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Abstract: This paper investigates the failure processes of recycled aggregate concrete by a model
test and numerical simulations. A micromechanical numerical modeling approach to simulate
the progressive cracking behavior of the modeled recycled aggregate concrete, considering its
actual meso-structures, is established based on the discrete element method (DEM). The determination
procedure of contact microparameters is analyzed, and a series of microscopic contact parameters
for different components of modeled recycled aggregate concrete (MRAC) is calibrated using
nanoindentation test results. The complete stress–strain curves, cracking process, and failure pattern
of the numerical model are verified by the experimental results, proving their accuracy and validation.
The initiation, growth, interaction, coalescence of microcracks, and subsequent macroscopic failure of
the MRAC specimen are captured through DEM numerical simulations and compared with digital
image correlation (DIC) results. The typical cracking modes controlled by meso-structures of MRAC
are concluded according to numerical observations. A parameter study indicates the dominant
influence of the macroscopic mechanical behaviors from the shear strength of the interfacial transition
zones (ITZs).

Keywords: discrete element method; digital image processing; recycled aggregate concrete;
meso-structure; microcrack

1. Introduction

Concrete materials show complex mechanical behaviors because of their internal structures
induced by the distribution of different components and weak interfaces at the mesoscopic level [1–3].
Recycled aggregate concretes contain various components including natural aggregates, new or old
cement mortars, and numerous interfacial transition zones, which extremely increase the complexity
of the meso-structure. The meso-structure of recycled aggregate concrete significantly influences the
microcrack initiation, propagation and, consequently, macroscopic failure.

A lot of studies have been conducted to investigate the failure behaviors of recycled aggregate
concretes using model tests. Buyukozturk et al. [4] firstly proposed an imitated model for plain
concrete specimens composed of coarse aggregates and cement mortar to investigate the deformation
and failure behaviors. Choi and Shah [5] used modeled concretes to study how the aggregate spacing
influences the fracture process of concretes containing different amounts of embedded aggregates.
Li et al. [6] used the digital image correlation method to track the cracking process of modeled recycled
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aggregate concretes (MRAC). Park et al. [7] conducted regression analyses on a substantial amount
of data published in Korea and Japan relating to the relationship between the compressive strength
and the modulus of elasticity of recycled aggregate concretes. The failure process and crack pattern
of the recycled concrete specimens were strongly affected by the stiffness difference between the
recycled coarse aggregate and cement mortar. Ren et al. (2015) [8] built a 2D finite element model of
concretes with realistic meso-scale structures using microscale X-ray CT images. Shang et al. (2020) [9]
used micro-CT images to analyze the failure cracks of recycled aggregate concrete in the laboratory.
Their experimental and numerical results show that the meso-failure mode of coarse aggregate concrete
is different from that of normal concrete, which depends on the interfacial transition zone (ITZ)
between the coarse aggregate and the cement paste and the properties of the recycled coarse aggregate
(RCA) itself.

Recently, numerical simulations verified by experimental results have become a powerful research
methodology to better understand the complex failure mechanism of concrete. Several numerical
studies adopted plasticity–damage constitutive models have shown good correlations with the
experimental results [10,11]. Some researchers simulated the meso-structure of concretes by continuum
finite elements, which discretize the aggregates and cement with the interfaces characterized by weaker
zones or interface elements [12,13]. Yang et al. [14] simulated mesoscopic cracking in concretes using
X-ray computed tomography image-based modeling. Yang et al. [15] presented a comprehensive
review study of the numerical methods developed for modeling heterogeneous materials such as
cement concretes and asphalt mixtures.

Concretes are usually idealized as a continuous material defined by certain constitutive
relations [16,17] by continuum-based numerical methods, which have some limitations to capture the
microcracking process. The dis-continuum based methods have an advantage over the continuum
methods in simulating the microcracking process of heterogeneous materials by introducing the contact
models to directly represent the mechanical behaviors between the cemented granular particles [18].
A lot of numerical simulation works based on the Discrete Element Method (DEM) have been
conducted successfully to simulate the microscopic damage process of rocks [19–22]. Concretes and
rocks have very similar mechanical characteristics; therefore, the DEM model could be an ideal
tool to simulate concretes. The numerical simulation from Schubert et al. [23] shows the cracking
phenomena of concretes composed by various-sized aggregates can be well captured by the DEM model.
Tan et al. [24] conducted DEM simulation on the failure process of recycled aggregate concrete under
uniaxial compression, whose numerical results show very similar results to the model test observations.

Micromechanical modeling based on the DEM method has been proposed in this study to simulate
the progressive cracking behavior of the modeled recycled aggregate concrete, considering its actual
meso-structures. By correlating the experimental results, the influence of different components on
the cracking process of the modeled recycled aggregate concrete can be investigated. The complex
cracking behaviors of the modeled recycled aggregate concrete specimen during the complete failure
process is governed by the initiation, growth, interaction, and coalescence of microcracks.

2. Experimental Program

2.1. Specimen Preparation

The modeled recycled aggregate concrete specimen (MRAC) is prepared to represent the recycled
aggregate concrete in the laboratory. As shown in Figure 1, the MRAC specimen contains 9 recycled
aggregate models, which are idealized as cylindrical inclusions. The recycled aggregate inclusions
of diameter 38 mm were cored from the old concrete. The dimensions of the cement mortar matrix,
which models the new cement mortar in the recycled aggregate concrete, are 150 mm× 150 mm× 30 mm.
The MRAC specimen had been immersed in limestone-saturated water for 28 days for curing.
A specimen of the pure cement mortar (CM) with the same dimensions has been prepared for comparison.
The particular specimen preparation method has been documented by previous studies [8,25].
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leads to the lower stiffness and strength of the ITZs. The indentation modulus distributions of 
different components of the MRAC specimen provide the reference for the quantitative analysis of 
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Figure 1. (a) cement mortar; (b) modeled recycled aggregate concrete; (c) recycled aggregate.

2.2. Nanoindentation Test

It is well recognized that the cracking and failure process of concretes is strongly influenced by
the interfacial transition zones (ITZ). Therefore, the mechanical and microstructural properties of ITZs
in RAC were investigated by using nanoindentation tests and scanning electron microscopy (SEM).
Two indentation areas with a size of 150 µm × 100 µm were located within the old ITZ and new
ITZ region, as shown in Figure 2. The contour maps of the indentation modulus of old and new ITZs
are obtained from nanoindentation tests. The darker areas mean a lower modulus region, while the
brighter areas mean higher modulus regions. Figure 2 clearly shows the modulus difference in
different portions, which indicates that the microstructure in the ITZ region is quite different from that
of the mortar matrix. Figure 2a shows that the indentation modulus of old ITZs is around 70%~80%
of the old mortar matrix, and Figure 2b shows that the indentation modulus of new ITZs is around
80%~90% of the new mortar matrix. The thickness of ITZs is around 40~70 µm. There are many more
voids that can be observed in the ITZ region from the SEM images (Figure 3), which leads to the lower
stiffness and strength of the ITZs. The indentation modulus distributions of different components of
the MRAC specimen provide the reference for the quantitative analysis of the microscopic parameters
in numerical modeling.
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2.3. Uniaxial Compression Test and DIC Measurement

The MRAC and CM specimens were uniaxially compressed under a minimal loading rate by the
serve-control machine. During the complete loading process, the cracking process of the specimen was
captured by digital image correlation (DIC) measurement [8,25] (Figure 4). The microcracks can be
recognized according to the image analysis on the displacement or strain distribution images taken
from the specimen. The axial strain of the specimen was measured by both the DIC method and
conventional strain gages, which are compared and shown in the complete stress–strain curves in
Figure 4b. The other DIC measurement results including displacement and strain distribution contours
and failure patterns are compared with the numerical results in the following section.
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3. Numerical Simulation

3.1. DEM and UDEC Program

Cundal and Strack [18] introduced the original idea of Discrete Element Method (DEM) to calculate
the motion of a block system by the explicit time-marching scheme. Since then, DEM approaches have
been widely adopted to simulate fracture processes in mechanical rock problems [26]. In contrast
to continuum-based numerical models, which need hypothetical constitutive relations to simulate
material behaviors, DEM models use discrete particles or blocks represent actual physical objects
like grains in granular rocks or aggregates in concretes. All the discontinuities inside the materials,
such as fractures, cracks, and pores, are inherent parts of the DEM model. Therefore, DEM models are
particularly favorable for investigating the cracking processes of brittle heterogeneous materials.

The universal distinct element code (UDEC) program is a 2D numerical code under the framework
of the DEM concept. UDEC can simulate either static or dynamic responses of a discontinuous
system composed of either rigid or deformable discrete blocks. As shown in Figure 5, a plane
concrete specimen can be modeled as the assembly of discrete blocks with random sizes and shapes
in UDEC. The Voronoi tessellation procedure is introduced to subdivide the concrete specimen
into randomly sized polygons. The Voronoi blocks can be either rigid or subdivided into elastic
elements with Young’s modulus Eg and Poisson’s ratio νg. The contacts between the blocks are
deformable and breakable, which is represented by the Coulomb slip model with tensile strength,
as shown in Figure 5. The following contact parameters are involved to calculate the force–displacement
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relationship of a contact: normal stiffness (kn), shear stiffness (ks), friction angle (φc), cohesion (cc),
and tensile strength (σc

t ). A microcrack is generated when the contact breakage happens by shear
or tension. Therefore, the block boundaries provide numerous potential internal paths for the growth
of microcracks. Macroscopic fractures can eventually be formed due to the initiation, propagation,
and connection of microcracks. Tan et al. [24] presented a numerical analysis of the failure process of
modeled recycled aggregate concrete using the UDEC program, whose results showed very similar
observations as the experimental results.
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3.2. Image Based Meso-Structures Model and Microscopic Contact Parameter Determination

The UDEC program was adopted to simulate the MRAC specimen and analyze the cracking
evolvement and progressive failure process of the specimen, considering meso-structures. As described
in the last section, the MRAC specimen was simulated by discrete Voronoi blocks. The actual MRAC
specimen consists of several different components at the meso-level scale that may influence its overall
mechanical behaviors, including natural aggregates, new and old cement mortar, and new and old ITZs.
In particular, the ITZs with the lowest physical strength may be the critical factor in controlling the
microcracking process of the MRAC specimen. To model the meso-structures of the MRAC specimen,
Digital Image Processing (DIP) is introduced, as illustrated in Figure 6. Binarization processing was
used to transform the digital image of the MRAC specimen into a black and white image. The contrast
between the old mortar matrix and the natural aggregate can be easily observed from the black and
white image. The boundaries of each natural aggregate can then be extracted as polylines from the
image by the outline identification technique. The concrete specimen was subdivided into abundant
convex-shaped blocks of random size by the Voronoi tessellation procedure. The Voronoi blocks in the
numerical specimen were then divided into three groups according to the boundaries recognized from
the digital image, which are the new mortar matrix, the old mortar matrix, and the natural aggregate.
The boundaries between different groups are therefore the ITZs.

The ITZs were modeled in the DEM model as zero-thickness contacts and endowed with
corresponding contact parameters according to the coordinates of the extracted polylines, while, in the
continuum numerical models (Anuruddha et al. 2018 [13]), the thickness of ITZs was considered
from 0.5~2.0 mm, which is obviously much higher than the thickness of 40~60 µm measured from
nanoindentation tests [27,28]. The old mortar and the aggregate portions can also be distinguished
depending on which one is internal and which is external of the ITZ polylines. Rigid blocks are
assumed in the proposed model. Thus, the mechanical behaviors of the MRAC specimen are
completely controlled by its microscopic contact parameters. Three different groups of contact
parameters are needed to model the MRAC specimen, which are natural aggregates, cement mortar,
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and ITZs, respectively. To simplify the parameter calibration procedure, the mortar and ITZs were not
distinguished into old or new groups.
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Figure 6. Image based meso-structure discrete element method (DEM) model of modeled recycled
aggregate concrete (MRAC) specimen.

The contact parameters for different components in the MRAC specimen must be determined
firstly on the condition that the macroscopic mechanical behaviors of the simulated material such
as deformability, uniaxial compression strength, and failure pattern can be generally reproduced.
Nevertheless, the microscopic contact parameters are diverse and different from the regular parameters
obtained from experiments [21,22]. A determination procedure has to be performed in advance
to determine proper contact parameters according to the macroscopic mechanical behaviors of the
DEM model.

There is only one group of contact parameters needed for the CM specimen model; therefore,
the contact parameters of mortar can be determined firstly by comparison with the uniaxial compression
results of the CM specimen. Tan et al. [29] have provided empirical relations to calculate the contact
stiffnesses kn and ks based on the elastic modulus and Poisson’s ratio of the Voronoi-based DEM model.
The contact parameters (φc, cc and σc

t ) of the CM specimen can be predefined according to their
corresponding macroscopic strength parameters. The peak strength and corresponding axial strain
in the compressive stress–strain curve of the CM specimen (Figure 8) are the target parameters to
calibrate the contact parameters.

Then, the contact parameters can be further modified according to several trials and errors.
The determination flow diagram is illustrated in Figure 7. The complete stress–strain curves and failure
patterns of the numerical CM specimen with calibrated contact parameters are shown in Figures 8 and 9
in comparison with the experimental results.

The numerical result in Figure 9a shows more cracks and main fractures compared to the
experimental results in Figure 9b,c. The main reason for these discrepancies is that the numerical CM
specimens are almost homogeneous, which leads to a multi-fracture pattern at the failure state. In reality,
the location where the main fracture appears depends on the material flaws inside the CM specimen.
Moreover, the numerical model (Figure 9a) is able to show much more details compared to the
experimental observations, including micro-cracks with an extremely small crack width. However,
the real photo in Figure 9c can only show the main fractures with relatively wider apertures. The DIC
picture in (Figure 9b) can show the micro-cracks to a certain degree, but not precisely. Nevertheless,
the typical cracking behaviors are actually captured by the numerical model.
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The contact parameters of other components can then be predetermined by taking the contact
parameters of the CM specimen as a standard. The microhardness obtained from the nanoindentation
test provides a quantitative scale between the contact stiffness and strength for different components
in concrete [30,31]. Still, trials and errors are always necessary before optimum contact parameters
are obtained. An entire set of contact parameters for the MRAC specimen has been determined and is
listed in Table 1. The loading plate was modeled using the linear elastic constitutive law.

Table 1. Micro-mechanical parameters used in numerical simulations.

Material Type kn ks φj cj σt
j Em νm

Pa/m ◦ MPa MPa GPa /

Natural aggregate 7.52 × 1013 3.76 × 1013 35 50.0 10.0
/

Mortar ITZ
1.68 × 1013 9.40 × 1012 10 18.0 2.5
1.34 × 1013 3.35 × 1012 24 6.0 0.63

Loading plate 200 0.15

A sufficient number of discrete blocks should be contained in a DEM model to avoid significant
uncertainty in the macroscopic mechanical behaviors. The average block edge length is set to 1.0 mm,
as the DEM specimen contains 12,859 blocks with an average block area 1.8× 10−6 m2 and 62,500 contacts.
The axial stress acting on the specimen was controlled by moving the two loading plates in
opposite directions. The loading velocity was kept at a small value so that the cracking process
could be well recorded during the complete loading process.

4. Numerical Analysis

4.1. Stress–Strain Curve and Contact State Evolvement

The complete stress–strain curve of the MRAC specimen predicted by the numerical simulation
is shown in Figure 10, which is in good agreement with the laboratory data. In particular, in the
pre-peak loading stages, a very similar curve shape and almost the same macroscopic strength can
be observed. The numbers of contacts in tensile opening and shear sliding during the complete loading
process of the simulation are shown in Figure 11, which represents the microcrack evolution inside
the MRAC specimen. Four typical stages in the cracking process are labeled with Roman numerals
in Figure 10 according to the stress–strain curve and microcrack evolution. Stage (I): linear elastic
deformation stage; Stage (II): stable cracking stage; Stage (III): unstable cracking stage; and Stage (IV);
post-failure stage.
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4.2. The Complete Failure Processes

The deformation field and crack distribution of the MRAC specimen from both DIC measurements
and numerical simulations at the selected loading stages (marked in Figure 10) are compared to
each other. Figures 12 and 13 show the macroscopic deformation field of the MRAC specimen at
different loading stages (b ∼ e). Figure 12 shows the lateral displacement distribution of the MRAC
specimen obtained by DIC measurements. Several macroscopic fractures were observed for MRAC
specimens after failure according to the discontinuity in the lateral displacement contour. The fracture
directions are almost vertical. Figure 13 shows the displacement vectors of the block corners of the
MRAC specimen obtained by numerical simulations. Similar macroscopic fractures of the MRAC
specimen at stage e are marked in Figure 13 according to the discontinuity in the displacement.

Figure 14 shows the lateral strain distribution of the MRAC specimen obtained by DIC
measurements and a photo of the final fractured pattern. The strain distribution contour shows
much more evident localization of deformations than the displacement contour, which reflects the
microcracking evolvement of the MRAC specimen during the complete loading process. It is observed
that microcracks appear mostly in the ITZs and the mortar region at stage b. Vertical cracks mainly
originated from the ITZs, as the loading increases at stage c the cracks propagated in the mortar region.
A large number of observable microcracks were generated and formed a connected crack–band at
peak loading stage d. The crack–band is slightly different from the final fractured pattern at the
post-peak loading stage e, which means some macro-fractures are generated after the peak strength of
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the specimen. The deformation localization can also be observed in the numerical results according to
the velocity vectors of block centroid in Figure 15. Very similar fracture patterns are found in both
experimental and numerical results at stage e, which indicates the mesoscopic heterogeneities of the
MRAC specimen is well represented by the proposed numerical model.Materials 2020, 13, x FOR PEER REVIEW 10 of 18 
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The DIC measurement captured the lateral displacement and lateral strain on the MRAC
specimen surface, which reflects the cracking propagation of the MRAC specimen during the
loading process. The DEM model can provide further information about the cracking mode of
each microcrack since either the tensile and shear contact failure mechanism is in consideration as
shown in Figure 5. The contact breakages caused by the tensile failure and the shear failure are
plotted in Figures 16 and 17. The width of contacts indicates the separation and sliding displacement
of contacts, respectively. There are some horizontal shear cracks in Figure 17, which represents the
shear displacement between the specimen and the loading plates due to the Poisson effect.
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A great number of tensile microcracks are found at stage b, which is far away from the peak
loading stage. A lot of tensile cracks randomly initiate in the mortar region in the loading direction
(stage b in Figure 18). Moreover, some tensile cracks are generated along the ITZs, which have small
angles (<10◦) relative to the loading direction. The shear cracks seem to be more dependent on the
meso-structures compared to the tensile ones. Almost every shear crack initiate along the ITZs (stage b
in Figure 17), which have a certain angle (30◦ < 60◦) relative to the vertical direction.
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Figure 18. Crack distribution at stage e (post-peak loading stage): (a) numerical results;
(b) fracture pattern.

As the loading increases, more and more tensile cracks grow and propagate in the loading direction.
A few tensile cracks concentrate along the vertical ITZs, and in the mortar regions where between an
upper and a lower aggregate (stage c in Figure 16). Some tensile cracks and shear cracks begin to be
connected as they are continuously forming and propagating at stage c. Some macroscopic fractures,
therefore, appear and lead to the localization of deformation observed in Figure 14. These fractures do
not penetrate the whole MRAC specimen; therefore, the stress–strain curve in Figure 10 does not lose
the load-carrying capability but shows a nonlinear shape at stage c.

The fracture keeps growing due to the connecting of microcracks during the loading process.
Finally, a predominant macroscopic fracture penetrates through the whole MRAC specimen at stage d,
and peak loading is then achieved. The loading may suddenly distribute on different fragments of the
ruptured specimen, which creates more macroscopic fractures after the peak load, as shown in stage e
in Figures 16 and 17.

Moreover, the overlays of Figures 16 and 17 of stage e are compared with the failure specimen,
as shown in Figure 18. Due to the limitation of the 2D model, the real 3D meso-structure of the concrete
specimen cannot be fully modeled in the proposed model. The spatial distribution of aggregates inside
the concrete specimen was not captured. Therefore, the numerical model is not able to capture all the
cracks or fractures observed from experimental results in every detail. Nevertheless, the numerical
results show quite good correlation with experimental results, based on both the stress–strain curves
and the crack distributions.

4.3. Cracking Modes

According to the analysis in the last section, the initiation and evolution of microcracks are
dependent on the cracking modes, which will control the final failure behaviors of the MRAC specimen.
The mode I (tensile microcracks) and mode II (shear microcracks) cracks at the peak loading stage are
thus plotted in a single figure (Figure 19). The influence on the cracking modes from the mesoscopic
structure of the MRAC specimen can be observed. Either mode I or mode II cracks can be found
in the new mortar region. However, most of them are mode I cracks. A small amount of mode II
cracks was generated after the macroscopic fractures formed. The cracks of mode I widely distribute
in the new mortar region and angle less than 10◦ from the loading direction. The cracks of mode I,
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with large openings, are found to appear mainly between an upper and a lower natural aggregate,
where the compressional stress concertation always happens. The cracks of mode I can also be observed
in the recycled aggregate region, where they are mostly inside the old mortar region and in the
old ITZs, with directions nearly parallel to the loading direction. Because of the high strength of the
natural aggregates, none of the mode II cracks are observed in the natural aggregate region. Very few
cracks of mode I are found, apart from some particular ones with long, narrow shapes and a long axis
perpendicular to the loading direction.
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Figure 19. Enlarged view of crack distribution at stage d (peak loading stage).

The mode II cracks appear mostly along the old ITZs inside the recycled aggregate region,
which has angles larger than 10◦ in the loading direction. While outside the recycled aggregate region,
both mode I and mode II cracks can be observed along some new ITZs. These cracks, therefore, can be
defined as mixed mode cracks.

The typical cracking modes controlled by their corresponding mesoscopic structures revealed in
the numerical simulation are schematically illustrated in Figure 20. Although the cracks of mode I are
dominant in quantity, as shown in Figure 11, the final macroscopic fractures are generated due to the
propagation and the connection of all different modes of cracks. The failure process of the simulated
MRAC specimen can be considered as a self-organizing process of the microcracks. The process
is dependent on the spatial distribution of different components of the MRAC specimen at the
mesoscopic scale.Materials 2020, 13, x FOR PEER REVIEW 14 of 18 
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5. Parameter Study and Discuss

The macroscopic failure process of the MRAC specimen is closely related to microcrack
development during the complete loading process. Therefore, variations in the mechanical properties
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of microscopic contacts ultimately affect the macroscopic mechanical behaviors. Some key microscopic
contact parameters are selected for further parameter analysis.

The microcracks can hardly be observed inside the natural aggregates during the loading process.
It is believed that the natural aggregates have enough tensile and shear strength, which will not
strongly influence the macroscopic behaviors of the MRAC specimen. Thus, only the normal stiffness
of contact kn of natural aggregates has been tested for parameter analysis. As shown in Figure 21,
the macroscopic stiffness of the MRAC specimen increases with the increase in natural aggregate stiffness,
but not evidently. The loading level to start the unstable cracking stage became higher for stiffer natural
aggregate cases, which led to higher peak strength.
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Figure 22 shows that the contact stiffness of ITZs has a greater influence on the macroscopic
stiffness of the MRAC specimen than the stiffness of the natural aggregate, while it has little effect on
the peak strength.Materials 2020, 13, x FOR PEER REVIEW 15 of 18 
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Figure 22. Complete compressive stress–strain curves of MRAC specimen with various ITZ
stiffness values.

Figure 23 shows that the tensile strength of ITZs seems to have little influence on the macroscopic
mechanical behaviors of the MRAC specimen. As we discussed in the last section, the cracks of mode I
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only appear in the ITZs that are nearly parallel to the loading direction. Tensile failure does not control
the cracking process of the ITZs.
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Figure 23. Complete compressive stress–strain curves of MRAC specimen with various ITZ tensile
strength values.

Unlike the tensile strength, the shear strength of the ITZs shows a significant influence on the
macroscopic mechanical behaviors of the MRAC specimen, as shown in Figure 24. Because the failure
modes of most ITZs are mode II or mixed mode, as shown in Figure 19, the increase in the shear
strength of the ITZs can significantly increase the peak strength and the loading levels to start both
the stable and the unstable cracking stages. The shear strength of the ITZs needs to be very carefully
considered in DEM numerical models.Materials 2020, 13, x FOR PEER REVIEW 16 of 18 
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6. Conclusions

The failure process of the MRAC specimen under a uniaxial compression test was investigated
using both experimental and numerical methods. The actual heterogeneity of the modeled concrete
specimen contains different components and ITZs can be well reproduced by combining the DEM
model and DIP method. The main conclusions drawn from the proposed study are summarized
as follows:
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(1) The simulated cracking and failure process of the MRAC specimen shows very similar observations
to the experimental results. The proposed numerical model provides the possibility to investigate
the failure mechanism of the recycled aggregate concrete at a microscopic level, which is beyond
the ability of continuum approaches.

(2) The failure process of the MRAC specimen can be considered as a self-organizing process of
microcracks and is dependent on the mesoscopic structure of the specimen. The typical cracking
modes controlled by the corresponding mesoscopic structures are concluded according to the
numerical observations.

(3) The parameter study shows that the shear strength of the ITZs has a dominant influence on the
macroscopic strength of the recycled aggregate concrete, which needs careful consideration in the
DEM models.
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