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ABSTRACT

Upstream open reading frames (uORFs) latent in
mRNA transcripts are thought to modify translation
of coding sequences by altering ribosome activity.
Not all uORFs are thought to be active in such a pro-
cess. To estimate the impact of uORFs on the regula-
tion of translation in humans, we first circumscribed
the universe of all possible uORFs based on cod-
ing gene sequence motifs and identified 1.3 million
unique uORFs. To determine which of these are likely
to be biologically relevant, we built a simple Bayesian
classifier using 89 attributes of uORFs labeled as ac-
tive in ribosome profiling experiments. This allowed
us to extrapolate to a comprehensive catalog of likely
functional uORFs. We validated our predictions us-
ing in vivo protein levels and ribosome occupancy
from 46 individuals. This is a substantially larger cat-
alog of functional uORFs than has previously been
reported. Our ranked list of likely active uORFs al-
lows researchers to test their hypotheses regarding
the role of uORFs in health and disease. We demon-
strate several examples of biological interest through
the application of our catalog to somatic mutations
in cancer and disease-associated germline variants
in humans.

INTRODUCTION

Upstream open reading frames (uORFs) consist of a start
codon in the 5′ untranslated region of a gene (UTR) and
an associated stop codon appearing before the stop codon
of the main coding DNA sequence (CDS). An uORF may
begin and end before the main gene coding sequence. Alter-
natively, if the upstream reading frame is out of frame with
the CDS, it may overlap with the CDS (Figure 1A). uORFs

are latent in mRNA transcripts and may undergo transla-
tion.

An initial survey of the human genome identified uORFs
contained in ∼10% of mRNA transcripts (1). More recent
analyses identify uORFs in association with nearly half of
all mRNA transcripts (2). The discovery that many trans-
lated uORFs utilize near-cognate start codons to the canon-
ical ATG start codon has broadened estimates of uORF
prevalence further (3–7).

Presence of functional uORFs is generally thought to
suppress translation of downstream genes (8–13) (Fig-
ure 1B). Proposed molecular mechanisms for modifica-
tion of CDS translation by uORFs are numerous. These
include translation reinitiation – the uORF and CDS
are translated by the same ribosome in series––leaky-
scanning––ribosome recognition of an uORF and subse-
quent CDS translation, without uORF translation––and
ribosome-stalling––decreased translation of the CDS due to
ribosome retention at the upstream uORF (3,7,14). Differ-
ential translation of multiple protein products may occur
in consequence to an uORF (15). It is also possible for an
uORF to function as a short open reading frame, encoding
a functional peptide (16–19). uORF function is not neces-
sarily constant––uORFs may display differential function
in stressed cells compared with non-stressed controls (20–
25).

Study of uORF translation and function was historically
limited to the experimental evaluation of individual uORFs
(8,26). Genome-scale ribosome profiling studies have al-
lowed for the identification of large populations of uORFs
known to undergo translation (4,27,28). This mapping of
translation initiation is sufficient to make an association be-
tween ribosomes and particular start codons and reading
frames (29–31).

We proceed on the assumption that the total universe of
active uORFs is much larger than that identified through
ribosome profiling experiments. In other words, we assume
that ribosome profiling experiments have high specificity
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Figure 1. (A) Structure of upstream open reading frames. The stop codon of an uORF may be located before the CDS start codon [top], or downstream
of the CDS start codon if the uORF is frame-shifted relative to the CDS [middle]. If the uORF and CDS share the same stop codon, the uORF acts as a 5′
extension of the CDS [bottom]. (B) Effect of mutation or variation on upstream open reading frames. Creation or destruction of an upstream open reading
may have a downstream effect on translation of the coding sequence. Change in the translation of the coding sequence may result in a change in phenotype
and disease risk. (C) Sensitivity and specificity of ribosome profiling for identifying upstream open reading frames. It is possible that ribosome profiling
studies have a high false negative rate (left), or a high false positive rate (right). We make the assumption that ribosome profiling studies have a high false
negative rate for identifying translated upstream open reading frames (left). (D) The activity of uORFs varies according to cell type and environmental
stimuli. uORFs may not be detected in a ribosome profiling experiment due to variation in uORF activity with cell type and cell environment.

in identifying functional uORFs with a high false-negative
rate (Figure 1C). Ribosome profiling experiments follow a
challenging technical procedure, and it is uncertain whether
all potentially active uORFs are measurable in a given sam-
ple (Figure 1D). This is consistent with a high false-negative
rate. Other researchers have implicitly endorsed this hidden
assumption when predicting translated uORFs in Saccha-
romyces cerevisiae and Arabidopsis thaliana, on the basis
of DNA sequence and ribosome profiling data (32,33). A
similar assumption is the basis for using patterns of ribo-
some profiling occupancy to maximize the number of in-
ferred translation products in humans (34,35). Although
many uORFs may indeed be functionally neutral – neither
translated nor affecting the activity of the downstream CDS
– we sought to distinguish active uORFs from functionally
neutral uORFs on the basis of specific attributes.

For our investigation of the prevalence of active uORFs
in humans, we began with a genome-wide scan, searching
for uORFs associated with protein-coding genes listed in
the GENCODE genome annotation (36). uORFs begin-
ning with ATG or a single nucleotide variant of ATG were
identified. This scan yields a universe of uORFs numbering
nearly 1.3 million.

uORFs in this large set were classified as active accord-
ing to similarity to uORFs occupied in ribosome profil-
ing experiments. This classification was accomplished us-
ing a Naı̈ve-Bayes classifier, trained on 89 uORF attributes.
We validated our predicted uORFs using a cross-validation
method where two ribosome profiling experiments are used
to predict the uORFs translated in a third experiment. We
also validated our predictions by examining how gene level
protein expression and local ribosome activity correlate
with genetic variants that alter uORFs in 46 individuals.

The 1000 Genomes Project’s database of human variation
(37) and the NHGRI-EBI GWAS catalog (38) were used
to provide a baseline for the functional consequence of our
predicted active uORFs. The predictions we generated were
also used to measure the functional impact of somatic mu-
tations affecting uORFs in tissue-matched tumor samples
(39).

We provide a resource of predicted active uORFs for
other scientists to use in their effort to understand uORF
function in health and disease.



3328 Nucleic Acids Research, 2018, Vol. 46, No. 7

MATERIALS AND METHODS

Extracting uORFs from GENCODE

uORFs were identified through genome-wide search per-
formed on GENCODE Release 19, GENCODE’s GRCh37
human genome annotation (36). uORFs were defined as
a start codon within the 5′UTR and a downstream stop
codon before the end of the CDS. All three possible reading
frames were examined. ATG and near-cognate start codons
were included in this search [ATG, TTG, GTG, CTG, AAG,
AGG, ACG, ATA, ATT, ATC]. The decision to scan all
near-cognate start codons was motivated by prior investiga-
tions that highlight significant uORF translation initiation
at near-cognate start codons (3–7).

Ribosome profiling experiments as a reference set

Three independent ribosome profiling experiments per-
formed by Lee et al. (31), Fritsch et al. (30), and Gao et al.
(29) were used to obtain an experimentally validated set of
translated upstream open reading frames. All three of these
studies identified translation initiation sites (TIS) through
treatment of human cell lines with antibiotic translation in-
hibitors. These antibiotic treatments are designed to halt ri-
bosomes in proximity to the start codon (12–13 nucleotides
downstream). As such, these experiments can provide high-
resolution information about translation initiation sites in
the human genome. The studies of Lee et al. and Gao et
al. were performed on the HEK293 human cell line. The
study of Fritsch et al. was performed on the THP-1 hu-
man cell line. All three experiments identified uORFs and
included non-cognate start codons. These three experiments
thus provide a platform for identifying common features
of translated uORFs between experiments in the same tis-
sue and also across tissue-types, under a shared annotation
framework.

A literature review of translated human uORFs

In addition to ribosome profiling studies, confirmed trans-
lated uORFs were obtained from the biomedical literature
(8,40,41). uORFs studied in humans that displayed func-
tionality – demonstrated regulation of the CDS product –
were added to the set of positive uORFs. In total, 33 uORFs
associated with 33 separate genes were included from this
literature review.

Cleansing the dataset, by removal of N-terminal extensions
and alternative translation initiation sites (aTISs), and isola-
tion of unique uORFs

N-terminal extensions of the CDS sequence may retain
some functional activity of the primary gene protein prod-
uct and were removed from the dataset. Any uORF start
codon annotated as an alternative translation initiation site
(aTIS) for the CDS was also removed from the dataset.

A single uORF may be present on multiple transcripts.
In order to avoid over-counting, uORFs were distinguished
on the basis of their unique genomic coordinates. When a
single uORF was present on multiple transcripts, we asso-
ciated one transcript with the coordinates of that uORF as
an identifier.

1-voted, 2-voted and unlabeled datasets

uORFs were divided into three separate sets according to
their experimental translation status:

2-voted: uORFs identified as translated in two or more ribo-
some profiling experiments, or through literature review.

1-voted: uORFs identified as translated in only one ribo-
some profiling experiment, or through literature review.

Unlabeled: uORFs that were not identified as translated in
any ribosome profiling experiment, or through literature
review.

Ribosome binding strength of uORF start codons

We obtained transcript-level expression data from The Hu-
man Protein Atlas for the cell lines THP-1 and HEK 293
and used this data to normalize the footprinting reads from
each experiment (42).

According to the metric of normalized footprinting reads
per start codon, we classified uORFs as (a) strong ribo-
some binding strength uORFs (>50th percentile binding
strength among positive uORFs) and (b) weak ribosome
binding strength uORFs (<50th percentile among positive
uORFs). We then compared the experimental translation
status for high binding strength uORFs to low binding
strength uORFs.

Mass spectrometry (MS) evidence of uORF translation

We obtained short peptide sequences from The PeptideAt-
las Project Tiered Human Integrated Search Proteome
(THISP) database (43). This database pulls major sources of
human protein sequences identified in MS experiments into
an integrated resource. We used the 1 October 2016 build of
the Human PeptideAtlas which contains 1,222,862 unique
peptide sequences.

We then performed a BLAST (blastx) search (44) of this
peptide database against our genome-wide scan of uORFs
from the GENCODE annotation. We required that positive
matches have an expect (E) value <1 × 10−5, with no gaps in
the mapped sequence, and occur in the same reading frame
as the uORF. We also required that our positive matches
not map to CDS regions.

Estimating the total population of active uORFs

Based on observed overlap among ribosome profiling ex-
periments, an estimate for the total number of active uORFs
was made using methods from population biology. In gen-
eral, upon marking a number of items (M) in a population
of size N, the number of marked items (R) in a randomly
drawn subsequent sample of size C will roughly reflect the
proportion of marked items in the total population, i.e.:

R
C

∼= M
N

(1)

A simple rearrangement yields an estimate of the total
population size known as the Petersen estimate (45):

N̂ = CM
R

(2)
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where N̂ is the population size estimate. We treated func-
tional uORFs identified in ribosome profiling experiments
as samplings of the total population of functional uORFs.
If ribosome profiling experiments are examined sequentially
such that functional uORFs identified in one experiment
may be reidentified in subsequently examined experiments,
the Schnabel equation (Equation 3) or Schumacher and Es-
chmeyer equation (Equation 4) provide a means of combin-
ing the multiple samplings to estimate the total functional
uORF population size (46,47). The Schnabel equation is a
weighted average of Petersen estimates:

N̂ =
∑S

t=1(Ct Mt)∑S
t=1 Rt

(3)

where S is a series of ribosome profiling experiments with t
∈ {1. . .S}, Ct the number of functional uORFs in a sample,
Mt the cumulative number of functional uORFs identified
prior to sampling t, and Rt the number of functional uORFs
reidentified in sample t. Similarly, the Schumacher and Es-
chmeyer equation takes multiple Petersen estimates to pro-
vide a series of data points, Mt (x-coordinates) and Rt/Ct
(y-coordinates). A least-squares fit to these data points is
an estimate of the inverse of the population size:

N̂ =
∑S

t=1(Ct M2
t )

∑S
t=1 Rt Mt

(4)

Extraction of attributes associated with uORFs

Feature data were extracted for each uORF. Features were
chosen to cover a broad range of categories of data, in-
cluding features associated with uORF position and length,
conservation, functional metrics like RNA expression, and
sequence-based signatures that may relate to translation.
Eighty nine features were used in total. A complete listing
of these features including descriptions is included as Sup-
plemental Table S1.

Feature discretization

The minimum description length principle (MDLP) al-
gorithm was used to discretize each of our chosen at-
tributes (48). The MDLP algorithm minimizes infor-
mation lost through discretization. MDLP discretiza-
tion was implemented using the ‘discretization’ pack-
age available for R (http://cran.r-project.org/web/packages/
discretization/index.html).

Prioritization of feature data

The distribution for each feature was compared between
positive and unlabeled uORFs using the Kolmogorov–
Smirnov (KS) statistic. A greater KS statistic suggests the
greater ability of that attribute to distinguish between posi-
tive and unlabeled uORFs.

Classifying uORFs according to attributes

We determined that attributes of an uORF were consistent
with an active uORF according to a Naı̈ve-Bayes machine

learning algorithm applied to positive and unlabeled exam-
ples (49):

Ppos

N∏

i = 1

p (Ai |pos) = ppos (5)

Pneg

N∏

i = 1

p (Ai |unl) = pneg (6)

where:

Pneg + Ppos = 1 (7)

Ppos is the prior probability associated with positive uORFs.
Ppos was chosen as the F1 score maximizing value (0.61).
p(Ai |pos), and p(Ai |unl) represent the frequency of that at-
tribute value among the positive and unlabeled sets respec-
tively. ppos represents the probability the uORF is positive.
pneg represents the probability the uORF is negative. We
labeled an uORF as positive or negative according to the
greater value between ppos and pneg. Consistent with this
labeling, we scored the uORFs as log( ppos

pneg
) with a score of 0

as the threshold between positive and negative uORFs. We
note likely violation of the feature independence require-
ment of Naı̈ve-Bayes. However, empirical and theoretical
study has demonstrated optimal classification performance,
even where feature independence does not hold (50,51).

Peptide feature score

In addition to our uORF functional classification, we also
calculated a peptide score for each uORF based on protein
features that may be relevant to translated uORF peptides.
The included features were protein length, the 20 amino
acid frequencies, and evidence of protein translation from
MS (Supplemental Table S1). These features were com-
bined using a Naı̈ve-Bayes methodology similar to our main
uORF score.

Translation at lncRNA ORFs

In order to begin an investigation of the function of transla-
tion of ORFs on lncRNA, we first completed genome-wide
identification of ORFs on lncRNA using the GENCODE
Release 19 lncRNA annotation.

The studies of Fritsch et al., Lee et al. and Gao et al.
do not comment on lncRNA translation initiation sites. We
identified ORF translation sites on lncRNAs from these
three studies as follows: after downloading signal tracks
for these profiling experiments from the GWIPsViz browser
(52), we intersected our genome-wide lncRNA ORFs with
ribosome profiling reads. Similar to the threshold used by
Lee et al., we identified the ORF as translated if ≥10 reads
mapped to the start codon within ±1 nucleotide. Similar to
our analyses of uORFs on coding transcripts, we identified
a gold-standard positive set of ORFs as lncRNA ORFs that
are found translated in at least two of three experiments.

Model validation

Our model was serially trained on two of three ribosome
profiling datasets, using the trained model to extract the

http://cran.r-project.org/web/packages/discretization/index.html
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third withheld ribosome profiling dataset from among the
unlabeled examples. The success of differentially trained
models in this cross-validation was evaluated using ROC
curves, with an area under the curve (AUC) calculated for
each curve.

As a biologic validation of our predicted uORFs, we ex-
amined the effect of alteration of a predicted active uORF’s
start codon on gene protein levels and local ribosome occu-
pancy. Both protein quantitation and local ribosome quan-
titative trait loci (cis-rQTL) for 62 Yoruba lymphoblastoid
cell lines are available from the ribosome profiling and pro-
teomic experiments of Battle et al. (53). SNV array data is
available for all 62 individuals (54). However, in order to
evaluate the greatest possible range of polymorphisms we
chose to only examine 46 of the 62 individuals for whom
variant calling based on whole genome sequencing is avail-
able through the 1000 Genomes Project. Protein expression
change was evaluated in association with both gain of pre-
dicted positive uORFs (ATG and CTG) and loss of pre-
dicted positive uORFs. We analyzed uORF start codon gain
and loss because of the clear relationship to uORF gain and
loss. This is different from uORF stop codon gain and loss,
which generally results in a change in length of the uORF
sequence (uORF truncation and elongation). A change in
length of a uORF may affect the translation of downstream
coding sequences (e.g. via change in rate of leaky scanning
or translation reinitiation). However, the effect of extension
or truncation of a uORF on translation of the main CDS
depends greatly on local context and is challenging to in-
terpret in aggregate. Functional annotation clustering of
genes associated with variants examined was performed us-
ing Database for Annotation, Visualization and Integrated
Discovery v.6.8 (DAVID) (55).

Natural variation and somatic mutation affecting predicted
positive uORFs

Single nucleotide variants (SNVs) that affect the start
codons of predicted positive uORFs were identified using
data from the 1000 Genomes Project Phase 3 callset (56).
Measurement of comparative frequency of mutation among
uORF start codons was taken as a measure of evolutionary
conservation and functional significance of predicted posi-
tive uORFs. Ultra-rare, singleton variants from the Exome
Aggregation Consortium (ExAC) catalog v.1 were also ex-
amined for their effect on predicted positive uORFs (57). A
subset of SNVs affecting uORFs that are associated with
disease and differential disease susceptibility were identi-
fied through a search of the NHGRI-EBI GWAS database
(58), the Human Gene Mutation Database (HGMD) of
published human inherited disease mutations (59), and the
ClinVar database of variants with human phenotypic cor-
relations (60).

Furthermore, the study of Alexandrov et al. (39) provides
a set of exomic somatic mutations by patient sample and
cancer type. We used these mutations as a comparison stan-
dard for the healthy 1000 Genomes Project population. We
identified start codons of our predicted positive uORFs al-
tered by somatic mutation in cancer. These somatic muta-
tions were annotated and prioritized according to their re-
currence in patient samples, and according to their effect

on Catalogue of Somatic Mutations in Cancer (COSMIC)
cancer genes (61).

RESULTS

In silico identification based on a genome-wide search using
the GENCODE Release 19 gene annotation model yielded
1,270,265 unique uORFs. Within this large set, we extracted
the subset of uORFs identified as translated in the studies
of Lee et al., Fritsch et al. and Gao et al. We further strati-
fied this set of translated uORFs according to shared repre-
sentation of uORFs among the three studies. uORFs identi-
fied in the intersection between two or more of these studies
were used as the reference standard for functional uORFs.
Literature review yielded 33 additional examples of active
uORFs that were also included in the set of positive, func-
tional uORFs.

We followed the procedure outlined in Figure 2A to iden-
tify uORFs that are likely to be active. Distributions of at-
tributes for positive, translated uORFs were compared with
distributions of those same attributes observed in the set of
unlabeled uORFs (Figure 2B). The KS statistic and cor-
responding P-value for each of the 89 attributes assessed
in this study are provided in Supplemental Table S2. The
top 15 attributes listed according to the magnitude of KS
statistic are given in Figure 2C. This prioritization of fea-
tures suggests how they influence the likelihood of uORF
translation. Start and stop codons of functional uORFs
are generally located in evolutionarily conserved sites as
measured by GERP score suggesting a meaningful physi-
ologic role. Active uORFs are on average closer to the CDS
(203 nucleotides from the CDS start for positive uORFs,
318 nucleotides for unlabeled uORFs) and are associated
with shorter 5′UTR regions (360 nucleotides for positive
uORFs, 618 nucleotides for unlabeled uORFs). Positive
uORFs also have on average fewer internal ATG and near-
cognate start codons. This finding is consistent with prior
work showing that longer 5′ UTRs, in general, have less
functional impact on CDS translation than shorter 5′ UTRs
after controlling for number of uORFs (62).

Overlap between the three ribosome profiling experi-
ments was found to be low. 28.3% of translated uORFs from
Lee et al. (492/1,738), 26.6% of Fritsch et al. (662/2,485),
and 51.2% of Gao et al. (500/976), are positively identi-
fied in at least one other ribosome profiling experiment. The
number of uORFs shared between all three sets represents
only 4.0% of uORFs (172/4,286) identified in these stud-
ies (Figure 3A). In order to determine if the affinity of ri-
bosomes for the start codons was a factor in this observed
overlap, we defined a proxy of ribosome binding strength
as the number of footprinting reads per start codon, nor-
malized by transcript expression. We defined both strong
binding strength uORFs (>50th percentile binding strength
among positive uORFs) and weak binding uORFs and
weak ribosome binding strength uORFs (<50th percentile
among positive uORFs). We found there is greater percent
overlap among strong binding strength uORFs compared
with weak binding strength uORFs (positively identified
in at least one other experiment: Lee et al.––19.5% weak,
39.1% strong; Fritsch et al.––19.5% weak, 57.4% strong,
Gao et al.––52.3% weak, 52.5% strong).
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Figure 2. (A) Methodology for distinguishing positive from unlabeled uORFs. uORFs identified through genome-wide scan and uORFs labeled in ribo-
some profiling experiments were used to train a machine learning algorithm to identify uORFs that are likely active (positive predictions). (B) Examples
of differential distributions of attributes between positive and unlabeled uORFs. uORF attributes are used to distinguish positive from unlabeled uORFs.
Continuous distributions were discretized and optimized for machine learning using the minimum description length principle (MDLP) binning algorithm.
Horizontal lines on the plot correspond to these binning intervals. (C) Upstream open reading frame attribute ranking. Attributes are ranked according to
the difference in distribution between positive and unlabeled uORFs using the KS statistic. The top 15 features according to this prioritization are shown.
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Figure 3. (A) Ribosome profiling identified uORFs as a subset of all uORFs. The universe of all uORFs is identified through comprehensive search of the
GENCODE human genome annotation [outer border]. Ribosome profiling studies of Fritsch et al., Lee et al., and Gao et al. are shown as overlapping
subsets of this universe. Pair-wise and three-way intersections between these experiments are highlighted. (B) Frequency of translated uORF ATG start
codons and near-cognate start codons from ribosome profiling experiments. Frequency for uORFs translated in any experiment (union) or in more than one
experiment (intersection). (C) Score distributions for upstream open reading frames. Score distributions for 2-voted positive uORFs that are translated
in two or more ribosome profiling experiments (top), 1-voted positive uORFs that are translated in only one ribosome profiling experiment (middle),
and unlabeled uORFs uncovered through genome-wide search (bottom). (D) The frequency of uORF ATG start codons and near-cognate start codons of
predicted positive upstream open reading frames. Frequency is given for all uORFs genome-wide and for the subset of uORFs that are predicted to be active
(predicted positive). (E) uORFs predicted as positive from genome-wide scan and ribosome profiling experiments. Approximately 180,000 uORFs in the
genome are predicted as active upstream open reading frames. This large set includes substantial proportions of uORFs identified in the ribosome profiling
experiments (∼70% each). (F) Performance of the machine learning algorithm. The machine learning algorithm was trained on two of three ribosome
profiling data sets and used to extract the third data set from among unlabeled examples. The ROC curve is shown for each of the three combinations: (i)
train Lee et al. and Gao et al.––extract Fritsch et al. (AUC = 0.77), (ii) train Fritsch et al. and Gao et al.––extract Lee et al. (AUC = 0.82), (iii) train Lee
et al. and Fritsch et al.––extract Gao et al. (AUC = 0.79),
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In addition to ribosome profiling, mass spectrometry
(MS) may be used to identify translated uORFs. However,
prior work suggests that translated uORFs are poorly de-
tected using MS techniques and ribosome profiling is the
preferred methodology for their identification (63–65). This
could be due to the fact that peptides encoded by uORFs
are short and often not unique in the genome, or due to in-
complete translation/rapid degradation following transla-
tion by nonsense mediated decay (NMD). With these lim-
itations in mind, we completed a BLAST search of pep-
tide sequences from the Human PeptideAtlas against our
genome-wide uORFs extracted from the GENCODE an-
notation. 1,593 unique uORFs were identified with at least
1 mapped peptide sequence after removing all peptides also
mapping to CDS regions. A list of uORFs with unique pep-
tide mappings is included as Supplemental Table S3.

If independent ribosome profiling experiments represent
resampling of the same population, repeat identification of
uORFs among experiments yields an estimate of the total
number of functional uORFs. 10,000 functional uORFs are
estimated in this way to be present in the human genome us-
ing the Schnabel equation (Equation 3) or Schumacher and
Eschmeyer equation (Equation 4). This estimate of the total
population of functional uORFs was made with respect to
uORFs defined by their unique genomic coordinates. Thus,
identical uORFs across multiple transcripts are not redun-
dantly counted.

CTG (30.5%) and ATG (34.6%) are the most preva-
lent start codons identified in ribosome profiling experi-
ments. CTG (28.2%) and ATG (46.1%) continue to rep-
resent the majority of start codons in the intersection be-
tween ribosome profiling experiments (Figure 3B). Repre-
sentation of every near-cognate start codon was found in in-
tersections between studies, with the exception of AAG and
AGG. This suggests that uORFs do not generally employ
AAG and AGG as start codons. It has been previously sug-
gested that identification of uORFs beginning with AAG
or AGG in ribosome profiling experiments may represent
false-positives (66). Discretized attributes of positive and
unlabeled sets of uORFs were used to build a statistical clas-
sifier within a Naive-Bayes framework. The result of ap-
plication of the classifier is shown in Figure 3C. 76.8% of
2-voted positive uORFs [590/768], 67.1% of 1-voted posi-
tive uORFs [2,379/3,543], and 14.7% of unlabeled uORFs
[185,833/1,265,954] are ultimately classified as likely active.
A total of 14.9% of all uORFs are identified as likely ac-
tive [188,802/1,270,265]. A complete list of upstream open
reading frames predicted to be active is provided as Supple-
mental Table S4. The 10% highest probability examples are
also specified (Supplemental Table S5). In addition to our
main uORF score used to predict active uORFs, we also
calculated a peptide probability related to common pro-
tein features among ribosome-profiling study labelled func-
tional uORFs (20 amino acid frequencies, peptide length,
and MS evidence of translation). This peptide score was cal-
culated separately from the main uORF score in order to
distinguish post-translational features from features present
in nucleotide sequences. It is presented as a probability that
may be used to modify the main uORF score (see Supple-
mental Tables S4 and S5).

Motivated by recent ribosome profiling studies show-
ing evidence of translation at lncRNA ORFs (3,67–69), we
identified 756 unique ORFs with evidence of translation on
lncRNAs, of which 174 are 2-voted uORFs with evidence
of translation in two or more studies (Supplemental Table
S6). The largest number of these 2-voted lncRNA ORFs ex-
hibit translation initiation at the canonical ATG start codon
(55/174). However, translation initiation was observed at
all near-cognate start codons. On average, these positive (2-
voted) translated lncRNA ORFs were slightly longer than
uORFs––an average of 256 nucleotides for lncRNA ORFs
versus 205 nucleotides for uORFs – and located slightly
more distal to the 5′ cap––an average of 401 nucleotides for
lncRNA ORFs versus 280 nucleotides for uORFs.

We did not apply our existing scoring algorithm to
lncRNA ORFs, or include them in our training data, as
there are several properties of lncRNA ORFs that are not
shared by uORFs––most notably, an absence of known as-
sociation and position with respect to coding regions. The
relatively small number of gold standard positive (2-voted)
lncRNA ORFs (174) compared with uORFs (741) further
complicates development of a predictive score tailored to
functional lncRNA ORF prediction.

A large proportion of uORFs in the human genome be-
gin with CTG start codons (19.3%). The greatest number
of predicted positive uORFs are also initiated with a CTG
start codon (30.0%). ATG has a lower comparative preva-
lence in the human genome and in the predicted positive
set (6.7% and 8.4% respectively) (Figure 3D). Although it
is theoretically possible for the uORF and the main ORF
(CDS) to share the same stop codon (<10% of uORFs in
our genome-wide scan), we excluded N-terminal extensions
and annotated alternative translation initiation sites (aTISs)
in our analyses as they may retain some function of the pri-
mary gene protein product. Thus, all predicted functional
uORFs were isolated to the 5′UTR, or overlapping but out
of frame with the CDS. The proportion of uORFs ulti-
mately identified as positive from each ribosome profiling
study is shown in Figure 3E. The results were similar for
each of the ribosome profiling experiments, ∼70% in each
case (72% of Gao et al., 71% of Lee et al., 70% of Fritsch et
al.).

As a validation of our technique, we serially excluded one
of three ribosome profiling experiments from the positive
training set, instead including the excluded set among un-
labeled examples for subsequent retrieval (Figure 3F). The
AUC for each of the ROC curves corresponding to these tri-
als is similar: 0.77, 0.82, and 0.79. This shows that we are
able to recover experimentally determined uORFs based on
our training model. This also suggests a high false-negative
rate for ribosome profiling studies as seen by the low overlap
observed between ribosome profiling experiments.

As experimental validation of our technique, we exam-
ined how natural variation affecting our predicted active
uORFs alters protein level and ribosome localization in hu-
mans. We hypothesized that an active uORF altered by nat-
urally occurring variants should create observable effect on
ribosome occupancy and protein levels from that gene. The
results of Battle et al., supplemented by genotype informa-
tion from the 1000 Genomes Project, provide the basis for
validation of our predictions in 46 human subjects (Supple-
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mental Tables S7 and S8). In this study of natural varia-
tion amongst humans, SNVs causing gain of predicted pos-
itive ATG or CTG uORFs are associated with increase in
downstream protein expression. Variants that cause loss of
predicted positive uORFs are associated with decrease in
downstream protein expression (Figure 4A). That is, there
is a statistically significant difference in mean protein ex-
pression between variants causing uORF gain compared
with uORF loss, among variants with approximate balance
between individuals with and without the variant (Nloss =
133, Ngain = 17, t = 2.6, DOF = 307, P = 0.011, for variants
shared by >10 individuals). This result is contradictory to
the expectation that uORFs generally repress translation of
protein downstream. A case study documenting the conse-
quences of uORF gain for the EIF5A gene is provided in
Supplemental Results (Supplementary Figure S1).

We hypothesized that the observation of decreased pro-
tein levels upon uORF loss may relate to uORF–uORF re-
pression: an uORF upstream of another uORF may repress
the downstream uORF. The loss of one uORF allows a sec-
ond uORF to act as a translational repressor of the down-
stream CDS. When we restricted our protein level analy-
sis to uORFs least likely to repress downstream uORFs–
uORFs directly overlapping the CDS – we observed a
trend towards increases in protein levels with uORF loss
(NCDSoverlap = 34, � = 0.065; NCDSnon-overlap = 99, � = –
0.055; P = 0.097, for variants shared by >10 individuals).
This is consistent with the classical role of uORFs as trans-
lational repressors.

The above analyses of the effect of uORF alteration on
protein level were completed for short insertions and dele-
tions (indels) in addition to SNVs. However, there is an ad-
ditional challenge to interpreting the effect of indels affect-
ing uORFs – indels have the potential to introduce multiple
competing effects (e.g. simultaneous uORF gain and loss)
and represent less than 3% of variants in the 1000 Genomes
Project variant set examined. These results are provided sep-
arately in Supplemental Table S9.

Functional annotation clustering of genes associated
with variants affecting predicted positive uORFs showed
greatest enrichment for ribosomal proteins including
RPL24 (32 associated with uORF loss and 17 associated
with uORF gain) and ribosome associated proteins includ-
ing EIF3 (DAVID enrichment score 20.94, Nterms = 12,
Ngenes(enrich.)/Ngenes(tot.) = 108/961, pmean(geom.) << 0.001).
EIF3 and ribosomal proteins like RPL24 are thought
to overcome uORF mediated repression in Arabidopsis
thaliana through facilitation of translation reinitiation (70).

For these same 46 human subjects, cis-rQTLs provide an
inventory of variants with statistically significant effect on
local ribosome occupancy. There is significant enrichment
for rQTLs interrupting positively scored start codons (Fig-
ure 4B). If mutations hit uORFs randomly, 14.9% of the
time they would hit a positively scored uORF. However, we
observe that 48% of these rQTLs (21/44) interrupt posi-
tively scored start codons––a 3× higher rate. This indicates
that many rQTLs may measure the direct effect of disrup-
tion of functional uORFs.

The ATG start codon is relatively conserved among pre-
dicted positive start codons––it is rarely interrupted by 1000
Genomes Project variants (relative rate (RR) 0.03), suggest-

ing its functional importance. This is consistent with prior
analyses, which find that ATG is the most conserved up-
stream start codon (71). The CTG start codon, although
more prevalent among predicted positive uORFs, is altered
relatively frequently by natural human variants (RR 0.52)
(Figure 4C). In exomic tumor samples from cancer pa-
tients, CTG is the most commonly modified predicted pos-
itive uORF start codon. ATG is interrupted at a RR of
0.25 in comparison to CTG (Figure 4d). The higher RR
of interruption of both ATG and CTG in cancer as com-
pared to germline variants––8-fold higher, and 2-fold higher
respectively––further suggests functional consequences at-
tributable to these uORFs. Ultra-rare (singleton) variants
from the ExAC catalog v.1 were also scanned for alter-
ation of uORF predicted positive start codons. The single-
ton variants from the ExAC catalog affecting predicted pos-
itive uORFs help highlight high-impact germline mutations
affecting conserved uORF start codon sites (Supplemental
Table S10).

Exomic cancer mutations breaking the highest scored
uORFs are listed in Supplemental Table S11. These muta-
tions interrupt uORFs associated with well-studied onco-
genes and tumor suppressors. MYC and BCL2 are the two
genes associated with the greatest recurrence of uORF in-
terruptions, and we identify recurrent mutation of positively
scored uORFs associated with PTEN, TP53, ERCC1 and
MSH5. An annotation of Supplemental Table S11 is pro-
vided indicating somatic variants that affect uORFs associ-
ated with COSMIC cancer genes, as well as recurrent so-
matic variants affecting uORFs that are recurrent across
patient samples. These annotations indicate variants that
are priorities for future follow-up analyses. We found that
predicted functional uORFs located on genes associated
with cell survival and cell differentiation are among those
most frequently disrupted by mutation in cancer compared
to expectation, suggesting an impact on tumor cell fit-
ness (Supplementary Figure S2). Rates of predicted func-
tional uORF interruption varied significantly across can-
cer types, indicating that uORF disruption has greater
functional impact in certain cancers (Supplementary Fig-
ure S3). Genome-wide association study (GWAS) SNVs
listed in the NHGRI-EBI GWAS database that impact our
predicted uORFs are listed in Supplemental Table S12.
GWAS diseases associated with SNVs interrupting posi-
tively scored uORFs include prevalent chronic conditions
like asthma (rs3771180), and type 2 diabetes (rs1552224).
We further scanned variants from the Human Gene Muta-
tion Database (HGMD) of published human inherited dis-
ease mutations (Supplemental Table S13) and the ClinVar
database of variants with human phenotypic correlations
(Supplemental Table S14). These variant analyses implicate
the possible influence of uORF alteration in a number of
additional disease conditions such as Parkinson’s Disease
and cancer-predisposing Lynch Syndrome.

Additional variants associated with susceptibility and
prognosis in cancer are found to interrupt positively scored
uORFs, like rs779805 upstream of the VHL gene, and
rs34330 upstream of CDKN1B. Although linkage disequi-
librium and overlap among regulatory elements compli-
cates interpretation of these GWAS studies, these disease-
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Figure 4. (A) Gene level protein expression change for individuals with variants interrupting predicted positive uORFs. The work of Battle et al. includes
proteomic measurements for 46 individuals with whole genome variant calling through the 1000 Genomes Project. For these individuals, uORF gain is
associated with increased protein levels from the downstream gene, while uORF loss is associated with decreased protein levels. (B) rQTLs interrupting
uORFs according to the score of the corresponding uORF. rQTLs identified by Battle et al. display a tendency to hit predicted positive uORFs. (C) Density
matrix showing the distribution of 1000 Genomes variants that interrupt predicted positive uORF start codons. The vertical axis displays the reference start
codon, and the horizontal axis shows the interrupting variant (position––1, 2, 3 – and codon––A, T, G, C). (D) Density matrix showing the distribution
of somatic mutations found in exomic tumor samples that interrupt predicted positive uORF start codons. The vertical axis displays the reference start
codon, the horizontal axis shows the interrupting variant (position––1, 2, 3––and codon––A, T, G, C). ATG forming mutations are highlighted.

associated SNVs may owe their functional consequence to
alteration of a translated uORF.

DISCUSSION

In this study, we identify 188,802 likely active upstream
open reading frames from a genome-wide set of 1,270,265
unique uORFs. We further highlight the 10% of our predic-
tions that are most likely to be functional as a high reliability
subset.

We began by assuming that ribosome profiling experi-
ments have a high false negative rate for identification of
functional uORFs. Our method applied the intersection of
three ribosome profiling studies to form a reference set of
known active uORFs. The low overlap between ribosome
profiling experiments suggests a high false-negative rate in
individual experiments. The finding that pairs of ribosome
profiling experiments may be used to correctly identify the
uORFs translated in a third experiment also suggests a high
false negative rate. The large number of uORFs we identi-
fied as likely functional is consistent with this premise, but
significant in comparison to other studies on the topic.

There is precedent for our findings in comparisons
of large-scale parallel experiments of interaction between

biomolecules. The protein-protein interaction experiments
of Uetz et al. aimed to produce a comprehensive, genome-
wide map of protein interactions (72). Subsequent experi-
ments by Ito et al. with similar technique and scope showed
low overlap with the results of Uetz et al. (73). It became
clear that the universe of possible protein-protein interac-
tions is much larger than identified in either experiment in-
dividually. Combining datasets improves the identification
of these protein interactions (74).

Our use of an intersection between ribosome profiling ex-
periments provides some control against differences in ex-
perimental conditions and tissue specific results (three ex-
periments and both HEK293 and THP-1 cells were exam-
ined). However, just as protein levels vary widely across cell-
types (75), it may prove that the activity of uORFs varies
considerably across cell types and cellular conditions. Anal-
ysis of cell-type specific and condition specific activity of
uORFs may further expand estimates of the population of
translated uORFs.

Our study helps clarify how attributes of structure and
context of a given uORF––including start codon, base com-
position, and relative position to the CDS––likely con-
tribute to varying functionality among uORFs. Although
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ATG is the most common uORF start codon identified in
ribosome profiling experiments, lower affinity near cognate-
start codons may have great functional impact on the land-
scape of translation due to their overall abundance.

An important validation of our predictions is the find-
ing that alteration of predicted functional uORFs, as a con-
sequence of germline genetic variation, impacts ribosome
binding and protein levels in humans. Generally, we as-
sume that uORFs act as translational repressors. However,
the overall effect of uORF loss appears to be a decrease in
downstream protein level. This is contrary to common view
that uORFs act as translational repressors. Mechanisms
have been studied where uORFs act to up-regulate expres-
sion of a downstream coding sequence (e.g. leaky-scanning,
and translation reinitiation). Ribosomal reinitiation at an
uORF on the ATF4 gene is one particularly well studied
example of such a mechanism (76). Our analysis suggests
that positive effect on translation may be a more common
consequence for upstream open reading frames than was
previously credited.

The protein level changes we observed may also relate
to multiple indirect effects of uORF repression such as (i)
uORF–uORF interaction where one uORF acts to repress
another uORF, (ii) variation affecting overlapping uORFs
simultaneously and (iii) uORFs upstream of coding genes
that themselves regulate translation. Indeed, the observa-
tion of enrichment of translational mediators and riboso-
mal proteins among our uORFs affected by genetic vari-
ation, suggests the possibility of cascading functional ef-
fects related to uORF gain or loss. Furthermore, among
genes with multiple predicted positive uORFs, the presence
of CDS-overlapping uORFs resulted in opposite effect on
CDS translation compared to those uORFs entirely up-
stream of the CDSs. This observation suggests that the ef-
fect of interaction among uORFs is worthy of further study.

In addition to our examination of uORFs on protein
coding genes, we also observed significant translation ini-
tiation on lncRNA ORFs replicated across the studies we
examined. As has been noted by other investigators, these
ORFs may serve a function similar to uORFs––regulating
translation from as yet undiscovered downstream coding se-
quences on lncRNAs. Alternatively, these lncRNA ORFs
may themselves function as CDS regions, encoding short
novel peptides that have been mis-annotated as non-coding
(77). Our work supports a need for further investigation of
the coding potential of these ‘non-coding’ transcripts.

Limitations to our catalog include the possibility that
post-transcriptional RNA editing could result in additional
uORFs. Also, the mechanism of repeat associated non-
ATG translation, whereby translation may initiate at RNA
repeat motifs in absence of a specific start codon, suggests
there may exist uORFs that do not initiate translation at one
of the near-cognate start codons we examined (78). Future
work may be aimed towards clarifying to what extent these
classes of translated uORFs exist.

Our results suggest avenues for future research. Identifi-
cation of human germline variants altering predicted posi-
tive uORFs reveals locations where the creation or destruc-
tion of an uORF is likely to alter protein levels. Employing
this method, we identified disease-associated SNVs, includ-
ing a number of GWAS SNVs, that likely owe their signifi-

cance to alteration of a functional uORF. Our work could
be used to help broaden knowledge of the role of uORFs in
cancer beyond recently identified individual examples (79).
Finally, we provide a catalog that can serve as a point of ref-
erence for other researchers engaged in the investigation of
uORF function.
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