta power during move-
ment in the left precentral gyrus, r(47)= 0.415, p=0.012, as well as
the right precentral gyrus, r(47)= 0.429, p=0.012, such that the
greater the absolute beta power during movement, the greater the
movement duration, regardless of age. There was also a significant re-
lationship between reaction time and absolute beta power during
movement in the right precentral gyrus, r(47)= 0.413, p=0.012. Fi-
nally, similar to our previous work (Heinrichs-Graham and Wilson,
2016), we found a significant linear relationship between spontaneous
beta power and baseline-relative beta ERD power in the left precentral
gyrus, r(47)=−0.406, p=0.014, as well as the right precentral gyrus,
r(47)=−0.476, p=0.008, controlling for age. No other correlations
were significant.

Given the unique patterns of spontaneous and baseline-relative beta
power and age, coupled with the significant relationship between

absolute beta power during movement, we hypothesized that move-
ment performance may be governed by both spontaneous beta levels in
the motor cortices, and the capacity of the motor cortex to compensate
for differences in spontaneous beta levels by desynchronizing to a
specific threshold. In order to test this hypothesis, we ran two, two-
stage stepwise hierarchical regressions on the left and right precentral
gyri individually, using movement duration as the dependent variable
and age as a regressor at the first stage in both regressions, then adding
left or right spontaneous beta power and baseline-relative beta ERD as
regressors in the second stage, respectively. Interestingly, we found that
left precentral spontaneous beta activity and beta ERD, together but not
individually, significantly predicted movement duration, above and
beyond the effects of age. This analysis can be found in the
Supplementary Information (S2).

4. Discussion

The current study examined how the relationship between sponta-
neous beta levels and movement-related beta oscillatory activity was
modulated by age in healthy participants aged 9–75 years. We found
significant differences in spontaneous beta and movement-related beta
oscillations between the three age groups. Interestingly, distinct pat-
terns emerged depending on whether the analysis focused on absolute
or baseline-relative beta activity during movement. Curve estimation
analyses confirmed a quadratic relationship between spontaneous beta
activity and age, such that spontaneous beta power in the motor cor-
tices initially decreased from youth to early adulthood, and then dras-
tically increased from early to late adulthood. The same pattern
emerged between absolute beta activity during movement and age. In
contrast, there was a linear decrease in baseline-relative beta activity
during movement (i.e., stronger beta ERD) as a function of age.
Moreover, we found that absolute beta power during movement un-
iquely correlated with movement duration, such that the higher the
absolute beta power before and during movement, the longer the
movement duration, controlling for age. Below, we discuss the im-
plications of these results for understanding the functional roles and
unique relationships between measures of beta oscillatory activity
during motor performance, especially across the lifespan.

Perhaps our most surprising results were the differences in the
lifespan trajectories of spontaneous and movement-related beta oscil-
latory activity, where spontaneous (resting) beta showed a quadratic
relationship with age, while baseline-relative beta ERD power showed a
linear relationship. We suggest that the quadratic relationship between
spontaneous power and age may reflect different aspects of brain

Table 1
Independent t-tests between Neurophysiological Measures and Age Group.

Response Test measures Direction t p

Baseline-relative beta power during movement Total (L+R): OA and YA OA > YA 5.242 < 0.001
Total (L+R): OA and youth OA > youth 8.770 < 0.001
Total (L+R): YA and youth n.s. 1.210 0.235

Absolute beta during movement L precentral: OA and YA OA > YA 8.255 < 0.001
L precentral: OA and youth OA > youth 5.233 < 0.001
L precentral: YA and youth YA < youth 5.836 < 0.001
R precentral: OA and YA OA > YA 6.570 < 0.001
R precentral: OA and youth OA > youth 3.754 0.001
R precentral: YA and youth YA < youth 7.110 < 0.001

Spontaneous beta power L precentral: OA and YA OA > YA 6.602 < 0.001
L precentral: OA and youth OA > youth 5.329 < 0.001
L precentral: YA and youth YA < youth 6.258 < 0.001
R precentral: OA and YA OA > YA 5.823 < 0.001
R precentral: OA and youth OA > youth 4.222 < 0.001
R precentral: YA and youth YA < youth 7.248 < 0.001

Notes: OA=older adults; YA= young adults.
For the peri-movement beta ERD, a stronger response means more negative (relative to baseline).
Beta ERD comparisons were made across hemisphere, as there was no hemisphere-by-group interaction.
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maturation. Basically, cortical thickness studies have shown that thin-
ning in the motor cortices starts to taper-off between 9 and 10 years old
(Shaw et al., 2008), with some research estimating that this process
asymptotes at around 14 years old (Vandekar et al., 2015). During this
time, spontaneous beta activity may also begin to become more “opti-
mized,” such that the motor cortices become less active at rest, perhaps
indicative of greater neuronal efficiency. During early adulthood, a
time of optimal brain health and behavior, this spontaneous activity
was at its minimum. Finally, during late adulthood, there is an de-
creased efficiency of neural circuits (for a review, see Antonenko and
Floel (2014)), and this may result in an increase in spontaneous ac-
tivity. Unfortunately, we can only speculate on the cellular physiology
and micro-structural underpinnings of this pattern of motor activity,
and future studies in animal models are likely needed to understand the
basic mechanisms. As mentioned previously, prior work has shown a
linear increase in beta ERD responses during movement as a function of
age, with children exhibiting very little relative deviation from baseline
levels compared to young adults (Gaetz et al., 2010), and with young
adults showing a fraction of the beta suppression observed in older
adults (Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014).
However, this pattern of movement-related beta ERD has always been
computed relative to baseline levels. Thus, the quadratic relationship
that we found between spontaneous beta power and age complicates
any interpretation of baseline-corrected beta ERD values between the
age groups in this and other studies.

One interpretation of this distinct pattern between spontaneous and
movement-related beta trajectories is that with increased age, there is
an increased dynamic range of beta activity in the primary motor cor-
tices during movement, which may be beneficial in the presence of
increased, and potentially “sub-optimal” spontaneous beta levels. A
schematic of this hypothesis is shown in Fig. 7 and detailed below.
Basically, we posit that an elevation in spontaneous beta activity,
coupled with reduced beta suppression, is related to a gross reduction in
motor performance. This pattern of physiology and behavior is de-
monstrated in the youth data of the current study, who had significantly
greater spontaneous beta activity compared to young adults, as well as
less suppression of beta during movement. These participants also had
significantly lower accuracy, longer reaction times, and longer move-
ment durations compared to the young adults. During early adulthood,
a reduction in spontaneous beta power coupled with increased beta
suppression during movement (i.e., stronger ERD) is observed, which
provides more ideal movement-related beta power levels and results in
optimal motor performance, a pattern evidenced in the current study.
In older adulthood, there continued to be greater beta suppression (i.e.,
stronger ERD), but the increase in spontaneous beta power was larger
than this increased beta suppression, which resulted in elevated abso-
lute beta power levels during movement in these participants relative to
younger adults. This was coupled with in increased movement dura-
tion, although accuracy and reaction time did not differ from that of
younger adults. While speculative, this hypothesis is supported by the
overall pattern of movement-related and spontaneous beta levels within
and between each group, as well as the fact that absolute beta power
during movement was the only motor-related physiological measure to
significantly correlate with movement duration in the current study,

controlling for age. However, it is possible that other brain regions
outside the motor cortex also mediated this relationship. In particular,
youth and older adults may have reduced executive functioning ability
compared to young adults (due to, for example, immature executive
functioning or aging), and differences in domain-general regions may
impact motor-related oscillatory activity downstream. Further in-
vestigation is needed to clarify the whole-brain dynamics serving
complex motor selection throughout the lifespan.

The quadratic relationship between spontaneous beta activity and
age falls in line with at least some structural data, which shows that
cortical gray matter most sharply decreases from childhood to adoles-
cence, before asymptoting during early adulthood and then beginning
to potentially increase again in late adulthood (Sowell et al., 2003).
However, other studies have shown that gray matter volume continues
to decrease as a function of age in the precentral gyri (Pfefferbaum
et al., 2013). Thus, the trajectory of anatomical changes in these regions
remains unclear, and very few structural studies have included parti-
cipants throughout the lifespan. Previous functional studies of healthy
aging (Heinrichs-Graham and Wilson, 2016; Rossiter et al., 2014) have
suggested that the increase in beta power as a function of age, coupled
with stronger beta suppression during movement, is due to increased γ-
aminobutryic acid (GABA) transmission. The notion that GABA is im-
portant for modulating motor-related oscillatory activity is supported
by a wealth of literature (Gaetz et al., 2011; Hall et al., 2011; Jensen
et al., 2005; Muthukumaraswamy et al., 2013), which has generally
associated higher GABA levels with increases in spontaneous sensor-
imotor beta power, as well as elevated motor-related oscillatory activity
(Gaetz et al., 2011; Hall et al., 2011; Muthukumaraswamy et al., 2013).
While this may be relevant to the maturation of the brain in later life,
there seems to be a different mechanism at play in early development.
Specifically, we found an elevation of spontaneous beta activity in the
motor cortices in youth relative to young adults, but this was coupled
with a marginal decrease (not increase), in beta ERD levels, which does
not agree with prior work in adults (Heinrichs-Graham and Wilson,
2016; Rossiter et al., 2014). However, the GABA system is still under
development during childhood and adolescence (Kilb, 2012), and this
may differentially impact neuronal oscillatory activity. Future studies
should directly investigate the distinct roles of GABA and glutamate, as
well as other potentially relevant neurotransmitter systems such as
dopamine, on motor-related beta dynamics.

In sum, the current study investigated the dynamics of movement-
related oscillatory activity, at rest and during movement, throughout
the lifespan. We found differential trajectories between absolute and
baseline-relative measures of beta power in the primary motor cortices.
Spontaneous beta power and beta power during movement showed a
quadratic relationship with age, while baseline-relative beta power
during movement was linearly related to age. Interestingly, only ab-
solute beta power during movement significantly correlated with
movement duration, and a follow-up hierarchical regression
(Supplementary Material S2) suggested that spontaneous beta power
and baseline-relative beta ERD power, together, significantly predicted
movement duration, beyond the effects of age. Future studies should
directly investigate the mechanistic roles of neurotransmitters such as
GABA, glutamate, and dopamine on these movement-related dynamics.

Fig. 6. Top: Absolute and relative temporal evolution of the beta ERD response. Voxel time series were extracted from the peak voxels of the left precentral gyrus (top panel) and
right precentral gyrus (bottom panel) to more precisely examine the dynamics of the beta response in youth (green line), young adults (blue line) and older adults (red line). Time (in s,
movement onset= 0.0 s) is denoted on the x-axis, while power is shown on the y-axis. Note the difference in the scales of the y-axes between the left and right precentral gyri, which is
sensible given that movements were performed with the right hand and thus, greater activity was found in the left (contralateral) motor cortex. The left panel shows each response as
percentage relative to baseline (i.e., the ERD), while the right panel shows the absolute power (in nAm2). Shaded colored areas around each line denote the standard error of the mean
(SEM). Shaded gray boxes denote time bins used for analysis of the movement period (-0.2 to 0.4 s). Bottom: Curve estimation analysis between beta activity and age. Spontaneous
beta power (in nAm2) is shown in the left column, peri-movement beta ERD power (in percentage relative to baseline) is shown in the center column, and absolute beta power during
movement is shown on the right column for the left (top panel) and right precentral gyri (bottom panel). Age (in years) is denoted on the x axes. Colors indicate age group (see legend).
Curve estimation analysis indicated that there was a quadratic relationship between age and spontaneous beta power bilaterally, as well as age and absolute beta power during movement
bilaterally, while there was a negative linear relationship between relative beta ERD power and age bilaterally. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Further, it is possible that circadian rhythms are perturbed in older
adults, and future work should clarify the subsequent impact on neural
behavior. Nonetheless, this study was the first to show distinct trajec-
tories of movement-related beta dynamics throughout the lifespan, and
suggests that the absolute level of beta power during movement is
crucial to optimal performance, and directly related to spontaneous
beta levels in the motor cortices. This complex interplay between dif-
ferent measures of beta activity in the motor cortex holds significant
promise in advancing our understanding of cortical oscillations in
health and disease, especially in those with movement disorders such as
Parkinson’s disease and cerebral palsy (Heinrichs-Graham et al., 2014a;
Heinrichs-Graham et al., 2017b; Kurz et al., 2014).
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