
sensors

Article

Using Soft Sensors as a Basis of an Innovative Architecture
for Operation Planning and Quality Evaluation in
Agricultural Sprayers †

Elmer A. G. Peñaloza 1,* , Vilma A. Oliveira 2 and Paulo E. Cruvinel 3

����������
�������

Citation: Peñaloza, E.A.G.;

Oliveira, V.A.; Cruvinel, P.E. Using

Soft Sensors as a Basis of an

Innovative Architecture for Operation

Planning and Quality Evaluation in

Agricultural Sprayers. Sensors 2021,

21, 1269. https://dx.doi.org/

10.3390/s21041269

Academic Editor: Maria Gabriella

Xibilia

Received: 5 December 2020

Accepted: 6 February 2021

Published: 10 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Engineering Center, Federal University of Pelotas, Rua Benjamin Constant, n°989,
Porto, Pelotas 96010-020, RS, Brazil

2 Department of Electrical and Computer Engineering, University of São Paulo, São Carlos,
Av. Trabalhador São Carlense, n° 400, São Carlos 13566-590, SP, Brazil; voliveira@usp.br

3 Embrapa Instrumentation, Brazilian Agricultural Research Corporation, Rua XV de Novembro, n° 1.452,
São Carlos 13560-970, SP, Brazil; paulo.cruvinel@embrapa.br

* Correspondence: eagpenaloza@ufpel.edu.br
† This paper is an extended version of the published conference paper “Penaloza, Elmer AG, Vilma A. Oliveira,

and Paulo E. Cruvinel. Soft-sensor approach based on principal components analysis to improve the quality
of the application of pesticides in agricultural pest control. In Proceedings of the Third International
Conference on Advances in Sensors, Actuators, Metering and Sensing, Rome, Italy, 25–29 March 2018”.

Abstract: One of the major problems facing humanity in the coming decades is the production of
food on a large scale. The production of large quantities of food must be conducted in a sustainable
and responsible manner for nature and humans. In this sense, the appropriate application of
agricultural pesticides plays a fundamental role since pesticide application in a qualified manner
reduces human and environmental risks as well as the costs of food production. Evaluation of the
quality of application using sprayers is an important issue, and several quality descriptors related to
the average diameter and distribution of droplets are used. This paper describes the construction of a
data-driven soft sensor using the parametric principal component regression (PCR) method based
on principal component analysis (PCA), which works in two configurations: with the input being
the operating conditions of the agricultural boom sprayers and its outputs being the prediction of
the quality descriptors of spraying, and vice versa. The soft sensor provides, in one configuration,
estimates of the quality of pesticide application at a certain time and, in the other, estimates of the
appropriate sprayer-operating conditions, which can be used for control and optimization of the
processes in pesticide application. Full cone nozzles are used to illustrate a practical application as
well as to validate the usefulness of the soft sensor designed with the PCR method. The selection of
historical data, exploration, and filtering of data, and the structure and validation of the soft sensor
are presented. For comparison purposes, the results with the well-known nonparametric k-Nearest
Neighbor (k−NN) regression method are presented. The results of this research reveal the usefulness
of soft sensors in the application of agricultural pesticides and as a knowledge base to assist in
agricultural decision-making.

Keywords: soft-sensor design; inferential sensors; quality of application; principal component
analysis; K-nearest neighbor; agricultural sprayers

1. Introduction

With the rise in the data-processing capacity and the speed of calculation in the
new generation of processors embedded in small devices, it is easier to create virtual
instruments based on information and models obtained from the production process.
Therefore, mathematical models can be used to represent the variables that cannot be
measured in a process based on the variables that are available and can be easily measured
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with instruments. Soft sensors are computer programs established on models that are used
for estimating unmeasurable variables from production processes; specifically, they are
based on estimation and prediction techniques that use a priori information collected using
sensors and mathematical models that describe physical processes.

A soft-sensor-based approach is used in cases when sensors (hardware) are unavail-
able, when their implementation is difficult and incurs high costs, or when no instruments
can measure the variable of interest [1]. The application of soft sensors are generally di-
vided into three categories: monitoring processes, process control, and offline assistance
for process operations [2].

In the literature, there are several successful applications of soft-sensors in production
processes. In 1995, an inference estimator based on fuzzy logic to measure and control
the purity of propylene from a high-purity distillation column was designed [3]. Here,
estimation was made by adopting the distillation process model and by using it as the
knowledge base for training the input and output data of the plant for specific situations.
Using this approach, the authors were able to accurately model nonlinear systems with
an online learning capability. In 1998, soft sensors were used to estimate the size of
particles in a grinding plant, where sensors were unavailable [4]. The authors in [4] used
an autoregressive moving average model (ARMAX) as a soft sensor to estimate and test the
predictive capacity. Then, in 2007, a soft sensor to detect nitrogen oxide (NOx) emissions
produced by a cement kiln system was designed [5]. The authors in [5] used robust
regression techniques to derive an inferential model, making estimation possible using
dynamic least squares. In 2016, a soft-sensor approach to predict and monitor indoor air
quality in the Seoul metro system was used [6]. The authors in [6] used the just-in-time
(JIT) learning technique to model the nonlinear process based on two local models of
prediction: the linear partial least squares (PLS) and the nonlinear least squares support
vector regression (LSSVR).

Recently, studies have emerged with relevant use of soft sensors, an example of which
is the approach appearing in [7] to determine physical properties of different materials
based on the historical of spectroscopic readings of the samples tested a priori. The authors
in [7] proposed the use of intelligent models to determine the correlation between different
wavelengths and to determine which variables have more statistical weight in a whole
spectrum. The methodology used by these authors are based on the statistics pattern
analysis (SPA), which offers good results by reducing the complexity of models and by
improving the estimation performance. In addition, in [8], the soft-sensor approach was
applied to estimate the dissolved oxygen level in a hydraulic recirculation system used for
aquaculture using recurrent neural networks (RNN).

Another recent application of the soft-sensor approach was carried out in [9] for
real-time estimate and monitoring of phosphates and soluble chemical oxygen demand
(COD) concentrations in the anaerobic chambers of a multistage moving bed biofilm reactor
(MBBR) configuration. The soft sensor was developed from an extended Kalman filter
applied to a reduced-order nutrient removal analytical model. The validation of the results
demonstrates the success of the soft-sensor approach to estimate these types of variables.
On the other hand, there is currently concern in improving existing technologies and in
developing new base methodologies for the construction of soft sensors to predict quality in
industrial processes. An example of this is the development of a new soft sensor approach
based on a multichannel convolutional neural network (MCNN) recently proposed in [10]
showing acceptable results in estimating quality variables of the debutanizer column and
hydrocracking industrial processes.

The use of statistical approaches for the construction of a soft sensor is widely stud-
ied in the literature; an example of this is the research developed in [11] in which the
authors developed a methodology for the construction of a soft-sensor based on principal
component analysis (PCA) for the detection of sensor failures. The soft-sensor model
was built based on historical data taken from an actual nuclear power plant. The authors
used and compared two models, one based on an improved PCA model and the other
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based on a cyclical PCA model. Both soft sensors can quickly detect the occurrence of
multiple sensor faults and can successfully isolate these faulty sensors of the process. In the
same line, in [12], an approach based on PCA to develop a soft sensor to perform sensor
failure detection in a real water source heat pump air-conditioning system was used. The
PCA statistical approach is used in conjunction with a k-means clustering, to optimize
the classification prepossessing of both training and test data. The results obtained by the
researchers showed that the use of these methodologies offers a strong detection capability
when random faults are introduced to the sensor in the execution of the process.

The construction of a soft sensor starts with knowledge of the process and the rela-
tionship among the relevant variables. Therefore, it is important to recognize all variables
involved in the process to identify the variables to be sensed and the variables to be esti-
mated or predicted. The conception and construction of a data-driven soft sensor have five
main pillars: collection and selection of historical process data, detection of outliers and
data filtering, selection of the model structure, estimation, and validation of the model [1].
Therefore, these five pillars must be executed sequentially to obtain a soft sensor with a
high degree of accuracy.

As the global population increases, the need to produce more food force agricultural
techniques constantly evolves.The development of new technologies for the production of
inputs, pesticides, and agricultural machines such as tractors and sprayers, and genetic
engineering have made it possible to increase agricultural production and to reduce the en-
vironmental impact. Among the activities of crop management, one of the most expensive
is spraying pesticides. Spraying is the application of a liquid in the form of small particles
on a surface. These particles are called drops or droplets.

An efficient spraying application is based on the following factors: efficiency of the
spraying application, quality of the applied chemical, climatic conditions, and biological
characteristics of the pest [13,14]. Among these factors, spraying quality is one of the most
important and precision agriculture based on automation and control plays an important
role. The knowledge of the size, distribution, and process of droplet formation are essential
for the successful pulverization of pesticides [15]. These have influences on the drift,
evaporation of products, penetration capability inside the canopy of crops, and deposition
on phytosanitary treatment targets [16]. Also, the application speed as well as the nozzle
position in the application boom, may affect the droplet size.

Because agricultural crops vary in height as they grow and an agricultural sprayer
is used on different crops in a farm, the sprayer boom height must be accurate to ensure
that crops receive proper amounts of liquids dispensed. Furthermore, current advanced
sprayers generally include additional sets of sensors, which are useful for precision spray-
ing management. A set of sensors have been used to help the operators in the calibration of
the engine temperature, monitoring of flow and pressure of the pesticide hydraulic pump,
and other variables required in the spraying process.

However, it is still a challenge to measure and control all the variables required to
guarantee the spraying quality and to obtain a complete characterization of the spraying
system during operation. Therefore, to improve the performance of such processes, soft
sensors are used to estimate the values of important variables that cannot be obtained
through traditional measurements.

In this paper, we present an innovative soft-sensor architecture to improve operation
planning and quality evaluation of the agricultural processes in pesticide application
based on statistical models and statistical pattern analysis. The main focus of this study
is the prediction of quality descriptors of the application as a function of the operating
conditions of agricultural sprayers as well as the operational planning of the agricultural
processes. Larger pressure nozzle ranges and spray boom nozzle positions are considered.
The operating conditions considered are thus related to droplets sizes and nozzle orifice
diameters in order to select the best nozzle type for each operating condition, and this
would be useful to automatically perform individual control of each nozzle.
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2. Materials and Methods

This section begins by presenting the boom sprayer quality descriptors used including
the Sauter mean diameter, which provides information on the uniformity of the droplet
spectrum. Following, the regression models, the conception of the soft-sensor in terms of
inputs and outputs, the experimental setup, data collection, and the validation methods
are presented.

2.1. Droplet Size and Distribution

In the literature, a function of the distribution of instantaneous diameters, which
are typically used to describe sprayers, is widely used [17,18]. Such a function provides
information on the number of drops having a certain average diameter and the distribution
of these diameters for a particular spray application. In general, the mean diameter denoted
Dcd represents the characteristics of the spraying. Let Ni and Di be the number of drops in
the size range i and the mean diameter of size range i, respectively. The diameter function
Dcd is discretely calculated using the following equation:

Dcd =

(
ΣNiDc

i

ΣNiDd
i

) 1
(c−d)

(1)

where c and d are positive integers, Dcd is given in the unit of diameter, and i denotes the
range of size considered.

The volumetric median diameter (VMD) is important in the characterization of spray-
ing and is widely used in agricultural spraying [19–21]. This diameter is calculated by
substituting c = 3 and d = 0 into (1) to obtain the following expression:

VMD =

(
ΣNiD3

i
ΣNi

) 1
3

(2)

where VMD represents the median of droplet volumes in the spray [22], that is, VMD is the
diameter of a droplet in spectrum, which divides the volume into two equal parts: one con-
sisting of droplets with smaller diameters and the other with droplets of larger diameters.

On the other hand, the Sauter mean diameter (SMD) describes the relationship be-
tween the total droplet volume in a spray and the total surface area of the droplets [22].
This mean diameter is calculated by substituting c = 3 and d = 2 into (1) as follows:

SMD =
ΣNiD3

i
ΣNiD2

i
(3)

The spraying median diameters provide information regarding the volume as a
function of the frequency of formed droplet sizes, but this information is insufficient
when analyzing the uniformity of spraying. Therefore, it is necessary to consider some
representative diameters. One of these is the diameter of droplets such that 10 % of the
total volume of liquid is in drops of smaller diameter, named D0.1, and the other is the
diameter of droplets such that 90% of the total volume of liquid is in drops of smaller
diameter, named D0.9.

The representative diameters are also used to characterize the relative amplitude. The
relative amplitude RA is defined as follows:

RA =
D0.9 − D0.1

VMD
. (4)

This parameter, quantifies the range of sizes containing 80% of the spray volume and
is a nondimensional comparative index of the droplets that compose the spray. In addition,
the relative amplitude provides an indication of the difference in droplet sizes per VMD.
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Therefore, the greater the relative amplitude, the greater the degree of heterogeneity of the
spray spectrum [13].

In relation to droplet size and distribution, it is important to observe that other
factors exist, which are implicit in hydrodynamic and aerodynamic processes owing to
the formation and rupture of liquid jets. However, the current theories are insufficient to
describe the formation of the size and distribution of droplets in the liquid spraying process.
Therefore, empirical correlations are used to predict the droplet size and distribution.
A common empirical function used to describe the distribution of droplet diameters is the
Rosin–Rammler empirical function. This function relates the total volume fraction to the
droplet diameters. The Rosin–Rammler function is expressed as follows:

1−Q = exp(−D/R)q (5)

where D (µm) is a given diameter, Q is the fraction of the total volume of drops with
diameter less than D, and q and R are the parameters of the Rosin–Rammler distribution
with q as the drop size and R as its diameter. The exponent q provides the measure of the
spread of drop sizes. Larger values of q lead to greater spray uniformity. The distribution
parameter q can thus be computed using the experimental median diameters (D0.9 and
VMD) as follows:

D0.9

VMD
= (3.32)(1/q). (6)

The Rosin–Rammler distribution allows for the extrapolation of data in the range
of very fine drops, where measurements are more difficult and less precise [23]. The
advantage of using known distribution functions is that we can easily find mathematical
relationships between different diameters; for example, in the Rosin–Rammler distribution,
the relations are made as a function of the drop size distribution parameter q. Therefore,
the rate between SMD and VMD can be related as follows [24]:

SMD
VMD

= (0.693)(1/q)Γ
(

1− 1
q

)
(7)

where Γ is the Gamma function.
In this work, the average diameters VMD (2) and SMD (3), the characteristic diameters

D0.1 and D0.9, the application rate (AR), the covered area (CA) by spraying, and the
uniformity index that is represented by the relative amplitude RA (4) are used as the
descriptors of quality in the agricultural spraying process.

2.2. Regression Models

In what follows, the regression models based on PCR by PCA analysis as well as
the nonparametric regression method, based on the k Nearest Neighbor (k-NN) used for
comparison are summarized for easy reference.

2.2.1. Principal Component Analysis

A regression model is commonly used to represent experimental data. The regression
model coefficients are obtained using principal components (PCs). The main idea here is to
reduce the dimension of the data set while keeping the variation of the original data.

Consider a set of observations {xn}, where n = 1, . . . , N and xn is a Euclidian variable
with dimensionality D. To obtain the PCs, the projection of observations onto a space
with dimensionality M < D is performed. To present this formulation, the simplest
one-dimensional space case (M = 1) ) is used, i.e., the projection of data is in the one-
dimensional space [25]. The mean of observations is calculated as follows:

x =
1
N

N

∑
n=1

xn. (8)



Sensors 2021, 21, 1269 6 of 30

The covariance matrix S is defined using the following expression:

S =
1
N

N

∑
n=1

(xn − x)(xn − x)T . (9)

Let a D-dimensional vector u1 be the direction of this space, which is chosen such that
uT

1 u1 = 1. Each vector; xn is then projected onto the scalar value uT
1 xn, and the idea is to

maximize the variance of the projected data in relation to the vector u1. The variance of the
projected data is given by

1
N

N

∑
n=1

(
uT

1 xn − uT
1 x
)2

= uT
1 Su1. (10)

To prevent ‖u1‖ → ∞, the maximization of the projected variance must be constrained.
This constraint comes from the normalization condition, uT

1 u1 = 1. To comply with this
constraint, a Lagrange multiplier λ1 is introduced [25]:

uT
1 Su1 + λ1

(
1− uT

1 u1

)
. (11)

Therefore, taking the derivative of (11) in relation to u1 and equating it to zero, the
following solution is obtained:

uT
1 Su1 = λ1. (12)

Therefore, u1 is an eigenvector of the covariance matrix S, and the variance is maxi-
mized when the set x1 is equal to the eigenvector with the largest corresponding eigenvalue
λ1. This eigenvector is known as the first PC [25]. The measure of contribution of certain
eigenvector is contained in the corresponding eigenvalue.

Consider an M-dimensional space projection. The optimal linear solution obtained
through maximizing the variance of projected data is given using m eigenvectors, u1, · · · , um
of the covariance matrix S that correspond to the m largest eigenvalues, λ1, · · · , λm, respec-
tively. The m eigenvectors are the PCs and are ordered such that the first components keep
most of the variation present in the original data or variables [26].

The standardization of data is typically performed when original variables are mea-
sured in different units or have significant variability, as is the case of quality descriptors.
When calculating PCs, a linear rescaling must be made separately from each individual
variable such that each variable has zero mean and unit variance.

2.2.2. Principal Components in Regression Models

To establish PCs as a basis for modeling, we first define the (n× p) matrix X, which
consists of n observations of p predictor variables with the (i,j)th element being the value of
the jth predictor variable for its ith observation. Accordingly, the corresponding standard
regression model is defined as follows:

y = Xβ + ε (13)

where y is the vector of n observations of the dependent variable that are measured and
are centred about their mean; β is the vector of p regression coefficients; and ε is the vector
of error terms, where the elements of ε are independent, having the same variance σ2.
In addition, in a matrix form, PCs are the columns of the matrix Z, which is defined as
Z = X A, where the (i, k)th element of Z is the PC for the ith observation, and A is a
(p× p) matrix for which the kth column is the kth eigenvector of X ′X. The idea is to use
PCs instead of the original observations in the regression model. Therefore, the concept
of orthogonality of the eigenvector matrix is used. Since matrix A is orthogonal, Xβ is
rewritten as Zγ = X AA′β, where γ = A′β. Then, (13) can be rewritten as follows [26]:

y = Zγ + ε. (14)
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The following reduced model is used:

y = Zmγm + εm (15)

where γm is a vector with m elements, which are a subset of the elements of γ; Zm is an
(n×m) matrix for which the columns are the corresponding subset of columns of Z; and
εm is an appropriate error term. An estimate of β is found using β̂ = Aγ̂. The vector γ̂ is
calculated as γ̂ = (Z′Z)−1Z′y. Finally, the prediction of the interest variables is calculated
using the following:

ŷ = Zmγ̂m. (16)

In what follows, for easy reference, a description of the k-NN estimates based on
regression used for comparison with the PCA results is given.

2.2.3. k-NN Regression

The k nearest neighbor is a nonparametric learning method. This method is based
on distances, that is, compare new distances with distances already seen and stored in a
previous training. Thus, the method searches the nearest neighbors of a distance using
metrics. The most common metric used to evaluate the nearest neighbors of a point or
distance is the Euclidean distance. Let e be a distance or observation which can be described
by the characteristics vector [a(e), a2(e), . . . , an(e)], where ar(e) denotes the value of the
rth attribute of the distance e [27]. Then, the Euclidean distance of ei and ej is defined
as follows:

d
(
ei, ej

)
=

√√√√ N

∑
r=1

(
ar(ei)− ar(ej)

)2. (17)

Considering a continuous target function of the form f : <n → < and a query or
observation value eq, an estimate of the value of the target function must be found, which
should be the most nearest value of f among the k training examples nearest to eq. The
estimate f̂ (eq) of the target function of the nearest k values is defined as f̂ (eq) = ∑k

i f (ei)/k,
where k > 0 which gives the mean value of the k nearest training examples.

An improvement in the k-NN algorithm is to weigh the contribution of each neighbor
according to the distance to the query point eq, thus giving a greater weight to the neighbors
that are closer. Let ωi be the weight assigned to a training distance ei defined in terms of the
distance as ωi = 1/d

(
eq, ei

)2. The denominator of ωi is zero when the query observation
eq is equal to one of the training distances ei, and in this case, the estimated value f̂ (eq) is
set to f (ei). Placing the weighting of the distances, to find the value of the target function
f̂ (eq), the following expression is obtained:

f̂ (eq) =
∑k

i ωi f (ei)

∑k
i ωi

. (18)

Taking the weighted average of the closest neighbors to the query point eq helps to
smooth the impact of isolated noisy training samples.

2.3. Soft-Sensor Design

In this study, a soft sensor was developed to monitor processes, specifically, as a
predictor of process quality descriptors (PPQD) and as an operational process planner
(OPP). Two regression methods are used as the basis for the construction of the soft sensor:
the first is based on a regression model via the covariance of the PCs (PC regression), and
the second method is based on the mean value of the distance of the k-NN. The sequence of
the development stages for the construction of the soft sensor for each method is explained
in Algorithm 1. The execution of the algorithm begins with the choice of the method that
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will be the basis of construction of the soft sensor through the Boolean variable B in the
initial condition structure (if). The programming of the PC regression algorithm and the
k-NN algorithm were conducted in MATLAB-MathWorks®.

The steps for the construction of a model based on PC regression are summarized
in Algorithm 1. This algorithm is divided into two procedures. The first procedure
(REGRESSION) is the construction of the PC regression model. This procedure has a data
matrix denoted X, the matrix of eigenvectors A, the matrix of scores of PCs Z, and the
vector of data required for the model y as entries. In addition, this procedure returns the
value of the regression coefficients γ̂ and the predicted value ŷ. Therefore, the regression
model is delivered based on PCs. The main function of the second procedure is to estimate
output values for the new observed data (NEWOBSERV). Then, the procedure receives a
vector containing new observations xnew, and the regression coefficients based on PCs γ̂,
and A. Here, a new score matrix Znew, a new vector of values x̂new, and new observed
data are estimated.

To compute the regression coefficients γ̂, in Algorithm 1, the p columns of matrix X
are the predictor variables, the 7 quality descriptors in the case of the PPQD soft-sensor and
the 4 operating conditions in the case of the OPP soft sensor and the n lines of the matrix
X are the observations obtained from the interpolation carried out on the experimental
values, which are n = 1000 in both cases. The column vector y contains the n = 1000
training values of the variables that the soft-sensor delivers as output.

The procedures used to construct the soft-sensor based on the k-NN regression method
is also shown in Algorithm 1. As inputs, the algorithm requires an attribute vector x, a
vector containing the values of the target function y, and finally, the vector of query point
xq. As an output, the algorithm delivers an estimate of the values of the function ŷ (variable
to estimate), which is based on the query point vector xq. The steps of Algorithm 1 relative
to the k-NN estimates are composed of five main procedures.

The first procedure (DISTANCE) calculates the Euclidean distances between each of
the components of the query point vector xq and the data stored in the attribute vector
x. This procedure returns a vector of Euclidean distances. The second procedure in the
algorithm (SORT) is responsible for sorting the Euclidean distances in an ascending order.
Thus, this procedure returns an ordered pair containing the index and the value of the
corresponding distance.

The third procedure (SEARCH) finds the nearest k neighbors of the query xq by the
use of the ordered indexes. This procedure returns as output the set TNN of neighbors
closest to the query vector. The forth procedure (WEIGHT) is responsible for weighting
the distances found for the nearest neighbors. The procedure gives the set of weights
corresponding to the inverse of the distance of the neighbors. Finally, the fifth procedure
(ESTIMATE) assigns a majority weighted voting class attribute or label ŷ to the query xq.
Then, this procedure returns the estimate of the attribute.

2.4. Soft-Sensor Architecture

The block diagram illustrated in Figure 1a explains the architecture of the soft sensor.
The execution begins with the choice of the type of information that must be offered by
the soft sensor, i.e., the predictor of the quality descriptors of the spraying process or the
planner of the best spraying operating conditions that must be adjusted in the machinery.
In the block diagram shown in Figure 1b, the control loop of the sprayer system is shown.
In this loop, the input is the pressure reference ∆Pre f . As the pressure and flow are related
to each other, the regulated variable could be the flow Qp of the hydraulic sprayer system.
The outputs of this loop are the measurements of the actual pressure denoted as ∆P.
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Algorithm 1: Regression estimator

Require: B Boolean variable for choosing the method;
X consists of n observations of p predictor variables;
A Matrix of eigenvectors;
Z Matrix of scores of the PC’s;
y Vector of data required for the model;
e, attribute vector;
b, vector containing the objective function;
eq, query observation.

If B==TRUE true
procedure PC REGRESSION

procedure REGRESSION(X, A, Z, y)
Z = X A . Calculate the matrix Z of the PC scores
γ̂ = (Z′Z)−1Z′y . Return the value γ̂

ŷ = Zγ̂ . Return the predicted value ŷ
end procedure
procedure NEWOBSERV(xnew, A, γ̂)

z′new = x′new A . Calculate the scores value xnew

x̂′new = z′new A′ . Find the predicted value
ŷ′new = z′newγ̂ . Return the new predicted value

end procedure
end procedure

procedure DISTANCE-WEIGHTED k−NN REGRESSION

procedure DISTANCE(e,eq)
for i = 1 to N do

d(eq, ei) =
((

eq − ei
)T(eq − ei

))1/2

. Compute distances of N-neighbors of eq
end

end procedure
procedure SORT(d(eq, ei))

[Sortindex, Sortdist] = sort(d(eq, ei), ascend)
. Sort the distances

end procedure
procedure SEARCH(eq, e,b)

for i = 1 to N do
eNN

i = e(Sortindex(i)), bNN
i = b(Sortindex(i))

TNN =
{(

eNN
i , bNN

i
)}k

i
. Construction of the k-NN set

end
end procedure
procedure WEIGHT(eNN ,eq d(eq, ei))

for i = 1 to k do
if d(eq, eNN

k ) 6= d(eq, eNN
1 ) then

ωi =
1

d(eq ,eNN
k )

2

. Compute the weights of the neighbors
end

end
end procedure
procedure ESTIMATE(wi,b)
b̂i = ωib . Returns the estimated value

end procedure
end procedure
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Figure 1. (a) Architecture of the soft sensor used as a predictor for the variables of the quality
descriptors (red arrows) or operation planner of the agricultural spraying process (blue arrows). (b)
Automatic system for the sprayer boom pressure.

To select the inputs of the soft sensor, the studies were conducted with data obtained
with the software DropScope® for several operating conditions to register the most relevant
drop patterns. In order to obtain the relationship among the variables, a simple PCA
analysis was implemented and the inner product of the eigenvectors of the covariance
matrix S was used. The vector angles have a representation in terms of linear correlation.
Angles close to zero degrees represent a high positive correlation of the variables but
angles close to 90◦ indicate that the variables are independent, whereas angles close to 180◦

indicate a high negative correlation. In Figure 2, the obtained PCA biplot are shown. From
the PCA biplot analysis, the input operating conditions were selected as O = [Vp d0 ∆P Qp],
with Vp as the speed of the application sprayer, d0 as the diameter of the discharge orifice
of the nozzle, ∆P and Qp as already defined, and the quality descriptor vector as Q =
[D0.1 SMD VMD D0.9 RA CA AR].

Therefore, as a predictor PPQD, the operating conditions (red box) given by vector
O are the inputs of the soft sensor. The operating conditions given by their samples
{Oi}, i = 1, · · · , N were used to mount the matrix X data in Algorithm 1. The variables
that the soft sensor deliver as outputs are the predictions of a quality descriptor vector
chosen as vector Q. As an operation planner OPP, it receives the quality descriptors of the
spraying (blue box) as inputs and delivers the necessary operating conditions including
the diameter d0 for the spraying system. The pressure and flow reference values for the
control loop are delivered by the soft sensor as shown in the block diagram of Figure 1. In
this case, the samples of the quality vector {Qi}, i = · · · , N were used to mount the X data
in Algorithm 1. The output of the soft sensor is the vector of operation conditions of the
sprayer. In the model for the soft-sensor block, shown in Figure 1, the regression model
based on PCA or k -NN can be selected.
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Figure 2. Biplot of the principal components (PCs) for application quality descriptors and operat-
ing conditions.

2.5. Agricultural Sprayer Development System

To validate the developed soft sensor, the platform developed at the Brazilian Agricul-
tural Research Corporation (Embrapa Instrumentation, São Carlos, SP, Brazil) in partnership
with the School of Engineering of São Carlos University of São Paulo (EESC-USP), both in
Brazil, was used. This platform was used for sprayer development analysis and operates as
an agricultural sprayer development system (ASDS) using a National Instruments® embed-
ded controller, NI-cRIO®, which works on the LabView® platform. The cRIO® architecture
integrates four components: a real-time processor, a user-programmable FPGA, modular
I/O, and a complete software tool-chain for programming applications [28–30].

The ASDS is based of the boom sprayer hydraulic configuration and has an advanced
development system that enables the design of architectures involving the connections
of hydraulic components and devices, mechanical pumps, and electronic and computer
algorithms, as illustrated in Figure 3.

Figure 3. Front view of the agricultural sprayer development system (ASDS) electro-hydraulic
devices: (1) power supplies, (2) electrical protection circuits, (3) modules for automation and control
of input and output variables, (4) box with electronic circuits for signal conditioning, (5) CAN
network bus, (6) transmitter for analog sensors, (7) frequency inverter for control of the spray pump,
(8) frequency inverter for the control of industrial belt that simulates tractor movement in relation
to sprayers, (9) spray pump, (10) two piston pumps for the injection of pesticides, (11) pesticide
reservoir tank, (12) proportional valves for pressure and flow control, and (13) valve actuation circuits
operated via CAN network.

Moreover, the system has hydraulic devices, which can be used to make any configu-
ration of commercial agricultural sprays and new prototypes of sprayers, a user interface
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for system monitoring and control, and an electromechanical structure that emulates the
movement of the agricultural sprayer in the field, as shown in Figure 4.

Figure 4. Development system for projects dedicated to the application of liquid agricultural inputs:
(1) spray nozzle, (2) system that emulates the movement of the sprayer, (3) pesticide disposal tank,
(4) user interface for the development system, and (5) spray booms.

2.6. Data Collection

This section starts by describing the geometry and characteristics of the full cone
nozzle as well as the displacement of the water-sensitive papers used to collect the data,
which is followed by an analysis of the interpolation models used to increase the number
of the samples used in the regression modelling PCA based.

2.6.1. Full Cone Nozzle

The full cone nozzle is one of the most used nozzles in agricultural sprayers due to
its constructive aspects, as it has a good uniformity of droplet spectrum and its geometry
facilitates the development of analytical models [31]. The full cone nozzle is composed of
three main parts: the entrance where pressurized liquid enters, a chamber responsible for
generating turbulence in the liquid, and an outlet for which the function is to increase the
liquid velocity and then to generate breaking drops in a circular footprint filled with liquid
(Figure 5).

Figure 5. Full cone nozzle (adapted from the Magnojet® catalog).

The nozzles used for tests and data collection were the full cone MAG CH model from
the Brazilian company, Magnojet®. This nozzle is made using a technical ceramic core
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(99% alumina) to offer a high resistance to corrosive chemicals and a good application rate
accuracy. This model of nozzle has a cone opening angle of 80◦ and offers good coverage
and penetration into crops [32]. The MAG CH model was selected with the endorsement of
a specialist in this area, since it offers different sizes ranging from nozzles with fine drops
(F) to nozzles with ultra-coarse drops (UC). In addition, the operating conditions of the
ASDS (pressure, flow, application rate, and speed of application) were adjusted to give
flexibility for testing several nozzles of the CH model with different droplet sizes.

Water-sensitive papers of size 7.68 cm2 (2.50 cm × 3.07 cm) were used to collect the
drop size distribution pattern. This paper collects watermarks produced by the drops,
which can be analyzed using a pattern recognition program to obtain the average diameters.
A detailed diagram of the experimental setup is shown in Figure 6. The water-sensitive
papers were displayed on an aluminum bar, with an impermeable paint coating that
is positioned transversely to the movement of the application and spaced to collect all
information from the drop distribution of all nozzles. The spraying was performed at a
height of 51 cm. The distance between each nozzle was set to 50 cm (Figure 6) [33].

The water-sensitive papers were placed at critical points on the aluminum bar, which
are to be considered in the distribution of median diameters. The critical points are taken
beyond the nozzle cones (P1 and P9 in Figure 6) to collect data regarding the droplets with
potential drifting. Two papers were placed at the external nozzles to collect the application
pattern without overlap (P2 and P8 in Figure 6). Two water-sensitive papers were placed in
the center of the overlapping between the nozzle cones (P4 and P6 in Figure 6), and three
papers were placed in the center of the cones, perpendicular to the nozzle (P3, P5, and P7
in Figure 6).

Figure 6. Magnified view of the spray boom with the nozzles used for data collection with (1) an
aluminum bar with an impermeable paint coating, (2) water-sensitive papers, (3) a set of nozzles,
and (4) a pressure sensor.

2.6.2. Positions of the Nozzles

It is important that the soft sensor considers the difference between observations
obtained from different positions of the nozzles in the spray boom, i.e., it is important to
consider the position of the nozzle to design the soft sensor and to obtain the results from
the descriptors of quality in each position. Therefore, the position of the nozzle on the
spray boom was added as another condition for the operation of agricultural machinery.
This fact brings to the soft sensor a new dimension that helps to improve the efficiency and
quality of the process because the softs sensor gives information on the quality descriptors
with the best operating conditions and the position in the spray boom to get the best results.
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The consideration of the position of the nozzle along the spray boom is of great importance
when making decisions related to the agricultural spraying process. Therefore, three critical
positions of a spray nozzles were considered, as described in Figure 7.

Figure 7. Labels of the critical points in the spray boom.

The positions of the critical points are labeled as po = 1 for the nozzles without
overlapping (P2 and P8 in Figure 7), po = 2 for the center of the overlapping of the nozzle
cones (P4 and P6 in Figure 7), and po = 3 for the center of the cones (P3, P5, and P7 in
Figure 7). The P1 position is used as a reference point to evaluate the occurred errors in
all positions.

To obtain the mean and median diameters using water-sensitive papers, the tool
DropScope® made by Ablevision® was used. The data exploration, analysis of results, and
construction of the soft-sensor were performed using the MATLAB® and Simulink® software.

2.6.3. Collected Data and Interpolated Models

The experimental setup for collecting data for each tested nozzle are shown in Table 1,
with Ap [ /̀ha] being the application dose rate and ∆P, Qp [m3/s], Vp [km/h], and d0 [mm]
as already defined. Four conditions were tested, one per nozzle, with different discharge
orifice diameters using models CH0.5, CH1, CH3, and CH6 from Magnojtet®. These nozzles
were selected based on the recommendations from a specialist in the area of agricultural
application to ensure a wide range of drop sizes within the database.

Table 1. Experimental setup for the ASDS using full cone nozzles (Magnojet®).

Nozzle Drop Pattern ∆P Qp Ap Temp Humidity Vp d0
[bar] [L/min] [L/ha] [°C] [%] [km/h] [mm]

1st CH0.5 Fine 3.4 0.53 67 23.6 51 10 0.5
2nd CH1 Medium 3.4 1.02 85 23.4 61 14 1.0
3rd CH3 Coarse 3.4 1.46 100 24.0 49 18 1.5
4th CH6 Ultra Coarse 2.4 1.90 120 23.7 58 20 2.0

For each condition, there were 5 replicates, where the first 3 had the same operating
conditions (S in Table 2). The fourth repetition was performed after a 10% lowering of
sprayer boom pressure, and the fifth repetition was performed after a 10% increase in
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sprayer boom pressure. There were 9 water-sensitive papers positioned on the aluminum,
and for each paper, two samples were collected. Thus, the total number of samples per
repetition was 18, and the total samples for each condition, consisting of 5 repetitions,
was 90. Through the 4 conditions, 360 samples were collected. The information collected
experimentally from each water-sensitive paper was used to obtain the quality vector
defined before as Q.

Table 2. Arrangement of samples for each condition.

Nozzle N° Repetition Total N° Papers N° Samples Total Samples
S −10% +10%

1st CH0.5 3 1 1 5 9 18 90
2nd CH1 3 1 1 5 9 18 90
3rd CH3 3 1 1 5 9 18 90
4th CH6 3 1 1 5 9 18 90

Total collected samples 360

Data exploration was then performed on the collected data to analyse the data char-
acteristics. Through a quartile-quartile plot (QQ plot), the close relationship between the
quality descriptors and a normal curve was observed. Examples of the QQ plot applied
to the data is shown in Figure 8. The results for the descriptors RA (Figure 8a) and VMD
(Figure 8b) data are well accommodated in relation to the bisector line, which represents a
high degree of agreement between them.

(a) RA descriptor

(b) VMD descriptor

Figure 8. Quartile-quartile plot versus standard normal quantiles.

Based on the QQ plot results, it can be concluded that the quality descriptors are
adherent to a Gaussian distribution. Therefore, to increase the amount of data for analysis,
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a Gaussian model was used for interpolation. Therefore, based on the experimentally
collected training data, the final interpolation models were found, as shown in Figure 9,
which is related to the evaluation of median diameters of the droplets. Furthermore, the
models for the descriptors AR, CA, and RA can be observed in Figure 10a–c, respectively.

Figure 9. Gaussian curves of interpolation for mean and median diameter descriptors.

Moreover, in Figure 11, the obtained interpolation models for the operational con-
ditions are shown. Based on the training values for the variables pressure ∆P [bar] and
speed Vp [km/h], it is possible to evaluate the usefulness of the soft-sensor models. In fact,
the interpolation models, showed in Figure 11a,b, respectively, have been proven to be
adequate for applications in agricultural machinery. Moreover, the orifice diameter of the
discharge nozzles d0 and their position on the spray boom po have been used as the actually
assembled, i.e., these values are related to their physical manufacturing characteristics.

Figure 11 shows the selected interpolation models for the quality descriptors related
to the operating conditions. Based on the values obtained through training, it is possible to
obtain both the optimized pressure ∆P (bar) and the application speed of the boom that is
carried on an agricultural machinery in Vp (km/h). Application of Gaussian interpolation
model can be observed in Figure 11a,b. It is important to observe that the discrete nature
of the nozzle’s discharge orifice diameter d0, and their position on the spray boom po
are considered available from their manufacturers. Consequently, for these operating
conditions, the interpolation process was not carried out.

It is important to clarify that the operating conditions d0 and po were used in conjunc-
tion with the other interpolated operating conditions ∆P and Vp to build the soft sensor.
The results were computed using 1000 samples for each descriptor.

2.7. Validation Methods

To present and analyze the results of the developed soft sensor, the following methods
were used: control chart and error bars (MATLAB®), the root mean square error (RMSE),
and and the correlation coefficient. The control chart was used to graphically compare
the estimated and real values. The control chart calculates the upper and lower control
limits (LCL/UCL) based on the process data and detects where undesirable changes occur
in the process, based on the variation of data. The LCL and UCL are marked with red
lines on the chart. Finally, error bars were used to observe the estimated values with
greater or lesser error. The RMSE and the correlation coefficient denoted Cc were calculated
for each soft-sensor response.To validate the regression model, four repetitions of the
experiments were used to obtain new data for the soft-sensor model, one for each nozzle
model, shown in Table 1. Each repetition had 14 samples of water-sensitive paper, creating
56 new observations.
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(a) Gaussian curves of interpolation for the application rate (AR) descriptor.

(b) Gaussian curves of interpolation for the covered area (CA) descriptor.

(c) Gaussian curves of interpolation for the relative amplitude (RA) descriptor.

Figure 10. Models for the interpolation of the quality descriptors based on the Gaussian distribution.



Sensors 2021, 21, 1269 18 of 30

(a) Gaussian curves of interpolation for the ∆P operating condition.

(b) Gaussian curves of interpolation for the Vp operating condition.

Figure 11. Interpolation results obtained for the operating conditions.

3. Results and Discussions

First, an exploration of the data was made. To apply techniques that work with
maximization of variance, such as PCA or reduction of errors, it is important that the data
of the random observations fit a normal curve. Therefore, a QQ plot was used to determine
the fit of data to a normal distribution. Then, a Grubbs test was performed on the collected
observations to detect possible outliers. The QQ plots and the Grubbs test are explained
in [33].

3.1. PCA Soft Sensor Used as Quality Predictor

For the construction of the soft sensor as a predictor of the quality descriptors, the
operating conditions given by vector O, defined in Section 2.3, were used to mount the
data matrix X. Next, matrices A and Z, defined in Section 2.2.2, were calculated following
Algorithm 1. For this soft-sensor model, three PCs comprise 100 % of the data variation
and thus the dimensionality of the observations was taken as M = 3. Observations of each
quality descriptor were used as a column vector y to compute the regression coefficients γ̂.
The regression coefficients estimated with the scores of the PCs are shown in Table 3 for
the operating condition vector O and the quality descriptor vector Q, as already defined in
Section 2.3.

Table 3. Estimated regression predictor of process quality descriptors (PPQD) coefficients γ̂.

γ̂ CA AR RA D0.1 SMD VMD D0.9

P 0.59 0.62 0.60 −0.49 −0.42 0.55 0.63
Vp 0.53 −0.12 0.54 −0.12 −0.01 −0.52 0.00
d0 −1.28 −3.40 −1.27 3.70 6.10 9.56 −2.48
pos −0.75 −2.55 −0.75 −3.85 −4.04 1.65 −1.85
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The coefficients γ̂ relate the quality descriptors to the operating conditions. Each
column in Table 3 describes a regression model based on PCA for each quality descriptor.

3.2. PPQD Soft-Sensor Results

The statistical parameters, resulting from the prediction of the quality descriptors
using a PPQD soft sensor with and without interpolation data are presented in Table 4.
The quality descriptor vector denoted Q was defined in Section 2.3. The superiority of the
statistical results with interpolation is noticeable.

Table 4. The statistical results of the PPQD soft-sensor prediction with and without a interpolation model.

µ σ RMSE Cc

with without with without with without with without

SMD [µm] 104.51 272.78 22.55 81.01 22.39 148.23 0.73 0.65
VMD [µm] 192.00 472.85 7.06 78.25 7.01 130.046 0.95 0.84
D0.9 [µm] 369.83 490.32 45.60 233.38 45.26 346.27 0.83 0.76
D0.1 [µm] 119.45 173.55 7.46 30.45 7.41 56.34 0.75 0.62
CA [cm2] 12.64 33.51 0.92 9.96 0.91 11.09 0.98 0.66
AR [L/ha] 26.40 108.33 4.31 40.12 6.00 66.97 0.76 0.70

RA 1.30 1.60 0.03 0.30 0.02 0.40 0.97 0.22

The first quality descriptor to be analyzed is the SMD. The results obtained with the
soft-sensor based on PCA for the SMD quality descriptor are shown in Figure 12. When
observing the control chart (Figure 12), it can be observed that, for values used as a test
in this soft-sensor for the range 60 µm < SMD < 140 µm, the soft sensor for the SMD
descriptor based on PCA presented a good estimate; however, for values outside this
range, the LCL/UCL limits are exceeded. The deviation found in the estimate, given by
RSME = 22.39 µm, is considered small for agricultural spraying processes, where the
randomness of variables is high and can vary with small changes in operating conditions.

Figure 12. Soft-sensor response (control chart and error bars) for the Sauter mean diameter (SMD) de-
scriptor. For values of SMD > 140µm and SMD < 60µm, high estimation error levels are observed.

The second quality descriptor to be analyzed is the VMD. The results obtained with
the soft sensor based on PCA for the VMD quality descriptor are shown in Figure 13.
Observing the control chart for the PCA-based soft sensor (Figure 13), high estimation
errors occur for VMD > 200µm. As shown in the control chart (Figure 13), for values
greater than 200 µm, the process is out of control and the magnitude of the error bars is
high. Therefore, the PCA-based soft sensor for the VMD presents a suitable estimate for
values in the range 180µm < VMD < 200µm. When comparing the curve estimated by
the PCA soft sensor (blue line in Figure 13) with real value curve (orange line in Figure 13),
the estimator manages to correctly track the curve of actual values. The error bars for
this soft sensor are small in magnitude, which is a good indicator of the efficiency of the
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estimator constructed for this descriptor. This fact is observed from the low deviation of
estimated data versus actual observations, where RMSE = 7.01µm.

Figure 13. Soft-sensor response (control chart and error bars) for the volumetric median diameter
(VMD) descriptor. For values in the range 180µm < VMD < 200µm, suitable estimates are provided.

Following analysis of the quality descriptors, the third descriptor to be analyzed is D0.9.
The results obtained with the soft sensor based on PCA for the D0.9 quality descriptor are
shown in Figure 14. Inspecting the control chart for the PCA-based soft sensor (Figure 14),
a good estimate of D0.9 is observed for values less than 500µm. Therefore, for tested values,
the upper limit is 450 µm and higher values are considered, out of control. However, for
values of less than 450 µm, the soft sensor has the best estimation efficiency, since error
bars are small. Making the comparison of the curves of the estimated value with the
real value, it is observed that, for values in the range 250 µm < D0.9 < 500µm , the soft
sensor manages to correctly track the curve of real values, which indicates a satisfactory
efficiency in the estimation of the D0.9 descriptor. This fact is reaffirmed, having a deviation
RMSE = 45.26µm.

Figure 14. Soft-sensor responses (control chart and error bars) for the D0.9 descriptor. For values
in the range 300µm < D0.9 < 500 µm, it is observed that the soft sensor has the best estimation
efficiency, since small error bars are observed.

The next descriptor to be analyzed is the D0.1. The results obtained with the soft-sensor
based on PCA for D0.1 quality descriptor are shown in Figure 15. The control chart for
the diameter D0.1 shows that the PCA-based soft sensor offers the best estimates for the
test values in the range 110µm to 130µm. This range is consistent with the drop diameter
values found for the descriptor D0.1 in practice. In addition, it is observed that few values
estimated are considered out of control, which is a good indication that the estimator has
a suitable estimate of the descriptor. If the curve estimated by the PCA soft sensor (blue
line in Figure 15) is compared with the real values (orange line in Figure 15), it can be seen
that the estimator manages to correctly track the curve of real values with small estimation
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error bars. The efficiency of estimation of the soft-sensor based on PCA is good, with
RMSE = 7.41µm, which is low.

Figure 15. Soft-sensor responses (control chart and error bars) for the D0.1 descriptor. Best estimates
are in the range 100µm to 135µm, which is consistent with the drop diameter values that is found
in practice.

Next, we analyze the AR descriptor. The results obtained with the soft sensor based
on PCA for the AR quality descriptor are shown in Figure 16. Observing the control chart
(Figure 16) for the PCA approach, for the test sample values used, the soft sensor estimates
the application rate well for values less than 50 L/min. The total value of the deviation for
this PCA-based soft-sensor is RMSE = 10.41 L/min. This deviation value is suitable owing
to AR being a descriptor that is most affected by the position of the nozzle, e.g., the AR is
greater in the overlap of cones than in the center of a cone.

Figure 16. Soft-sensor response (control chart and error bars) for the AR descriptor: for values less
than 50 L/min, suitable estimates of the application rate are given.

The results obtained from the soft-sensor based on PCA for the CA quality descriptor
are shown in Figure 17. Inspecting the control chart (Figure 17) for the PCA-based soft-
sensor for this descriptor, it can be said that the estimate of this soft sensor is suitable. For
the test sample values used, the control chart of this soft sensor shows high values in the
error bars for estimates of CA above 14 mm2. Therefore, these values are considered out of
control, which indicates a low efficiency beyond this limit. The same happens for CA below
10 mm2, which is also out of control. For the set of example values used to test the soft
sensor, for CA values in the range of 10 mm2 < CA <15 mm2, the soft sensor presents the
best estimation levels. This is verified through the observation that the curve of estimated
values correctly tracks the curve of real values with small values in the estimation error bars
and when observing the low value of the total deviation found as RMSE = 0.91 mm2.
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Figure 17. Soft-sensor response (control chart and error bars) for the CA descriptor. The best
estimation levels are obtained in the range 10 mm2 < CA < 15 mm2.

Next is the RA descriptor. The results for this descriptor are shown in Figure 18. The
control chart shows that the estimation curve (blue line in Figure 18) and the curve of
real values (orange line in Figure 18) are near most values, so the soft sensor manages to
correctly track the curve of real values. The effectiveness of the RA soft sensor becomes
more evident when observing the deviation error, RMSE = 0.02.

Figure 18. Soft-sensor response (control chart and error bars) for the RA descriptor. Suitable estimates
are observed in the tested whole range 1.27 < RA < 1.35.

Next, the results found with the soft sensor built as an operation planner in the process
(OPP) based on the PCA approach are presented.

PCA Soft-Sensor Used as OPP

To develop the soft sensor as an operation planner in the process, the observations of
the quality descriptors were used to obtain the data matrix X. Again, matrices A and Z, as
already defined, were calculated via algorithm 1. In this OPP application, six PCs comprise
100% of the data variation and thus dimensionality of the observations is taken as M = 6.
Observations of each operating condition were used as a column vector y to compute the
regression coefficients γ̂. The regression coefficients for the OPP soft sensor estimated with
the scores of the PCs are shown in Table 5 for the quality descriptor vector Q and operating
condition vector O, as already defined in Section 2.3.

The coefficients γ̂ relate the operating conditions with the quality descriptors. Each
column in Table 5 describes a regression model based on PCA for each required operat-
ing condition.
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Table 5. Estimated regression operational process planner (OPP) coefficients γ̂.

∆P Vp d0 pos

CA 0.59 0.40 0.40 0.34
AR 0.21 0.05 0.05 −0.16
RA −1.07 0.38 0.38 −0.15
D0.1 −0.91 −0.21 −0.20 −0.40
SMD −0.60 0.42 0.42 −0.45
VMD −1.75 1.24 1.24 −1.04
D0.9 −1.53 −1.09 −1.09 −3.80

3.3. OPP Soft-Sensor Results

The OPP soft sensor as an operational process planner makes the prediction of the
machinery operating conditions based on the input of quality descriptors of the application
process. The statistical parameters, resulting from the prediction using the PCA-based
soft sensor with and without interpolation models for each predicted operating condition
can be observed in Table 6. As in the PPQD case, the superiority of the statistical results
with interpolation is noticeable. The operating condition vector denoted O was defined
in Section 2.3.

Table 6. Statistical results of OPP soft-sensor prediction with and without a interpolation model.

µ σ RMSE Cc

with without with without with without with without

∆P [bar] 2.50 3.15 0.20 0.36 0.72 0.76 0.35 0.30
Vp [km/h] 7.75 15.50 4.10 5.26 4.14 7.32 0.83 0.78

d0 [mm] 0.59 1.25 0.27 0.31 0.35 0.40 0.54 0.42
p0 [cm] 3.11 3.58 1.29 2.40 2.34 8.75 0.64 0.47

The results of the soft sensor constructed for the operating condition ∆P are shown in
Figure 19. For the examples used as a test, the soft sensor created on the basis of PCA has
large error bars in magnitude when the soft sensor tries to estimate the operating condition
less than ∆P = 2.4 bar. This fact is verified by the poor ability of the estimation curve
(blue line in Figure 19) to track the real value curve (orange line in Figure 19). However,
when the value of test pressure is close to ∆P = 3.4 bar, there are smaller error bars than
for the first condition tested. The total deviation of the error is represented by the value
RMSE = 0.72 bar, which is considered medium in magnitude, and it can be observed that,
for the values tested, this soft-sensor has an acceptable estimation capacity.

The results of the soft sensor constructed for the operating condition Vp (displacement
velocity of the sprayer) are shown in Figure 20. When analyzing the control chart (Figure 20)
of the PCA-based soft sensor for the descriptor Vp, suitable estimates are observed in the
whole range. The control chart (Figure 20) presents small error bars for estimated values in
the conditions range between Vp = 5 km/h and Vp = 15 km/h. The soft-sensor estimation
curve (blue line in Figure 20) adequately follows the curve of real values (orange line in
Figure 20), and this indicates the suitable level of estimation that the PCA-based soft sensor
has for the operating condition Vp. This is confirmed by the small total deviation value of
the errors RMSE = 4.14 km/h.

The results for the soft-sensor constructed for the operating condition d0 are shown
in Figure 21. In the control chart (Figure 21), for the values used as test examples, the soft
sensor has a low estimation level for values close to d0 = 1.0 mm. The small values of
error bars in Figure 21 for the operating conditions close to d0 = 0.3 mm, d0 = 0.5 mm, and
d0 = 0.7 mm indicate that, for these values, the soft-sensor has a good estimation, and for
values between those limits, i.e., for 0.3 mm < d0 < 1.0 mm. These facts are evident when
one observes that the estimation curve (blue line in Figure 21) follows the curve of real
values (orange line in Figure 21). In addition, the value of the total deviation of the error,



Sensors 2021, 21, 1269 24 of 30

represented by RMSE = 0.35 mm, is classified as medium and indicates an acceptable
level of estimation. Figure 21. Soft-sensor response (control chart and error bars) for the
operating condition d0. The low estimation level for values close to d0 = 1.0 mm of such
an operating condition is noticeable.

Figure 19. Soft sensor response (control chart and error bars) for the operating condition ∆P. The
magnitudes of the error bars are smaller close to the condition ∆P = 3.0 bar.

Figure 20. Soft-sensor response (control chart and error bars) for the operating condition Vp. Note
the low level of the estimates for values less than Vp = 5 km/h.

Finally, the operating condition to be analyzed in such an arrangement is position
p0 of the nozzle along the sprayer boom, for which the results are shown in Figure 22.
Here, the control chart has been estimated by using PCA and the operating condition p0.
The error bars have values smaller than 9.32%, which confirms the acceptable estimation
level for the operating condition p0. The total deviation of the error for this soft sensor
is RMSE = 2.33 cm, which is low, considering that the distance between each position
considered was about 25 cm. Therefore, such results indicate that the soft sensor based on
the use of PCA actuated as a good estimator for the nozzle’s position in the sprayer’s boom.

3.4. k-NN Soft Sensor

The construction of the soft sensor as a predictor of process quality descriptors and
operation planing based on the k-NN regression method requires forming a prediction
data matrix X. In this matrix of numerical data, each row is an observation of the process
and each column is a characteristic or variable of prediction x. In the case of the PPQD, the
operating conditions in the agricultural spraying process (vector O) were used as predictor
variables. On the contrary, in the case of the OPP soft sensor, the quality descriptors (vector
Q) were used as predictor variables. On the other hand, as an target function or class
label, for the PPQD soft sensor, each of the quality descriptors was used and, for the OPP
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soft sensor, each of the operation conditions was used as a target function. Thus, for each
quality descriptor and each operating condition, a k-NN model was constructed.

Figure 21. Soft-sensor response (control chart and error bars) for the operating condition d0. Note
the low estimation level for values close to d0 = 1.0 mm of this operating condition.

Figure 22. Soft-sensor response for the operating condition p0. Soft-sensor response (control chart
and error bars) for the operating condition p0. Note the low estimation level for values greater than
p0 = 6 cm.

To find the best distance function and the best value of nearest neighbors k, the k-
NN classifier optimizer (fitcknn) was used. The results of this automatic optimization of
hyper-parameters, for the PPQD and OPP soft-sensor, are presented in Tables 7 and 8,
respectively.

Table 7. k Neighbors of the PPQV soft sensor found using optimization.

Num. Distance Eval. Time Obj. Value
Neighbors [Seg]

SMD 11 Mahalanobis 0.10 0.94
VMD 1 Hamming 0.06 0.82
D0.9 2 Std. Euclidean 0.06 0.91
D0.1 6 Cosine 0.05 0.63
AR 18 Euclidean 0.07 0.99
CA 6 Hamming 0.07 0.97
RA 18 Std. Euclidean 0.06 0.93
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Table 8. k neighbors of the OPP soft-sensor found using optimization.

Num. Distance Eval. Time Obj. Value
Neighbors [Seg]

∆P [bar] 17 Mahalanobis 0.05 0.53
Vp [km/h] 14 jaccard 0.06 0.98

d0 [mm] 6 Chebychev 0.07 0.22
p0 [cm] 8 Mahalanobis 0.06 0.29

3.5. Comparative Results

For comparison purposes, in Tables 9 and 10, the statistics of the PC and k−NN
regression are given. It can be observed that the PPQD soft-sensor based on the PC
regression offers better results. It is observed that, for quality descriptors, the value of
the RMSE is quite high for the regression k-NN when compared to PC regression. This
statistic parameter is an indication that, in this case, the PCA-based approach adequately
estimates the quality descriptors, which is corroborated by the correlation coefficient Cc
value. It is important to note that, for the average diameters SMD, VMD, D0.1, and D0.9,
which define the spectrum of drops, the difference in the errors between PC and k-NN
regressions can be above 150µm. For example, in the case of the mean diameter DMV for
the approach k-NN, the value of the RMSE = 499.93µm is extremely high. This amount
of deviation in an actual application can generate phytosanitary problems in the cultures.
Also, it is observed that, for quality descriptors CA and RA, which offer information on
the uniformity of the application, the estimation efficiency of the soft sensor based on the
PCA regression is higher when compared to the k-NN regression. Therefore, the PCA
soft-sensor is more efficient and works better for making decisions about uniformity in
a real application. Regarding the volume applied to the culture, represented by the AR
application rate, the best estimate is also made by the PCA soft sensor; it is observed that
the estimate made with k-NN may have deviations around 70 L/ha. This value is very
large, which can lead to overapplication or underapplication problems in a real application.

Table 9. Statistics of the PPQD soft-sensor predictor with PC regression compared to the k-NN regression.

µ σ RMSE Cc

PCA k-NN PCA k-NN PCA k-NN PCA k-NN

SMD [µm] 104.51 208.67 22.55 115.77 22.39 187.43 0.73 0.33
VMD [µm] 192.00 445.93 7.06 95.78 7.01 171.14 0.95 0.45
D0.9 [µm] 369.83 943.54 45.60 306.36 45.26 499.93 0.83 0.40
D0.1 [µm] 119.45 164.99 7.46 22.92 7.41 39.18 0.75 0.49
CA [cm2] 12.64 29.53 0.92 8.46 0.91 12.27 0.98 0.75
AR [L/ha] 26.40 73.80 4.31 42.63 6.00 74.22 0.76 0.42

RA 1.30 1.47 0.03 0.29 0.02 0.46 0.97 0.39

Table 10. Statistics of the OPP soft-sensor predictor with PC regression compared to k-NN regression.

µ σ RMSE Cc

PCA k-NN PCA k-NN PCA k-NN PCA k-NN

∆P [bar] 2.50 3.17 0.20 0.17 0.72 0.66 0.35 0.42
Vp [km/h] 7.75 20.93 4.10 11.40 4.14 26.60 0.83 0.19

d0 [mm] 0.59 1.18 0.27 0.13 0.35 0.27 0.54 0.61
p0 [cm] 3.11 1.92 1.29 0.36 2.34 0.74 0.64 0.86

On the other hand, regarding the OPP operation planner, the results between the
regressions based on PCA or k-NN approaches, are observed to be close in efficiency except
the Vp, which is better estimated by the PCA approach. In real applications, the application
velocity is directly related to the volume applied to the cultures. The application velocity
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Vp is a variable that has high impact on the quality of the real application to cultures.
Therefore, having a soft sensor that offers adequate information to make a decision in the
planning of operations is essential to reduce application errors. In this case, the soft-sensor
based on PCA regression is more efficient to obtain adequate estimates of the operating
conditions and to, thus, apply corrections in the planning of operations.

3.6. Implementation of the PCA Soft Sensor

As a result of the analysis presented, the implementation of the soft-sensor based on
PC regression was performed as in Figure 23. The construction of the soft sensor thus
begins with the entry of the historical data corresponding to the training matrices of quality
descriptors XQi and operating conditions XOi . Next, data exploration is carried out in order
to recognize the nature and to detect the possible outliers of the data. Identifying the nature
of the data history, an interpolation is performed to increase the amount of data to analyze
and to develop the soft-sensor. Then, the execution comes down to the choice of the type
of output information required from the soft sensor, and the coovariance matrix as well
as its representative eigenvectors and eigenvalues, are computed. Finally, the soft sensor
delivers the information required for each case by executing the procedures presented in
the flow chart in Figure 23 and explained in more detail in Section 2.3.

Figure 23. Flow chart stages of the proposed soft sensor to obtain estimates of the quality descriptors
and the operating conditions.
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4. Conclusions

The obtained results from the proposed soft-sensor based on a PC regression model for
the estimation of the spray quality descriptors PPQD showed reliable results. In addition,
the soft-sensor results obtained with a practical application showed its strength in estimat-
ing the vector of quality descriptors. Moreover, the combination of constructed models
enabled us to establish a relationship between the quality descriptors and the operating
conditions for agricultural sprayers, considering the real applications in pest management.

The developed models consider the variability that droplet size may have in response
to minor changes in the operating conditions, providing a useful tool for real-time decision
making and more precise control application, as the proposed soft sensor can provide the
best operating conditions for working with a nozzle on a desired position on the application
bar. There is currently no instrument that can measure the quality of the application being
made and that can determine the operating conditions that each nozzle should have at
each particular spray bar position in real time. This fact largely justifies the use of the soft
sensor built for real applications. In addition, there are currently individually controlled
spray nozzles, and a tool that automatically determines application quality for each nozzle
position on the spray bar can considerably eliminate application errors.

Therefore, based on this innovative strategy, it is possible to perform periodic eval-
uations of the quality of the application rate and to provide corrective actions to the
operating conditions of sprayers to regulate variables, such as pressure, flow, and to select
the appropriate nozzle and the desired specifications for the sprayer bar.

The obtained results with the soft-sensor based on a PC regression model for the
operation planning OPP, demonstrated its capability to estimate appropriate operating
conditions for agricultural rate of application. These results help to improve the quality of
application, as it was possible to obtain the necessary information to configure the sprayer
operating conditions a priori and to obtain higher levels of spraying quality, which is
desirable for both agriculture and environmental protection.

From the results obtained with both regression methodologies, it can be concluded that
the soft sensor based on the PC regression offers better estimation results for the quality de-
scriptors as well as for the operating conditions of agricultural machinery. Therefore, with
the soft-sensor based on PC regression, there is adequate information in decision-making
processes in real time for the application of pesticides in spray form. Thus, corrective
measures can be applied to improve the quality of the applications, considerably reducing
the biological impact and the economic cost in this type of agricultural process.

In a future work, the implementation of embedded soft-sensors in customized agri-
cultural devices will be considered. This will aggregate intelligence in the agricultural
machinery sector, allowing for the connectivity of a soft-sensor device to controller area
network environments. It is expected that the soft-sensor models built in this work can
be considered not only for drift studies but also for the evaluation of other nozzle’s types.
A possible way to carry out such future studies could be the use of advanced estimation
algorithms based on neural networks (NN) or even on the support vector machine (SVM),
which would provide the needed non-linearity and flexibility to better fit the estimators to
measured data.
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