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Although running has many benefits for both the physical and mental health, it

also involves the risk of injuries which results in negative physical, psychological

and economical consequences. Those injuries are often linked to specific

running biomechanical parameters such as the pressure pattern of the foot

while running, and they could potentially be indicative for future injuries.

Previous studies focus solely on some specific type of running injury and are

often only applicable to a gender or running-experience specific population.

The purpose of this study is, for both male and female, first-year students, (i) to

predict the development of a lower extremity overuse injury in the next

6 months based on foot pressure measurements from a pressure plate and

(ii) to identify the predictive loading features. For the first objective, we

developed a machine learning pipeline that analyzes foot pressure

measurements and predicts whether a lower extremity overuse injury is

likely to occur with an AUC of 0.639 and a Brier score of 0.201. For the

second objective, we found that the higher pressures exerted on the

forefoot are the most predictive for lower extremity overuse injuries and

that foot areas from both the lateral and the medial side are needed.

Furthermore, there are two kinds of predictive features: the angle of the FFT

coefficients and the coefficients of the autoregressive AR process. However,

these features are not interpretable in terms of the running biomechanics,

limiting its practical use for injury prevention.
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1 Introduction

With the growing awareness of physical activity for a healthy lifestyle, running has

become increasingly popular. It is beneficial for both the physical and mental health

(Penedo and Dahn (2005); Warburton et al. (2006); Warburton and Bredin (2017);

Koplan et al. (1982); Major (2001)). However, like all physical activity, it comes with an
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associated risk of becoming injured. In turn, injuries results in

negative physical, psychological and economical consequences

(Melzer et al. (2004); Walker et al. (2007); van Mechelen (1992);

Hespanhol Junior et al. (2017, 2016); Koplan et al. (1982); Major

(2001)), which emphasizes the importance of injury prevention

(Eetvelde et al. (2021); Emery and Pasanen (2019); Beato et al.

(2021); Hespanhol Junior et al. (2017); Cloosterman et al.

(2020)).

Overuse injuries are one of the most common types of

injury, and they may account for up to 80% of running-related

injuries (Lopes et al. (2012)). Injuries can arise due to several

factors and their complex interaction. These factors can be

person-specific such as age, gender, weight, injury history,

fitness level and gait of the person (Adirim and Cheng (2003);

Rolf (1995); Bahr and Krosshaug (2005); Olivier et al. (2015)).

These factors can also result from choices such as training

errors or the use of inappropriate equipment (Adirim and

Cheng (2003); Rolf (1995)). Some of them can be adapted such

as the gait, training and equipment and therefore have a large

potential for injury prevention and prediction (Adirim and

Cheng (2003); Hreljac (2004)). Especially the effect of the

running gait on the development of running related overuse

injuries has been extensively investigated (Chan et al. (2018);

Napier et al. (2015); Dugan and Bhat (2005)). A recent

systematic review (Ceyssens et al. (2019)) identified sixteen

studies that investigated biomechanical risk factors and their

association to running-related injuries (RRIs). However,

results from these studies are inconclusive and provide only

limited evidence for a few biomechanical factors as risk factor

for some specific injuries and even in a specific population

(gender specific or running experience specific). One of the

main challenges of biomechanical studies to identify risk

factors for overuse injuries is to be able to measure large

groups as 3D motion analysis is quite time consuming and

requires expensive, often lab-based, equipment. Plantar

pressure plates can be used in the field in a quick and easy

way to obtain data on the pressure distribution underneath the

feet, the landing pattern, vertical ground reaction force and

the foot roll-off. Therefore, plantar pressure measurement

opens the potential to measure large groups and use more

complex data analysis techniques, which might help to predict

overuse injuries.

Machine learned models have recently attracted more

attention in injury prediction because of their high

predictive performance. Starting from a training dataset, a

machine learned model learns the relationship between the

input features and the target variable. When the model is

deployed, it uses its knowledge about the relationship to

predict the target variable for new instances. In recent years,

several machine-learned injury-predicting models (Wilzman

et al. (2022); Booth et al. (2020); Bogaert et al. (2022); Eetvelde

et al. (2021); Rossi et al. (2018); Ayala et al. (2019); Lövdal et al.

(2021); Martínez-Gramage et al. (2020); Carey et al. (2018);

Rommers et al. (2020); Oliver et al. (2020b)) and machine-

learned models based on plantar pressure (Wilzman et al.

(2022); Booth et al. (2020); Chen et al. (2021); Ardhianto

et al. (2022); Botros et al. (2016); Nong et al. (2021); Jeon

et al. (2008)) have been proposed and motivated the use of

machine learning in this study. However, most of the proposed

injury-predicting machine learning models focus on elite

athletes in one particular sport such as soccer (Rossi et al.

(2018); Ayala et al. (2019)), running (Lövdal et al. (2021);

Martínez-Gramage et al. (2020)) or football (Carey et al.

(2018); Rommers et al. (2020); Oliver et al. (2020b)) and the

insights gained in these studies might not be transferable to

other sports. Moreover, Winter et al. (2019) showed that factors

that play a role in injury development depend on the skill level

of the participants, which indicates that the findings from the

aforementioned studies might not apply to non-elite athletes.

Likewise, Videbæk et al. (2015) reported that the incidence of

RRIs per 1000 h of running differs significantly for novice and

recreational runners, with a value of 17.8 (95 % CI 16.7–19.1)

for novice runners and 7.7 (95 % CI 6.9–8.7) for recreational

runners. In addition, Ceyssens et al. (2019) concluded from

their systematic review that gender should be taken into

account to study biomechanical risk factors associated with

running-related injuries. As several studies focus solely on male

athletes (Oliver et al. (2020b); Rossi et al. (2018); Rommers et al.

(2020); Franklyn-Miller et al. (2013)), results are not directly

transferable to female athletes. Other studies (Wilzman et al.

(2022); Bogaert et al. (2022)) focus on both male and female

runners, but the machine-learned models are trained separately

for each gender. This increases the amount of data that is

needed since two separate models have to be trained and

common risk factors for both men and women have to be

learned separately in each model. This increases the need for

one machine learning model that can predict injuries for both

men and women.

Therefore, the aim of this study was to develop a machine

learning model that is able to predict the risk of lower extremity

overuse injury development in bothmales and females based on a

baseline running assessment using plantar pressure data. A lower

extremity overuse injury is defined as an injury that is caused by a

high physical load because of an incomplete repair process and

with a gradual onset. It is characterized by progressive symptoms,

the absence of a known single traumatic event and the lack of a

recovery period (Nesterovica (2020)). Subjects were

prospectively followed during a 6 month period with similar

loading, to answer the next two key questions for a study

population consisting of male and female, first-year students:

1) How accurately can the development of a lower extremity

overuse injury be predicted based on foot pressure

measurements?

2) Which loading features are predictive for lower extremity

overuse injury development?
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2 Data

2.1 Participants

In total, 249 first-year bachelor students from two separate

year cohorts (2019–2020 and 2020–2021) from the movement

sciences program at KU Leuven in Belgium participated in this

study. However, only participants that suffered a lower extremity

overuse injury (35 subjects) or that did not get injured

(120 subjects) were included. Participants that suffered an

acute injury (35 subjects), had an unknown injury status

(6 subjects) or had missing/incorrect values (53 subjects) were

excluded for further analysis. Table 1 reports the gender, length

and weight for the 155 included participants. All of them are

around 18–19 years old. Table 2 provides a more detailed

overview of the different injuries of the included participants.

All students participated on a voluntary basis, without any

positive or negative consequences associated with their

engagement. The study was conducted according to the

guideline of the Declaration of Helsinki and approved by the

Ethics Committee of UZ Leuven in Belgium (protocol code:

S60810, date of approval: 25 October 2017). All subjects involved

gave their informed consent. All students followed the same

academic sports program at a common sport facility for 26 weeks

per academic year. Sports included several team sports such as

soccer, handball, basketball, volleyball, and individual sports such

as track and field, gymnastics, dance and swimming. The weekly

program consisted of 10 hours of sports on average. Students

were required to report all injuries to the sport medicine

physician of the Sport Medical Advise Center (University

Hospital Leuven).

After 6 months, the physicians communicated for each

participant whether an injury had occurred. This is the case

when either a reduction in the amount of physical activity is

recommended or medical advice or treatment was needed

(Aristizábal Pla et al. (2021)). Furthermore, it was established

whether the injury was a lower extremity overuse injury.

Nesterovica (2020) defines a lower extremity overuse injury as

an injury that is caused by a high physical load because of an

incomplete repair process and with a gradual onset. It is

characterized by progressive symptoms, the absence of a

known single traumatic event and the lack of a recovery

period. Injuries that were not consistent with the above

definition of a lower extremity overuse injury were classified

as acute injuries and not included in this study.

2.2 Data collection

At the start of the academic year, all participants had to run

over a pressure plate (Materialise Motion 1x0.4m, sampling at

250 Hz). First, five strides from each foot were collected by

instructing the participants to walk over the pressure plate

using their normal walking gait. Second, five strides from each

TABLE 1 Statistics about the available dataset. The average is denoted
as μ and the standard deviation as SD. Only the healthy people and
the oneswith lower extremity overuse injuries are included. All people
that had an unknown injury type, missing/incorrect values or an acute
injury are omitted from this table.

Gender Length
[cm]

Weight
[kg]

Total

Male Female μ SD Μ SD

Healthy 83 37 175.69 8.23 68.65 9.00 120

Injured 26 9 177.70 8.04 69.75 8.63 35

TABLE 2 Number of people suffering from a specific lower extremity overuse injury. Note that some people hadmultiple injuries, so the total number
of injuries does not equal the total number of injured people. All people that had an unknown injury type, missing/incorrect values or an acute
injury are omitted from this table.

Number of people with
injury

Medial tibial stress syndrome (MTSS) 21

Pain complaints with regard to groin, knees and ankles 1

Plantar fasciopathy 1

Patellofemoral suffering 3

Tendinopathy 6

Musculo-ligamentary overload complaints 1

Strain on hamstrings 1

Pain in hip socket 1

Iliotibial band syndrome (ITBS) 1

Adductors 1

Soft tissue overload ankle 1
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foot were collected for each subject by running barefoot over the

plate at their own pace. Finally, five strides from each foot were

collected for each subject by running over the plate with their

own running shoes on. In addition to that, each participant filled

in a questionnaire including questions about their weight, length,

shoe size, previous injuries, dominant leg, whether they have

insoles, etc. The BMI is derived from their weight and height and

also added to it.

2.3 Pressure and force measurements

The data were analyzed using the scientific version of the

footscan Suite (footscan V9, Materialise Motion, Belgium). For

each trial, the software automatically divides the foot in ten

anatomical zones. These areas were defined as the hallux (toe 1),

toes 2-5, metatarsal heads 1 to 5 (separate zones), midfoot,

medial heel and lateral heel. From the pressure plate, we

extracted four main outcome parameters for each point in time:

• Vertical force The vertical force is the net vertical force

acting on the foot.

• Peak pressure This is the maximal pressure in a foot area at

each time point.

• Mean pressure This is the average over all pressure values

within a foot area at each time point.

• Mean force This is derived by multiplying the mean

pressure with the area of its corresponding foot area.

For the first, the data was considered for the whole foot,

whereas for the last three, the parameters were determined for

each of the ten anatomical zones. Only the running data was used

as input for the machine learning pipeline, whereas the walking

data was used to rescale the running data (Section 3.1.2).

3 Machine learning pipeline

Our goal is to predict the probability that a subject will

develop a lower extremity overuse injury in the following

6 months based on the pressure, force and vertical force

measured during barefoot and shod running. To this end,

we train a logistic regression model as it is a simple, well-

known model (Cramer (2002); Bender and Grouven (1997)).

Because of the limited amount of data, neural networks are not

an option, but logistic regression models can still produce

accurate results in that case. Furthermore, previous studies

have successfully applied logistic regression to planter

pressure data (Forghany et al. (2019); Ménard et al.

(2021)). It is also straightforward to determine the

importance of each feature in a logistic regression model,

which makes it suitable for finding the predictive loading

features (second research question).

To train a model, we employ the pipeline illustrated in

Figure 1. This pipeline has the following key steps, which will

be described in more detail in the following sections:

1) The preprocessing step optimally aligns all trials by making

them equally long and rescaling them (Section 3.1).

2) The feature construction step extracts features from the time

series data to transform the data into the tabular format

expected by classic machine learning methods (Section 3.2).

3) The feature selection step determines the most important

features (Section 3.3). First the best number of features kbest
per fold are determined. Based on this, the kbest most

predictive features per fold are selected. Finally,

L1 regularization is performed during the training of the

logistic regression model in the model training step as an

additional form of feature selection.

4) In the model training step, a logistic regression model is

trained on the kbest most predictive features (Section 3.2). The

model training step additionally performs a second form of

feature selection by using L1 regularization.

5) The evaluation of the machine learning pipeline is done with

a leave-one-subject-out approach (Section 3.2). This work

reports the area under the receiver-operator characteristic

(ROC) curve and the Brier score.

3.1 Preprocessing

There are two challenges to contend with in the raw data.

First, each subject completed multiple trials and we need to

aggregate the data into a single set of signals to analyze. The

most natural way to do this is by averaging the trials. This is

complicated by the fact that each trial is of a different length.

Consequently, different stages during running (first contact

with ground, push-off, etc.) can differ between different

trials. Averaging over the raw data would mix the

different stages which results in a less stable average with

even more noise than the original data. Therefore, we first

align the data from each trial and make them equal length

(Section 3.1.1).

The second challenge aims to avoid noise coming from

different body weight and running speeds. It is solved by

rescaling all measurements while still keeping the relative scale

difference between different foot areas (Section 3.1.2) so that no

valuable information is lost.

3.1.1 Normalisation length of measurements
To make all trials of all subjects equally long and optimally

aligned, the following steps were performed.

1) We start by looking for the longest trial amongst all subjects

for each kind of footwear (barefoot, shod). These two trials

become the references for their corresponding footwear
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FIGURE 1
Themachine learning pipeline used to predict lower extremity overuse injuries, including the evaluation process. Evaluation is done with leave-
one-out cross validation. The final results are averaged over the results of each single prediction.

FIGURE 2
a) Unpadded trial. b)Padded trial with the best alignment (mutual information = 1.24). (A) shows an unpadded trial, (B) shows the padded trial that
is optimally aligned (it has the highest 2D histogram-based mutual information) w.r.t. its reference.

Frontiers in Bioengineering and Biotechnology frontiersin.org05

Nuyts et al. 10.3389/fbioe.2022.987118

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.987118


condition and are shared for all subjects and measurement

types (mean pressure/force, peak pressure).

2) The following steps are performed for each trial separately:

a) We use padding to make the trial the same length as the

footwear-specific reference. All possible ways of adding

zeros to the beginning, end or some combination of both

are tried.

b) After the previous step, there are multiple padded trials to

replace the unpadded one. We choose the one that

maximizes the 2D histogram-based mutual information

(256 bins in each dimension)1 (Booth et al. (2020))

between the padded signal and its corresponding

reference. This way, the padded signal is optimally

aligned with respect to the reference trial, while keeping

all time-related elements of the trial unchanged. This is

not the case if the unpadded signal would have been

stretched or compressed to match a certain length.

Figure 2A shows an example of an unpadded trial and

Figure 2B shows the corresponding padded trial which has

the optimal alignment with respect to the reference.

3.1.2 Normalisation scale of measurements
To normalize the differences in running speed and the

participant’s weight, the peak pressure, mean pressure and

mean force measurements are scaled with respect to the

maximum vertical force while walking barefoot of the

corresponding participant. For each person, all these

measurements are divided by his/her maximal vertical force

value, which can easily be retrieved from the vertical force

measurements. This results in a dataset where each type of

measurement has more or less the same scale.

3.2 Feature construction and model
training

3.2.1 Feature construction
Standard machine learning algorithms such as logistic

regression are not applicable to raw time series data as they

only operate on features describing these time series. Therefore,

we use the Python library tsfresh (Christ et al. (2018)) to extract

those features from the time series and put them in a tabular

format. We used the default setting which extracts features2 such

as the maximum, absolute energy, linear trends, autocorrelation,

FFT coefficients, etc. We extracted these features from all

outcome parameters (peak pressure, mean force/pressure and

vertical force) from each of the ten foot regions if applicable. In

total, this yields 22,180 features for each subject.

3.2.2 Model training
We learn the model using the LIBLINEAR solver (Fan et al.

(2008)) with maximum 100 iterations using L1 regularization

with the default regularization strength of the LogisticRegression

class of scikit-learn (scikit-learn, RRID:SCR_002,577) version

1.0.2. The L1 regularization can be seen as a second type of

feature selection and will be further explained in Section 3.3.2.

3.3 Feature selection

Machine learned algorithms struggle with large numbers of

features. Therefore, we employed two types of feature selection to

reduce the number of considered features: the first one selects the

best number of features kbest per fold and afterwards the kbest
most predictive features per fold. This is done separately for each

fold to avoid data leakage. The second type of feature selection is

done by applying L1 regularization in the model training phase.

3.3.1 k most predictive features per fold
First, we employ a filter-based feature selection separately on

each fold. We use SelectKBest class of scikit-learn (scikit-learn,

RRID:SCR_002,577) version 1.0 which produces a rank-ordered

list of the most informative features using a statistical test. We

vary k ∈ {5, 10, 15, 20, 25} and train a logistic regression including
the k highest scoring features. We then pick the value of k that

results in the highest train set AUC score (Area Under the

receiver-operator Characteristic (ROC) curve) for that fold.

This resulted in an average of 23 features per fold and a

median of 25. It is essential to note that this is repeated

separately for each fold of the cross-validation procedure to

avoid leakage of information between the train and test set.

Failing to do this would result in overoptimistic estimates of

performance.

We considered 5 and 25 features because it balances the risk

of overfitting by using too many features and throwing away too

much valuable information by using too few features. A logistic

regression model has a high chance of overfitting when the

number of features is larger than 10% of the number of

samples (the 10%-rule) (Concato et al. (1995); Peduzzi et al.

(1995, 1996)), although this rule can be relaxed a bit (Vittinghoff

and McCulloch (2006)). Additionally, the steps of 5 features is

precise enough to adapt the number of features to each fold, while

also not being computationally too demanding.

3.3.2 L1 regularization
During the model training step, L1 regularization is applied

to the logistic regression model. Because L1 regularization will

force the coefficients associated with less predictive features to be

1 The used code for calculating the 2D histogram-based mutual
information can be found on https://gist.github.com/
GaelVaroquaux/ead9898bd3c973c40429

2 For a complete list of the extracted features, we refer to https://tsfresh.
readthedocs.io/en/latest/text/list_of_features.html
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zero, it can be seen as a second type of feature selection that is

applied during the model training step. In our current

implementation, there were on average 5 features that had

non-zero coefficients after training the model with the

L1 regularization.

3.4 Evaluation

The evaluation is divided in two parts. The first part concerns

the evaluation of the pipeline and the predictions made by it and

answers the first key question of this paper. The second part looks

into the importance of the different foot areas, measurement

types (mean pressure/force, peak pressure, vertical force) and

footwear (barefoot, shod) and partially answers the second key

question.

3.4.1 Evaluation of pipeline
Because the data contains a small number of subjects, we

perform leave-one-out cross validation. This means that for each

runner, a model is trained using the entire dataset except that one

runner. The data for the held-aside runner then serves as the

single test example that the learned model makes a prediction for.

We consider two evaluation metrics. First, we look at the area

under the receiver-operator characteristic (ROC) curve (Bradley

(1997); Marzban (2004)) or AUC. This metric evaluates a

model’s ability to rank examples. Second, we report the Brier

score (Brier (1950); Rufibach (2010)) which is computed as:

BS � 1
N

∑N
i�1

pi − yi( )2 (1)

where N is the number of samples, pi is the predicted probability

of sample i to be injured and yi is the label of sample i (0 for

healthy and 1 for injured). This metric evaluates how well

calibrated the learned model’s probabilities are, with a Brier

score of 0 for perfectly calibrated probabilities. A probability is

calibrated if it reflects the true likelihood of events. For example,

if the model predicts that 10 participants are all healthy with a

probability of 80%, then we expect that 8 participants are healthy

and two are injured.

3.4.2 Importance foot areas, measurement types
and footwear

For the first part of the second key question of this paper, we

investigated which foot areas, measurement types (mean

pressure/force, peak pressure, vertical force) and footwear

(bare, shod) are important for the predictions. Each one of

these forms a “group” of features that contains all features

that are based on it. For example, the group of features of

metatarsal 1 contains all features that are derived from all

measurements (mean pressure/force, peak pressure, vertical

force, barefoot and shod) involving metatarsal 1. Some groups

may overlap, like the mean force group and the metatarsal 1

group, while others are disjunct, like the metatarsal 1 group and

the metatarsal 2 group.

For each group of features, a logistic regression model (same

settings as described in Section 3.2) is trained on 15 features, as

selected by the SelectKBest class of scikit-learn, but where the

features derived from the considered group are excluded.

Training so many models on the kbest most predictive features

per fold as described in Section 3.3.1 would be computationally

infeasible, so instead we applied the 10%-rule (Concato et al.

(1995); Peduzzi et al. (1995, 1996)) and trained these models on

0.1*155 ≈ 15 features.

Finally, the model that could choose the 15 most predictive

features between all features can be compared to each model

where one group of features was excluded to determine the

impact of that group of features on the predictions.

4 Results

The machine learning pipeline given in Figure 1 can predict

lower extremity overuse injuries with an AUC of 0.639 and a

Brier score of 0.201. The AUC score implies that the model can

distinguish reasonably well between healthy and injured runners,

while the low Brier score implies that the model is well calibrated.

Table 3 compares the models where each time one group of

features was excluded and reports the changes in AUC and Brier

score, where a positive change implies improvement of the model

when that group of features is omitted. The table shows that:

• Toes 2-5 and metatarsal 1 and 3 are the three most

important foot areas.

• The peak pressure is more important than the mean

pressure and the mean force.

• The general person characteristics, medial heel and vertical

force are never chosen in the feature selection steps, which

explains their difference of 0.

The number of times each feature was chosen by the

SelectKBest class and the L1 regularization was summed across

the different folds and the features that were present in at least

10% of the folds are displayed in Table 4, together with the

percentage of folds they occur in. The following definitions will

further clarify some concepts used in Table 4 3.

Definition 1. The FFT coefficients of a time series Xwith length

n is defined as

3 disclaimer: these definitions are based on the ones of the website of
tsfresh: https://tsfresh.readthedocs.io/en/latest/text/list_of_features.
html
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Ak � ∑n−1
m�0

Xm exp −2πi mk

n
( ), k � 0, . . . , n − 1 (2)

Definition 2. The autoregressive process AR(k) with

coefficients ϕi (i = 0, . . . , k), maximum lag k and error ϵ of a

time series X, is defined as

Xt � ϕ0 +∑k
i�1

ϕiXt−i + ϵt (3)

Four features in Table 4 are chosen very consistently, they are

present in almost every fold. The features in Table 4 itself are also

very consistent: only the angle of FFT coefficients and the

coefficients of the autoregressive process AR (k = 10) with

maximum lag 10 are needed.

5 Discussion

This paper looks into two key questions which are covered in

Section 5.1 and Section 5.2 respectively. For a study population

consisting of male and female, first-year students:

1) How accurately can lower extremity overuse injuries be

predicted based on foot pressure measurements?

TABLE 3 The ranking and the improvements in the AUC and Brier scores for each foot area, measurement type and footwear when 15 features are
selected by SelectKBest. A lower rank indicates amore important group of features. Δ refers to the improvement in the corresponding score with
respect to the model that has access to all features, where a positive improvement means that the model where the current group of features was
excluded performed better than the model that had access to all features.

Rank Excluded
group of features

Δ AUC Δ Brier

Foot area 1 toes 2–5 −1.81e-2 −2.2e-2

2 metatarsal 1 −2.55e-2 −7.58e-3

3 metatarsal 3 −4.05e-3 −9.91e-4

4 medial heel 0 0

5 lateral heel 9.52e-3 1.88e-3

6 midfoot 1.14e-2 4.33e-3

7 metatarsal 4 3.19e-2 4.86-e3

8 toe 1 2.79e-2 1.51e-2

9 metatarsal 2 5.17e-2 7.4e-3

10 metatarsal 5 5.93e-2 3.46e-2

Measure-ment 1.5 general person characteristics 0 0

1.5 vertical force 0 0

3 peak pressure 2.14e-2 7.07-e3

4 mean force 2.29e-2 2.05e-3

5 mean pressure 2.67e-2 1.18e-2

Foot-wear 1 shod 6.21e-2 3.37e-2

2 barefoot 1.05e-1 3.46e-2

TABLE 4 Features that are present in at least 10% of the folds. The “occurrence” column gives the percentage of the folds where the feature was
chosen by SelectKBest and the L1 regularization. Definition 1 and 2 further explain some used terminology.

Foot area Measurement Footwear Feature Occurrence (%)

toe 1 mean force Shod angle of FFT coefficient 86 43.2

toes 2–5 mean pressure Shod angle of FFT coefficient 21 100

peak pressure Shod angle of FFT coefficient 21 95.5

metatarsal 2 peak pressure Shod 7th coefficient of the autoregressive AR process, with maximum lag 10 95.5

metatarsal 3 peak pressure Barefoot 7th coefficient of the autoregressive AR process, with maximum lag 10 35.5

metatarsal 5 peak pressure Barefoot angle of FFT coefficient 31 100
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2) Which loading features are predictive for lower extremity

overuse injury development?

5.1 Performance of the model

The developed machine learning pipeline using a running

assessment on a pressure plate is able to predict running related

overuse injuries in a general physically active population with an

AUC of 0.639 and a Brier score of 0.201. This demonstrates the

potential of using pressure plate measurements in combination

with a machine learning model to identify people at risk of lower

extremity overuse injuries. The obtained results of our current

model are comparable to the performance of models described in

the literature of injury prediction models (Jauhiainen et al., 2021;

Oliver et al., 2020a). Results of this model are also similar to a

previous attempt in a similar population (Bogaert et al., 2022). In

that study a trunk-based 3D accelerometer was used during an

all-out running test. However, two separate models for men and

women were trained, whereas we used a single model to predict

injuries for both men and women.

5.2 Predictive loading features

5.2.1 Predictive foot areas
Table 3 shows that the toe 2-5, metatarsal 1 and metatarsal

3 are the most predictive foot areas for lower extremity overuse

injuries. It is important to note that the results of Table 3 do not

take interdependencies between features into account. Having a

positive improvement when the group of features is left out, does

not necessarily mean that it is better to permanently omit these

groups. Some groups can share some piece of information which

causes the predictions to improve if one is left out because the

model then learns from fewer and less correlated features.

Removing all groups with that piece of information however

might seriously deteriorate the predictions.

Contrary to Table 3, Table 4 shows that features based on

metatarsal 3 are only present in 35.5% of the folds and thus don’t

contribute that much to the predictions. Features based on

metatarsal 1 are present in less than 10% of the folds.

Features based on metatarsal 2 and 5 however are present in

almost every fold. This might indicate that there is some

redundant information in the features based on the

metatarsals and that not all of them are needed to make

accurate predictions. Willems et al. (2007) found that the

people with overuse injuries exert more pressure on the

medial side of the foot than on the lateral side. Our results

confirm that both the lateral and medial side of the foot are

important as in both tables, parts of the medial (toe 1, metatarsal

1 and 2) and parts of the lateral side (toes 2-5, metatarsal 5) are

found to be the most predictive. However, we cannot conclude

whether the injured participants exert more pressure on the

lateral or medial side of the foot because the features that are used

to train the model (see Table 4) are not directly interpretable in

terms of higher or lower pressure.

Both Table 3 and 4 suggest that only information from the

forefoot is needed to predict lower extremity overuse injuries. Neither

the midfoot nor the heel are found to be important predictors. This is

similar to the findings of Willems et al. (2007) as differences in

pressure where detected at forefoot flat and at heel-off. This indicates

that the push-off phase is more crucial for lower extremity overuse

injuries than the first contact, which coincides with the moment of

highest ground reaction forces imposed on the foot.

5.2.2 Predictive measurements
Both Table 3 and 4 agree that the peak pressure is the most

predictive measurement. The general person characteristics and

vertical force are never chosen in the feature selection steps, so the

only conclusion we can draw is that the SelectKBest class and the

L1 regularization see them as the least predictive of all. The high

predictive performance of the peak pressures indicates that the higher

pressures are crucial for lower extremity overuse injury development.

5.2.3 Predictive footwear
From Table 3 and 4 we can conclude that both barefoot and

shod data are important predictors for lower extremity overuse

injuries. Barefoot data contains more fine-grained pressure

information and can thus tell us more about the exact gait of

the person. Shod data on the other hand takes the shoes into

account, which might (partially) correct an incorrect gait.

5.2.4 Predictive features
Table 4 shows that only two kinds of features are used: the

angle of a FFT coefficient and the 7th coefficient of the

autoregressive AR process with maximum lag 10. This is quite

surprising as tsfresh computes a lot of different features which are

barely chosen in the feature selection steps. At the same time, this

also shows the difficulty with the interpretation of these type of

features. The angle of a FFT coefficient is very hard to associate

with a specific running pattern. This therefore means that when

using our model to identify runners at risk we will need to

perform additional analysis to determine potential interventions

or treatments. Furthermore, based on these features, we cannot

make any conclusions about overload or underload of certain

regions of the foot, which limits the interpretability of the model.

5.3 Strengths and limitations

Our proposed method has an AUC (0.639) score that is

comparable to the performance of the models described in the

literature of injury prediction with machine learning (Jauhiainen

et al., 2021; Oliver et al., 2020a; Bogaert et al., 2022) In contrast to

Jauhiainen et al. (2021) and Oliver et al. (2020a), only a small

minority of the participants were elite athletes, which makes our
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approach more applicable to the wider public. Compared to

Bogaert et al. (2022), we used a single model for the prediction of

both male and female participants which needs less data to train

the model and learns the common risk factors for both men and

women.

However, our proposed method also has several limitations.

First, the features that were found to be predictive are not

interpretable in terms of the biomechanical processes that

occur during running. This limits its practical use for injury

prevention. To make it interpretable, a comparison of these

features between the healthy and injured subjects must be

made to establish the effect of the running biomechanics on

these features. Second, the footwear in the experimental setup

was not standardized, which limits the extent to which the

influence of the footwear on the plantar pressure data can be

determined. Third, all participants in this study had the same age

(18–19 years old) and followed an identical minimal sports

program, which might limit the applicability of this study to

the wider public.

6 Conclusion and future work

The purpose of this study was, for both male and female, first-

year students, (i) to predict lower extremity overuse injuries as

accurately as possible and (ii) to identify the predictive loading

features. We developed a model that can predict lower extremity

overuse injuries for bothmen andwomenwith anAUCof 0.639 and

a Brier score of 0.201. Furthermore, we found that the higher

pressures exerted on the forefoot are the most predictive for

lower extremity overuse injuries and that foot areas from both

the medial as the lateral side of the foot are needed. Additionally, we

identified two kinds of predictive features: the angle of FFT

coefficients and the coefficients of the autoregressive AR process.

However, these features are not directly interpretable in terms of the

biomechanical processes that occur during running, which makes it

hard to interpret the predictions of the model. Future work that

investigates the connection between these features and the

biomechanical processes and compares them for the healthy and

injured participants might make the model more interpretable.
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