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Transboundary movement of animals is an important mechanism for foot-and-mouth

disease virus (FMDV) spread in endemic regions, such as Cameroon. Several

transboundary animal trade routes cross the Far North Region of Cameroon, and

cattle moved on foot along these routes often come in contact with native (sedentary

and transhumant) herds. The purpose of this study was to investigate the role of

transboundary trade cattle in the epidemiology of FMDV in the Far North Region of

Cameroon. A total of 582 oropharyngeal fluid (OPF) samples were collected from

asymptomatic transboundary trade cattle at official border check points and 57 vesicle

epithelial tissues were collected from clinically affected native cattle in the Far North

Region of Cameroon during 2010–2014. Viral protein 1 (VP1) coding sequences were

obtained from 6 OPF samples from transboundary cattle (4 serotype O, 2 serotype SAT2)

and 19 epithelial tissue samples from native cattle (7 serotype O, 3 serotype SAT2, 9

serotype A). FMDV serotype O viruses belonged to two topotypes (East Africa-3 and

West Africa), and phylogenetic analyses suggested a pattern of continuous transmission

in the region. Serotype SAT2 viruses belonged to a single topotype (VII), and phylogenetic

analysis suggested a pattern of repeated introductions of different SAT2 lineages in

the region. Serotype A viruses belonged to topotype AFRICA/G-IV, and the pattern of

transmission was unclear. Spearman rank correlation analysis of VP1 coding sequences

obtained in this study from transboundary and native cattle showed a positive correlation

between genetic distance and time for serotype O (ρ = 0.71, p =0.003) and between

genetic distance and geographic distance for serotype SAT2 (ρ = 0.54, p = 0.1).

These data suggest that transboundary trade cattle participate in the transmission of

FMDV in the Far North Region of Cameroon, however the dynamics and direction of
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transmission could not be determined in this study. Results of this study contribute to

the understanding of transboundary FMDV epidemiology in Central Africa and will help

to inform control programs in Cameroon and in the region.

Keywords: transboundary, cattle, FMDV, Cameroon, epidemiology, foot-and-mouth disease

INTRODUCTION

Foot-and-mouth disease virus (FMDV; Aphthovirus,
Picornaviridae) causes foot-and-mouth disease (FMD), one of
the most economically important diseases of livestock worldwide
(1). Acute infection is characterized by loss of appetite, fever, and
formation of characteristic vesicles on the feet, udders, and in the
oral cavity of cloven-hoofed animals (2, 3). Mortality is usually
low, however high morbidity of the disease results in economic
losses in endemic countries due to decreased production,
regional quarantine practices, and trade restrictions (4). There
are seven serotypes of FMDV: O, A, C, Asia-1, SAT1, SAT2, and
SAT3; with multiple topotypes and genetic lineages within each
serotype (5, 6). Seven endemic geographical regions, or pools,
have been described, wherein countries within each pool share
similar FMD viruses (7–9). Antigenic variation within a serotype
necessitates that vaccines must be carefully matched to outbreak
strains to ensure efficacy (10). For this reason, effective control
of the disease is dependent on the ability to identify regional
transmission patterns and predict which vaccine strains will
protect the livestock population.

Transboundary animal movement has been shown to play a
major role in FMD spread and introduction into FMD-free areas
(8, 11). Transboundary movement has also been implicated in
FMD outbreaks in endemic regions, such as South Asia andWest
Africa (12–15). In non-endemic countries, control of animal
movement, including temporary cessation of transboundary
trade of animals, has played a key role in eradication of FMD
epidemics (11). However, limiting animal movement is not
practical in endemic regions, where outbreaks occur regularly
and are often unreported. Additionally, the practice of seasonal
transhumance and movement of animals on foot are further
challenges to the control of animal movements in Central Africa.

Serotypes O, A, SAT1, and SAT2 are endemic in the OIE-
defined FMDV pool 5 (West and Central Africa), which includes
Cameroon. FMDV serotypes O and A were first isolated from
samples collected in Cameroon in 1931 and 1975, respectively
(16, 17), and serotype SAT2 was first isolated in 2000 (18).
However, sampling has been sporadic, and serotypes were likely
circulating in the country prior to the first reports. Serologic
evidence of serotypes SAT1 and SAT3 has also been reported
in Cameroon in cattle (19), although the presence of SAT3 has
not been confirmed. Based on serological data from 2010 used to
reconstruct historic FMDV exposure in the Far North Region,
serotypes O and SAT1 are likely maintained with continuous
transmission within the population, whereas other serotypes
likely require outside sources of reintroduction to explain the
observed serological patterns (20). Additionally, phylogenetic
analysis of FMDV strains from outbreaks in Cameroon in 2000–
2001 and 2010–2012 showed serotype SAT2 strains were closely

related to isolates from Eritrea, Saudi Arabia, and Libya, and
serotypes A and O strains were closely related to historical
samples from Cameroon (18, 19). These inferred patterns of
transmission are consistent with patterns observed elsewhere in
sub-Saharan Africa (21–23).

Livestock rearing is the primary economic activity in the
northern regions of Cameroon (Adamawa, North, and Far North
Regions), and the Far North contains about 2.25 million cattle
(37.5% of the national herd) (24). The native cattle population
in the Far North Region of Cameroon is a mixture of sedentary
and transhumant animals (hereafter referred to as “native” cattle);
these two groups share pasture andwater resources and utilize the
same domestic trade networks (within Cameroon) and veterinary
services (19, 25). Additionally, animals are moved on foot along
several transboundary animal trade routes crossing the Far
North Region of Cameroon, originating from Chad and Sudan,
with final destination markets in Nigeria (19). These unique
movement patterns likely bring transboundary trade cattle into
contact with native herds, and may provide a mechanism for
virus spread into the Far North Region from external sources.
However, the roles of transboundary and within-country animal
movement in FMDV epidemiology in Cameroon have not been
studied. The purpose of the current study was to investigate the
role of transboundary animal trade in FMDV introduction and
spread in the Far North Region of Cameroon through molecular
epidemiology of FMDV isolates collected from transboundary
and native cattle. Cameroon did not have an FMD control
program at the time of this study.

MATERIALS AND METHODS

Study Area
The Far North Region of Cameroon has a total land area
of 34,263 km2. It is bordered by the North Region to the
south, Chad to the east and north, and Nigeria to the west
(Figure 1). The climate is semi-arid with a single rainy season.
Reduced forage availability during the dry season results in
substantial weight loss and increased susceptibility to infectious
diseases in cattle (26). Subsistence farming is the primary
occupation for most residents. The native livestock population
in the Far North Region is primarily cattle raised in a mixture
of sedentary (village) and mobile (seasonally transhumant)
husbandry systems (19, 27). These two production systems
share pastures, water resources, livestock corridors, markets,
and veterinary services (28). Additionally, transboundary trade
cattle are moved on foot through the Far North Region. The
(legal) movement of transboundary trade cattle was exclusively
east (Chad and Sudan) to west (Nigeria) during the study
period. Native cattle (sedentary and transhumant) were sampled
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FIGURE 1 | Sampling locations in the Far North Region of Cameroon. Transboundary checkpoints are indicated in black, and locations of native herds with FMD

outbreaks are indicated in green. Additionally, FMDV-negative sedentary herds are indicated in blue. Locations of FMDV-negative transhumant herds are not shown

because these herds move throughout the region. The usual transhumant routes for these herds are available at MoveBank (https://www.datarepository.movebank.

org/handle/10255/move.723). Maroua, the capital of the Far North, is indicated at the star. Inset: location of the Far North Region within Cameroon.

throughout the region and transboundary trade cattle were
sampled at the major border control points described below.

Transboundary Cattle Movement
Transboundary animal trade routes used to move cattle on foot
across the Far North Region were mapped by interviewing native
cattle herders and transboundary cattle herders accompanying
foreign cattle through the Far North. Once general routes were
determined, local research staff from CARPA rode the routes on
motorcycles and recorded GPS points at 3-s intervals. GPS points
of places where transboundary trade cattle stayed overnight and
where they watered were also recorded.

Cattle records were collected at the border check points
by the Ministry of Livestock, Fisheries and Animal Industries

(MINEPIA) veterinary service for tax purposes and during
checking of sanitary certificates. The Center for the Support
of Research and Pastoralism (CARPA) field team reviewed
official government records of cattle passing through border
checkpoints each week for which data were available
regarding origin and destination, as well as any notes about
disease recorded by the Cameroonian veterinary services.
These data were summarized to provide context regarding
the scale of legal cattle movement and possible origin of
viruses.

Summary statistics of numbers of cattle recorded at each
transboundary check point along with their reported origin
and destination were analyzed in Excel (2013, Microsoft Corp.,
Redmond, WA, USA).
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Sampling
For the purposes of this study, a herd was defined as the smallest
homogenously mixing unit of animals (19). Transboundary trade
cattle were sampled at four points along transboundary animal
trade routes: Kousseri, Guirvidig, Pétté, and Yagoua (Figure 1).
Although two checkpoints were on the same trade route, timing
of sample collection ensured that animals were not resampled at
different checkpoints. Oropharyngeal fluid (OPF) samples were
collected by probang cup (29) two times during each season (dry
season: January to April, and wet season: June to September)
between 2010 and 2013. Due to logistics in the field, the timing
of sampling was not consistent at each location across years. At
each visit, a convenience sample of 10 adult cattle were selected
by the MINEPIA representative at the checkpoint, with an effort
made to collect at least one sample from each distinct herd
of trade cattle at the checkpoint that day. Samples collected
in 2010–2011 were stored in virus transport media (VTM). In
an effort to improve sequence acquisition, samples collected
after 2011 were split, and one aliquot was stored in VTM and
the other in RNAlater R© (Sigma-Aldrich, St. Louis, MO, USA).
Additionally, 30 native herds (15 transhumant and 15 sedentary)
included in a parallel study (19) were monitored and contacted at
least monthly during the study (2010–2014) (Figure 1). Briefly,
the transhumant herds were selected randomly from a list of
transhumant herds visiting the region between 2008 and 2009,
and the sedentary herds were selected in pairs (one with high
and one with low contact with transhumant herds) to represent
a range of ecological and cultural areas in the Far North [herd
definition and selection is detailed in (19)]. If the herder reported
clinical signs of FMD in the herd, lesion epithelial tissue or
swab samples were collected from affected animals as previously
described (30). Samples were also collected from other herds
in the area identified by the National Veterinary Laboratory
(LANAVET) as having clinical FMD. All samples were kept
at 5–10◦C during transport (up to 7 days) and then taken to
LANAVET in Garoua where they were stored at −80◦C until
shipping to the Plum Island Animal Disease Center (PIADC),
New York, USA. These samples were shipped to PIADC on
dry ice by an approved shipper. All samples were collected
by CARPA staff following protocols approved by the Ohio
State University Institutional Animal Care and Use Committee
(protocol #2010A0018) in agreement with the MINEPIA and
with permission from the Ministry of Scientific Research and
Innovation (MINRESI).

Virus Isolation
Tissue samples and OPF preserved in VTM were tested
by virus isolation (VI). OPF samples were first treated
with triclorotrifluoroethane (TTE) to dislodge virus-antibody
complexes (31) as previously described (32). Tissue samples
were processed by homogenization of 30–50mg of epithelial
tissues in cell culture media (without Fetal Calf Serum) using
a bead beater (Qiagen, Valencia, CA) as previously described
(32). After processing, 300 µl of each sample was used to infect
cells contained in T25 flasks. VI was performed as previously
described (33) using an immortalized line of fetal bovine kidney
(LFBK) cells expressing the bovine αvβ6 integrin (34).

FMDV RNA Extraction and rRT-PCR
OPF samples in RNAlater R© or in VTM prior to TTE treatment
(N = 582) and all of the homogenized tissue samples (N =

57) were processed for RNA extraction. RNA was extracted
using the MagMax-96 viral RNA isolation kit (Ambion, Austin,
TX) following the manufacturers protocols on a King Fisher-96
Magnetic Particle Processor (Thermo Scientific, Waltham, MA).
Briefly, 50 µl of each sample was added to 150 µl of lysis/binding
solution in individual wells of a 96 well plate. After a lysis/binding
step, the sample underwent four washes, a drying and a final
elution step. RNA was eluted in a final volume of 25 µl of
RNAase-free water. The extracted RNA was stored at −70◦C
until analyzed by real time reverse transcription PCR (rRT-PCR)
as previously described (30, 33, 35). Samples were considered
positive when Ct values were <40.

VP1 Sequencing and Phylogenetic Analysis
Fresh viral RNA extracted from rRT-PCR positive samples
was used to generate RT-PCR products using SuperScriptIIITM

One-Step RT-PCR System with Platinum Taq High Fidelity R©

(Life Technologies, Carlsbad, CA). Universal oligonucleotide
primers, designed to amplify the entire P1 region of FMDV were
used, as described previously (36). The RT-PCR products were
separated in agarose gels, visualized, purified using a QIAquick
Gel extraction kit, (Qiagen R©, Hilden, Germany), and sequenced
using the di-deoxy termination method (BigDye R© terminator,
Life Technologies) as previously described (19) using additional
internal sequencing primers specific to the Cameroon isolates
to obtain the complete VP1 coding sequences (Table S1); or
by next generation sequencing (NGS) as previously described
(37). For sequences obtained using the di-deoxy termination
method, chromatograms were viewed using Sequencher R© v5.3
(GeneCodes, Ann Arbor, MI) and a consensus sequence
was assembled for each isolate’s VP1 region. For sequences
obtained using the NGS method, VP1 consensus sequences
were assembled using CLC Genomics Workbench v11.0 (www.
qiagenbioinformatics.com) to map the reads to the closest VP1
reference genome followed by de novo assembly of the mapped
reads. The minimum depth of coverage for consensus sequence
generation was 10 reads/site.

For each serotype, VP1 sequences obtained in this study
(Table 2) were queried using the BLAST online tool (https://
blast.ncbi.nlm.nih.gov), and the first 100 most closely related
sequences were aligned along with other publicly available
sequences in GenBank from Cameroon and neighboring
countries and with previously identified reference sequences
for topotype determination (38). Redundant and closely related
sequences returned in the BLAST search were removed, and
sequences were aligned using MUSCLE (39) implemented in
MEGA7 (40). The general time reversible (GTR) model of
evolution using a gamma distribution for evolutionary rates
(+G) and invariable sites (+I) was identified as the most
appropriate model based on the corrected Akaike Information
Criterion (AICc). A phylogenetic tree for each serotype was
constructed using maximum likelihood, GTR+G+I nucleotide
substitution model, and 250 bootstrap replicates implemented
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in MEGA7. The final consensus trees were visualized in FigTree
v.1.4.3 (Rambaut, 2006).

Statistical Analysis
In order to analyze the patterns of spread of the viruses
detected in transboundary trade and native cattle, we examined
the relationship between the evolutionary divergence based on
complete nucleotide sequences of VP1 (i.e., genetic distance)
and the geographic and temporal distance among FMDV
isolates within serotypes. The number of base substitutions per
site (p-distance) between pairs of sequences was calculated in
MEGA7. The geographical distance between sample locations
was calculated using GPS coordinates recorded at the time of
sample collection. The time difference (inmonths) was calculated
as the time between sampling dates for pairs of samples. Genetic
distance was determined at the sequence/sample level, whereas
geographic and time distance were determined at the herd
level; the correlation analysis was performed at the sample
level. A Spearman rank correlation test (41) was performed to
analyze the correlation between genetic distance and geographic
distance, and between genetic distance and time difference. Using
this method, ρ = 1 indicates a perfect monotonic relationship
between the genetic distance and either the geographical distance
or the time difference, and ρ = 0 indicates no correlation. The
asymptotic t approximation was used for the calculation of p-
values. Significance was set at p <0.05, indicating that the value
of ρ was significantly different from zero.

RESULTS

Cattle Movement Analysis
Observation of transboundary trade routes indicated potential
for contact between transboundary trade cattle and native cattle
(both sedentary and transhumant) through shared pasture,
watering points and markets during transport (Figure 1).
Additionally, there were some instances of transboundary
trade herds camped overnight with native herds, creating the
possibility for direct contact.

Transboundary trade cattle movement data from official
government records of cattle herds passing through border check
points were available for 3,273 herds for the period January 2008
to December 2013, with varying consistency for each of four
check points: Kousseri, Guirvidig, Pétté, and Yagoua (Figure 1).
All reported origins of transboundary trade herds were in Chad,
and all reported destinations were in Nigeria.

The years 2012 and 2013 had the most consistent data
recording and showed variable geographic and seasonal
patterns in transboundary movements (Figure 2). In general,
transboundary movement decreased during the months with the
highest precipitation levels (May and June) as well as in October
and November, which is typically a time of transhumance
movements for native herders in the Far North. Dates of
genetically confirmed FMD outbreaks (arrows, Figure 2)
generally coincided with transboundary movement, however
there was not a clear or consistent pattern.

rRT-PCR, Virus Isolation, and VP1
Sequencing
Of 355 OPF samples from transboundary trade cattle preserved
in VTM, 24 (6.8%) were positive for FMDV RNA by rRT-PCR
but only 2 of these yielded infectious virus. Additionally, 18/227
(7.9%) OPF samples preserved in RNAlater R© were positive
by rRT-PCR (Table 1). Sample preservation in RNAlater R©

does not allow for virus isolation. There was no significant
difference in detection of FMDV RNA in samples preserved
in RNAlater R© compared to VTM (χ2 = 0.13, df = 1, p =

0.71). In total, 42 out of 582 samples (7.2%) tested positive
by rRT-PCR. VP1 coding sequences were obtained from 6
OPF samples, of which 4 were serotype O and 2 were SAT2
(Table 2).

In total, 57 tissue samples were collected from 8 outbreaks in
native cattle. Overall, 40/57 (70.2%) samples, representing all 8
outbreaks, were positive by rRT-PCR, and 17/57 (29.8%) samples,
representing 6 outbreaks, were positive by virus isolation
(Table 1). VP1 coding sequences were obtained from all 17 virus
isolates plus an additional two raw (unpassaged) samples (total
19 samples from 6 outbreaks), of which 7 were serotype O, 3 were
SAT2, and 9 were serotype A.

Phylogenetic Analysis
FMDV serotype O VP1 sequences obtained in this study
belonged to two topotypes, East Africa-3 and West Africa
(Figure 3). Five sequences, collected from 2 native mobile herds
in 2013, were within topotype East Africa-3 and grouped with
sequences collected fromNigeria in 2014 and from the Adamawa
region of Cameroon in 2016. The topotype O/East Africa-3
sequences obtained in this study were also closely related to
sequences from native sedentary herds in 2010 (19) (p-distance
0.058–0.063). Six sequences, collected from one native sedentary
herd and from asymptomatic animals at three transboundary
checkpoints, were within topotype O/West Africa and were
closely related to sequences collected in Nigeria in 2012–2014
as well as sequences obtained from native sedentary and mobile
herds in a previous study in Cameroon in 2012 (p-distance
0.011–0.029) (19).

FMDV serotype SAT2 VP1 sequences obtained in this study
were collected in 2012 from one native sedentary herd (2
sequences), one native mobile herd (1 sequence), and one
transboundary checkpoint (2 sequences) (Figure 4). The 5
sequences were all collected within a 1-month period during 2012
and grouped within topotype SAT2/VII with viruses collected
in the Adamawa region of Cameroon and in Libya during 2012
(p-distance 0.003–0.091). Other regional isolates collected in
previous years were more distantly related.

FMDV serotype A sequences obtained in this study
were collected in 2014 from a single outbreak in a native
herd (Figure 5). The nine sequences were nearly identical
(maximum 6 nucleotides different) and clustered within
topotype A/AFRICA/G-IV with isolates collected in Nigeria in
2009–2015 (p-distance 0.034–0.085). The isolates collected in the
current study were more distantly related to viruses collected
in the North West (p-distance 0.135–0.141) and Adamawa
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FIGURE 2 | Numbers of cattle passing through 4 different border checkpoints in the Far North, Cameroon by month for (A) 2012 and (B) 2013. Verified FMD

outbreaks are indicated with arrows. FMD outbreaks were verified by viral genomic sequencing of RNA from vesicle epithelium samples collected from clinically ill

animals.

TABLE 1 | FMDV virus isolation and rRT-PCR results from the transboundary (subclinical) and native (clinical) cattle samples.

Cattle group Sample type Samples tested Virus isolation

Positive (%)

rRT-PCR

Positive (%)

Sequences

obtained*

Transboundary Probang in VTM 355 2 (0.6%) 24 (6.8%) 5

Transboundary Probang in RNAlater® 227 NA 18 (7.9%) 1

Native Vesicle epithelium in VTM 57 17 (29.8%) 40 (70.2%) 19

*Sequences were obtained from all 19 virus isolates and 6 additional unpassaged samples.

(p-distance 0.137–0.143) regions of Cameroon in 2012 and 2005,
respectively.

Correlation Analysis
All serotype A sequences were obtained at the same location
and time, and serotype O topotype East Africa-3 sequences
were obtained at the same time from only 2 locations, therefore
correlation analysis was not performed for these serotypes. We
performed correlation analysis for serotype O topotype West
Africa sequences (n = 6) and for serotype SAT2 sequences (n
= 5). Strains within each of the serotypes were closely related,
with genetic distances (p-distance) ranging from 0 to 0.03 for
serotype O, and 0 to 0.02 for SAT2 (Table 3). Geographic

distances ranged from 0 to 137 km for serotype O, and 0 to
140 km for SAT2. Time between samples ranged from 0 to 17.9
months for serotype O, and 0 to 1 month for SAT2. When the
two serotypes were analyzed separately, a significant positive
correlation between genetic distance and time was observed for
serotype O (ρ = 0.71, p = 0.003), and the positive correlation
between genetic distance and geographical distance for serotype
SAT2 approached significance (ρ = 0.54, p= 0.1).

DISCUSSION

Foot and mouth disease is endemic in Cameroon, where
most livestock are managed in subsistence and transhumance
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TABLE 2 | Sample information and accession numbers for VP1 sequences obtained in this study.

Sample ID Sequence name Sample type Collection

date

Collection

location

rtRT-PCR CT

values

VI FMDV

serotype

Genbank

accession

number

Transboundary

trade cattle

G3836 O/CAR/G3836/2012 Probang in VTM 20-Mar-12 Pouss 38.27 Pos O KY581682

G4765 O/CAR/G4765/2013 Probang in VTM 30-Jul-13 Pétté >40.00 Pos O KY581678

G4848 O/CAR/G4848/2013 Probang in VTM 6-Sep-13 Kousseri 34.45 Neg O KY581677

G4849 O/CAR/G4849/2013 Probang in VTM 6-Sep-13 Kousseri 35.23 Neg O KY581676

G3808 SAT2/CAR/G3808/2012 Probang in VTM 6-Mar-12 Kousseri 35.6 Neg SAT 2 KY581673

B01070 SAT2/CAR/B001070/2012 Probang in RNA Later® 6-Mar-12 Kousseri 27.65 NA SAT 2 KY581675

Native (sedentary

and transhumant)

cattle

LAN4 A/CAR/LAN4/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 13.09 Pos A MH383069

LAN9 A/CAR/LAN9/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 15.10 Pos A MH383070

LAN10 A/CAR/LAN10/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 15.05 Pos A MH383071

LAN11 A/CAR/LAN11/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 15.74 Pos A MH383072

LAN12 A/CAR/LAN12/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 19.23 Pos A MH383073

LAN14 A/CAR/14/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 15.16 Pos A KY581683

LAN15 A/CAR/LAN15/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 14.83 Pos A MH383074

LAN16 A/CAR/LAN16/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 17.88 Pos A MH383075

LAN17 A/CAR/LAN17/2014 Vesicle epithelium in VTM 30-Jan-14 Sifna 22.13 Pos A MH383076

G3856 O/CAR/G3856/2012 Vesicle epithelium in VTM 27-Mar-12 Yolde Nagge 15.07 Pos O KY581681

G3857 O/CAR/G3857/2012 Vesicle epithelium in VTM 27-Mar-12 Yolde Nagge 13.95 Pos O MH383077

G4250 O/CAR/G4250/2013 Vesicle epithelium in VTM 10-Jan-13 Louga Banana 34.81 Pos O MH383078

G4258 O/CAR/G4258/2013 Vesicle epithelium in VTM 10-Jan-13 Louga Banana 18.64 Pos O KY581680

G4260 O/CAR/G4260/2013 Vesicle epithelium in VTM 10-Jan-13 Lugga Banana 31.94 Pos O KY581679

G4262 O/CAR/G4262/2013 Vesicle epithelium in VTM 10-Jan-13 Lugga Banana 16.99 Neg O MH383079

G4268 O/CAR/G4268/2013 Vesicle epithelium in VTM 10-Jan-13 Joldugga 23.96 Neg O MH383080

G3796 SAT2/CAR/G3796/2012 Vesicle epithelium in VTM 26-Feb-12 Misde 14.76 Pos SAT2 KY581674

G3852 SAT2/CAR/G3852/2012 Vesicle epithelium in VTM 26-Mar-12 Djiddel 15.48 Pos SAT2 KY581672

G3853 SAT2/CAR/G3853/2012 Vesicle epithelium in VTM 26-Mar-12 Djiddel 15.13 Pos SAT2 KY581671

husbandry systems with animals often moved on foot within
the country and between neighboring countries. Transboundary
movements of animals are suggested to contribute to outbreaks
in endemic regions (15, 42, 43), and FMDV spread in Africa has
been associated with animal movement either via pastoralism
or animal trade (9, 14, 44). The current study investigated the
molecular epidemiology of FMDV in the Far North Region of
Cameroon between 2010 and 2014 based on samples collected
frommobile and sedentary native cattle and transboundary trade
cattle monitored through movement at official border check
points.

In the current study, the documented, legal transboundary
movement of cattle was exclusively east (Chad) to west
(Nigeria), with no consistent pattern of monthly peak animal
movement in 2012-2013, although the fewest animals were
consistently recorded in May-June and October-December. The
lulls in transboundary traffic corresponded to periods of long-
distance travel for native transhumant herds (45), suggesting a
relative scarcity of forage in the region, which may contribute
to fewer transboundary animals moving through the region
at those times. Outbreaks tended to occur during periods

of transboundary trade movement but the pattern was not
consistent. For example, outbreaks coincided with increased
transboundary movement during March 2012, January 2013, and
July 2013, however outbreaks were not recorded during times
of increased transboundary movement in July and August 2012.
Transboundary traffic is expected to result in contact between
transboundary and native cattle, facilitating disease spread. The
current study analyzed outbreaks verified by genetic sequencing
and official government records of transboundary movement of
trade cattle. However, previous reports have indicated only about
10% of transboundary trade passes through official channels in
some parts of Africa (9). Unrecorded animal movement, along
with limited outbreak reporting and sampling in the region, likely
contributed to the inconsistent association of outbreaks with
higher numbers of official transboundary animal movements in
the current study.

The results of the phylogenetic analyses are consistent with
previous reports for Cameroon regarding serotype distribution
and genetic lineage relationships (17–19, 46), and are also
consistent with reports for other countries in the region (21–
23, 47). Overall, the current study indicated that viruses from
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FIGURE 3 | VP1 phylogenetic tree for serotype O inferred using the maximum likelihood method based on the GTR+G+I model. Branch lengths indicate the number

of substitutions per site. Bootstrap values >50% are indicated at the nodes. The type of herd (transboundary, native sedentary, native transhumant) from which the

samples were collected is indicated by the symbol, and unique herds are indicated by the color of the symbol.
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FIGURE 4 | VP1 phylogenetic tree for serotype SAT2 inferred using the maximum likelihood method based on the GTR+G+I model. Branch lengths indicate the

number of substitutions per site. Bootstrap values >50% are indicated at the nodes. The type of herd (transboundary, native sedentary, native transhumant) from

which the samples were collected is indicated by the symbol, and unique herds are indicated by the color of the symbol.
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FIGURE 5 | VP1 phylogenetic tree for serotype A inferred using the maximum likelihood method based on the GTR+G+I model. Branch lengths indicate the number

of substitutions per site. Bootstrap values >50% are indicated at the nodes. The type of herd (transboundary, native sedentary, native transhumant) from which the

samples were collected is indicated by the symbol, and unique herds are indicated by the color of the symbol.
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TABLE 3 | Genetic, geographic, and temporal distance between pairs of sequences from transboundary and native (in bold) cattle.

FMDV Serotype Sequence pair Genetic distance Geographical distance (km) Time Dif. (months)

FMDV serotype O ID G4848 ID G4849 0.00 0 0

ID G3856 ID G3857 0.00 0 0

ID G3836 ID G3856 0.01 60 0.3

ID G3836 ID G3857 0.01 60 0.3

ID G4848 ID G4765 0.01 135 1.6

ID G4849 ID G4765 0.01 135 1.6

ID G3836 ID G4848 0.02 134 17.9

ID G3836 ID G4849 0.02 134 17.9

ID G3836 ID G4765 0.03 0 16.3

ID G3856 ID G4765 0.03 60 16

ID G3857 ID G4765 0.03 60 16

ID G3856 ID G4848 0.03 137 17.6

ID G3856 ID G4849 0.03 137 17.6

ID G3857 ID G4848 0.03 137 17.6

ID G3857 ID G4849 0.03 137 17.6

FMDV serotype SAT2 ID G3852 ID G3853 0 0 0

ID G3796 ID G3852 0.01 55 1

ID G3796 ID G3853 0.01 55 1

ID G3796 ID G3808 0.01 86 0.3

ID G3808 ID G3852 0.01 140 0.7

ID G3808 ID G3853 0.01 140 0.7

ID B01070 ID G3808 0.02 0 0

ID B01070 ID G3796 0.02 86 0.3

ID B01070 ID G3852 0.02 140 0.7

ID B01070 ID G3853 0.02 140 0.7

Cameroon share commonalities with viruses from West, East,
and North Africa, suggesting regional transmission between
Cameroon and neighboring countries, although the direction of
transmission is unclear.

The rate of evolution for a gene (i.e., the molecular clock)
can be used to estimate the date of the most recent common
ancestor of a pair of sequences in a phylogeny, howevermolecular
clock estimates are inaccurate for small genetic distances (48, 49).
For example, the average rate of evolution of the VP1 coding
region has been estimated at 5.95 × 10−3 substitutions/site/year
for serotype O, and 1.19 × 10−2 substitutions/site/year for
serotype A (50), and the time to the most recent common
ancestor between a pair of sequences is usually measured in
years. Consequently, patterns of transmission can be difficult
to discern at the small genetic distances and time between
sequences obtained in the current study using phylogenetic
analysis. To supplement the phylogenetic analysis, the current
study used correlation analysis to help discern patterns of
FMDV transmission. A positive correlation between genetic
distance and time suggests a widespread contemporaneous
epidemic in which mutation occurs simultaneously in different
locations, as has been reported for regional transmission of
Ebola virus (51). Conversely, a positive correlation between
genetic distance and geographic distance suggests a wave of a
virus epidemic moving through a region with little transmission

behind the leading edge, as has been reported for rabies virus
(52).

FMDV serotype O viruses obtained in this study grouped
into two topotypes, East Africa-3 and West Africa. Within
each topotype, viruses from this study grouped with viruses
collected in Cameroon in recent studies (19, 37) and with
other regional viruses from neighboring countries, suggesting
continuous regional transmission of both topotypes. Although
one transboundary trade virus (G3836) was collected prior to
an outbreak in a native herd, an ancestral relationship between
these transboundary and native viruses could not be established
because they were too closely related. The strong positive
correlation (ρ = 0.71) between genetic distance and time for
serotype O topotype West Africa viruses (n = 6) in this study
further supports the hypothesis that type O viruses transmit and
evolve continually in the region. Additionally, previous work
in the Far North Region of Cameroon indicated continuous
circulation of serotype O in that region, with sustained chains of
transmission (20).

FMDV serotype SAT2 viruses isolated from asymptomatic
transboundary trade cattle in 2012 grouped closely with viruses
isolated in clinical samples from native cattle and with viruses
from North Africa (Libya) isolated in the same year, likely
reflecting a region-wide epidemic caused by SAT2 in 2012 (44,
53). Although sample collection from transboundary trade cattle
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occurred prior to sample collection from the native sedentary
animals, directionality of transmission could not be determined
from our data due to the high similarity among the viruses, as
was the case for serotype O. Although not statistically significant,
the positive correlation (ρ = 0.54) observed between genetic
distance and geographic distance for SAT2 isolates (n = 5)
further supports a quick-moving outbreak advancing over a
large geographic area with little transmission behind the leading
edge of the outbreak. Additionally, a previous study in the Far
North Region of Cameroon indicated that SAT2 outbreaks may
be caused by repeated introductions of the virus (20), which is
consistent with the more phylogenetically distant relationships
between the SAT2 viruses obtained in the current study and those
collected in previous years in Cameroon and Nigeria. A previous
study from the Adamawa region of Cameroon also suggested
that movement of cattle was responsible for the introduction of
FMDV SAT2 from East Africa (18).

In this study, serotype A viruses were represented by a
single outbreak from a native sedentary herd in 2014, and the
viruses grouped with viruses from Nigeria collected between
2009 and 2015, indicating a pattern of regional transmission
similar to that observed for serotype O. Previous studies have also
indicated a close relationship between Nigerian FMDV serotype
A isolates and FMDV isolates from Cameroon (21), most likely
due to animal trade (54). In contrast, isolates collected in other
regions of Cameroon in 2012 and 2005 were more distantly
related to the sequences obtained in the current study, which
suggests a pattern of repeated introductions. A previous study
suggested that serotype A in Cameroon has an epidemic pattern
of distribution (similar to serotype SAT2) with short periods
of sustained transmission (20), which is consistent with the
phylogenetic relationships among serotype A viruses reported
in the current study. Additionally, a previous study showed a
close relationship between serotype A viruses collected in Sudan
and viruses collected elsewhere in the region (23), suggesting
long-distance animal movement is important for spread of this
serotype. Transboundary trade may introduce new serotype A
strains into Cameroon, and may facilitate spread of this serotype
within Cameroon and into Nigeria. However, no serotype A
viruses were obtained from transboundary animals in the current
study, and the origin or direction of movement of the viruses
cannot be determined with the limited data available.

Transboundary and native cattle shared closely related viruses
in the current study, indicating transmission occurs among
these groups of cattle, although infection from some other
common source is possible. However, the analysis is limited
due to the paucity of publicly available FMDV sequences from
the region. Samples from Cameroon, Sudan, and Nigeria are
limited to a handful of sampling periods, and there is a complete
lack of samples from Chad. Consequently, the phylogenetic
analysis suggests regional patterns of transmission, however the
directionality of transmission cannot be determined.

Additionally, the proportion of samples that yielded either
infectious virus or sequence data in this study was small relative
to the number of samples collected. This reflects the challenge
of collecting field samples in distant areas with limited access to
adequate sample preservation facilities. Due to sampling logistics

and limitations in the field, samples were stored on ice packs
(5–10◦C) for up to 7 days prior to transfer to the laboratory
and storage at −80◦C. We attempted to increase FMDV
RNA detection through sample preservation in RNA stabilizing
solution (RNAlater R©), however this did not significantly increase
detection, and preservation in RNAlater R© prevented isolation
of live virus from these samples. In the current study, FMDV
RNA was detected in 6.8% (n = 355) of OPF samples preserved
in VTM, while infectious virus was isolated from only 0.6% of
these samples. In comparison, a previous study in Cameroon
isolated infectious virus from 3.5% of OPF samples (18). The
limited FMDV RNA detection and infectious virus isolation in
the current study might be due to sample degradation. The
limited number of sequences obtained may also be due to sample
degradation or to failure of the primers used to universally
amplify the P1 region of some of the FMDV variants. We used
two approaches to maximize the number of sequences obtained;
by testing multiple primers tailored to amplify regional viruses
for Sanger sequencing and by next generation sequencing using
the Nextera XT DNA library platform.

The current study describes the molecular epidemiology
of FMDV isolates collected from transboundary trade and
native cattle in the Far North Region of Cameroon between
2010 and 2014. The evidence showed that FMDV serotypes
O, SAT2, and A were present in the Far North Region of
Cameroon, and transboundary trade cattle were likely involved
in the epidemiology of FMDV in this region. The close genetic
relationships between viruses from transboundary trade cattle
and viruses from native cattle suggests transmission between
these groups. Phylogenetic analysis indicated two topotypes of
FMDV serotype O circulating continuously in Cameroon. In
contrast, serotype SAT2 viruses were likely introduced more
recently, and serotype A viruses may be introduced repeatedly
and circulate for a period after introduction. The current study
adds to the understanding of FMDV epidemiology in Cameroon
and the region. However, this study is limited by the scarcity of
FMDV sequences from Central Africa. Further sampling in the
region is necessary to investigate patterns of transmission and
the role of transboundary trade cattle in FMDV epidemiology.
Better understanding of viral epidemiology will allow targeted
control strategies (e.g., temporary animal movement restrictions
and/or vaccination). Our results provide context for FMDV
transmission in Cameroon and the larger Sahel region of
Africa. This information is critical to prioritize resources within
Cameroon’s recently initiated FMDV vaccination campaigns.
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