Wang et al. BMIC Medical Genetics (2020) 21:154
https://doi.org/10.1186/s12881-020-01086-y

BMC Medical Genetics

RESEARCH ARTICLE Open Access

A novel MYH14 mutation in a Chinese
family with autosomal dominant

Check for
updates

nonsyndromic hearing loss

Mingming Wang'", Yicui Zhou?', Fengguo Zhang?, Zhaomin Fan', Xiaohui Bai**" and Haibo Wang'*"

Abstract

nonsyndromic deafness-4A (DFNAA4).

further confirm the mutation.

Background: MYH14 gene mutations have been suggested to be associated with nonsyndromic/syndromic
sensorineural hearing loss. It has been reported that mutations in MYH14 can result in autosomal dominant

Methods: In this study, we examined a four-generation Han Chinese family with nonsyndromic hearing loss.
Targeted next-generation sequencing of deafness genes was employed to identify the pathogenic variant. Sanger
sequencing and PCR-RFLP analysis were performed in affected members of this family and 200 normal controls to

Results: Four members of this family were diagnosed as nonsyndromic bilateral sensorineural hearing loss with
postlingual onset and progressive impairment. A novel missense variant, c.5417C > A (p.A1806D), in MYH14 in the
tail domain of NMH II C was successfully identified as the pathogenic cause in three affected individuals. The family
member II-5 was suggested to have noise-induced deafness.

Conclusion: In this study, a novel missense mutation, c.5417C > A (p.A1806D), in MYH14 that led to postlingual
nonsyndromic autosomal dominant SNHL were identified. The findings broadened the phenotype spectrum of
MYH14 and highlighted the combined application of gene capture and Sanger sequencing is an efficient approach
to screen pathogenic variants associated with genetic diseases.
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Background

The MYH14 gene, also known as nonmuscle heavy chain
II C (NMHCII-C), encodes one of the myosin members.
In motility processes, such as cytoskeleton rearrange-
ment, organelle translocation and ion channel gating,
MYH]I4 is indicated to play a major role in the directed
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movement of cell components along actin filaments by
ATP hydrolysis to generate force [1-3]. MYHI4
(NMHCII-C) has been characterized recently, but there
is limited information on its biological functions. The
MYH]I14 gene is located on the chromosome 19q13.33,
contains 41 exons and encodes a protein with 1995
amino acids, which contains a myosin head region, two
IQ domains, an N-terminal myosin domain, and a C-
terminal myosin tail [4]. A polar structure is formed by
the dimerization of heavy chains. The N-terminal do-
main has two globular heads that are ATP-binding and
actin-binding regions and are essential for motility, while
the helical C-terminus is a singular rod-like tail that can
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polymerize molecules into bipolar filaments in nonmus-
cle and muscle cells [5]. The MYHI14 gene was reported
to be related to peripheral neuropathy, myopathy,
hoarseness and hearing loss (PNMHH) [6], and the
MYH]I14 protein is expressed widely within cochlear tis-
sues, such as the organ of Corti, spiral prominence epi-
thelium, stria vascularis, and cochlear duct. Low
expression was detectable in the Reissner’s membrane
and spiral ligament, but no expression was detected in
vestibular epithelia in mice [7]. MYHI4 plays a part in
neurogenesis and maintenance of apical cell junctions in
epithelial cells within the cochlea [8, 9]. The expression
of MYHI4 in mice and humans is generally higher in
adults than in adolescents [4, 10, 11].

Hereditary sensorineural hearing loss (SNHL) can be
classified into nonsyndromic and syndromic hearing
loss. 75% of hereditary SNHL cases are nonsyndromic.
Eighty percent of nonsyndromic SNHL is in an auto-
somal recessive (AR) inheritance pattern and tends to
result in severe SNHL with prelingual onset, whereas
autosomal dominant (AD) inherited deafness usually
leads to mild and flat downsloping hearing loss with
postlingual onset [12, 13]. Pathogenic variants of the
MYHI4 gene can cause either syndromic or nonsyn-
dromic SNHL and can be identified as the pathogenic
factor DFNA4A [7, 14—-16]. To date, missense and non-
sense variants of the MYHI14 gene have been reported in
families with mild to severe degrees of AD SNHL, which
usually manifests with milder hearing loss and later on-
set than AR inherited hearing loss. A recent study
showed the MYH14 gene may be an essential gene re-
lated to nonsyndromic AD SNHL [17]. However, the
physiological link between MYHI4 mutations and sen-
sorineural hearing loss is still unclear.

In the current study, we investigated pathogenic vari-
ants in a four-generation Han Chinese family suffering
from nonsyndromic sensorineural hearing loss with
postlingual onset. We screened 127 genes known to be
related to deafness by gene capture and next-generation
sequencing and identified the novel variant c.5417C > A
(p-A1806D) in MYH14 on the tail domain of NMH II C.
By reporting novel pathogenic variants, the phenotypic
spectrum of the MYHI14 gene could be broadened in the
field of hereditary hearing loss.

Methods

Subjects

Fifteen members from a four-generation Han Chinese
family were enrolled in this study, and four of them were
diagnosed as sensorineural hearing loss with postlingual
onset and progressive impairment. All participants
agreed to undergo clinical examinations as well as audio-
metric and vestibular function evaluations, including
otoscopy, tympanometry, pure-tone audiometry (PTA),
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speech recognition score (above the hearing threshold of
30dB HL) evaluation, auditory brainstem response
(ABR) evaluation, distortion product otoacoustic emis-
sion (DPOAE) recording, a vestibular bithermal caloric
test, and ocular/cervical vestibular evoked myogenic po-
tential (o/c VEMP) evaluation. High-resolution com-
puted tomography (HRCT) to image the temporal bone
and brain MRI were used to define cochleovestibular
malformation. The hearing loss onset of members IV-1
and IV-2 at the ages of 3 and 1 was evaluated by behav-
ior observation audiometry. The degree of SNHL was
classified into five grades, namely, normal hearing
(PTA <25dB HL) and mild (26 ~40dB HL), moderate
(41 ~60dB HL), severe (61 ~80dB HL), and profound
hearing loss (PTA =81dB HL), based on the average
PTA threshold applied at 250, 500, 1000, 2000, 4000,
and 8000 Hz. The study protocol was permitted by the
Ethics Committee of Shandong Provincial ENT Hospital
(XYK20140101), and adhered to the Declaration of
Helsinki principles. Informed written consent was ob-
tained from each subject or, in the case of minors, from
their parents.

Targeted gene capture and next-generation sequencing

To investigate the pathogenic mutations in this family, a
genomic DNA (gDNA) purification kit (Axygen, San Fran-
cisco, CA) was applied to extract gDNA from peripheral
blood by the manufacturer’s instructions. Targeted deafness
gene capture and next-generation sequencing were per-
formed in the probands to screen 127 genes [18] (Table S1
in Supplementary Material) related to nonsyndromic and
syndromic hearing loss by BGI (Beijing Genomics Institute,
Shenzhen, China) through a standardized next-generation
capture sequencing platform [19]. All exons and the sur-
rounding +10 bp in the flanking intronic regions of the 127
deafness genes were sequenced. An E210 DNA-shearing
devise (Covaris S2, Massachusetts, USA) was employed to
fragment the whole gDNA. The library fragment sizes were
mainly distributed within 250 ~ 300 bp. Adapter ligation,
end repair and adenylation were performed for library
preparation in accordance with the standard Illumina pro-
tocols. An Illumina HiSeq2000 analyzer was used to cap-
ture targeted DNA fragments [20], and image analysis, base
calling, and error estimation were carried out to generate
primary data by the Illumina Pipeline (version 1.3.4). Using
BWA MultiVision software, reads were aligned to the
NCBI37/hgl9 assembly. SOAPsnp software was used as a
reference for recorded SNPs, indels and splice variants. The
other variant types, including CNVs and complicated gen-
omic rearrangements, were not included. Mutations were
detected by the GATK Indel Genotyper. Databases includ-
ing NCBI dbSNP, the 1000 Genomes database, the Hap-
Map database and BGI's own databases were used as
references [21]. The pathogenic variations were scanned
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using the 1000 Genomes database (Phase I) (http://www.1
000genomes.org) and the HapMap database (combined
Phases II and III). The American Medical Genetics and
Genomics Guide were referred to interpret and filtered the
data based on a simple AD inheritance pattern by keeping
only the heterozygous variants. Remaining variants were
then filtered using a low likelihood of adverse functionality
on the basis of the mutation type, as assessed with patho-
genicity prediction tools, including Mutation Taster, SIFT
and PolyPhen 2. The American College of Medical Genet-
ics and Genomics (ACMG) guidelines were used to define
the DNA variants.

Mutation verification

PCR amplification and Sanger sequencing were carried
out to verify candidate variants. As previously described
[22], PCR was executed in a 50 ul reaction mixture. The
forward and reverse primers were 5- GATGGTCTCG
TGGACTTAT-3" and 5'-TGTGGAGGTCACCTTTCT-
3" for the MYH14 c.5417C > A mutation and 5'- TTGG
TGTTTGCTCAGGAAGA-3' and 5'-GGCCTACAGG
GGTTTCAAAT-3’ for the G/B2 ¢.109G > A mutation.
PCR products were purified and sequenced by the ABI
3730XL Genetic Analyzer. Analysis of sequencing data
was performed by DNASTAR sequence analysis soft-
ware. PCR-RFLP was employed to confirm the
c.5417C > A (p.A1806D) mutation in the MYHI4 gene.
Primers flanking the candidate mutation were designed
to amplify a 512-bp PCR product, which was then
digested into 308-bp and 204-bp fragments by the re-
striction enzyme Eco130I (Thermo Scientific, USA). The
digested products were analyzed through electrophoresis
by using a 2% agarose gel. MYH14 mRNA (RefSeq NM_
001077186.2) was used to align the sequences as a refer-
ence by Lasergene SeqMan software. Multiple-sequence
alignment was conducted to perform phylogenetic ana-
lysis by ClustalW2 software. The Multiple sequences
aligned included NP_001070654.1 (Homo sapiens), NP_
001094160.1 (Rattus norvegicus), NP_001258467.1 (Mus
musculus), XP_014980128.1 (Macaca wmulatta), XP_
003316592.1 (Pan troglodytes), XP_023988172.1 (Phys-
eter catodon), and XP_010813541.1 (Bos taurus).

Results

Clinical findings

A four-generation Chinese family with 15 members from
Shandong Province, China, was enrolled in the study. The
family members of II-5 and III-1 were probands, and the
pedigree is shown in Fig. 1 according to the statements of
the participants. Four members of this Han Chinese family
suffered from similar symptoms of tinnitus and hearing
loss and presented bilateral and symmetric hearing im-
pairment with postlingual onset and progressive impair-
ment. The age of onset widely ranged from teens to
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thirties. The PTA results for the members with symptoms
showed that moderate sensorineural hearing loss affected
almost all frequencies (Fig. 2).

One of the probands (patient III-1) in this family was a
30-year-old male suffering from bilateral nonsyndromic
hearing impairment that started in his teens and devel-
oped progressively. The PTA performed in our hospital at
the age of 29 years showed moderate and flat downsloping
SNHL in both ears. The maximum speech recognition
scores (SRSs) were 36% in the left and 32% in the right
ear. The vestibular function tests showed coordination,
and III-1 never complained of vertigo or dizziness. An-
other proband (II-5) had bilateral nonsyndromic hearing
loss with onset in his thirties. However, he has worked in
a glassware factory since his twenties and was exposed to
noise more than 8 h every day over 10 years.

Constant binaural tinnitus was a common symptom
among these patients. The tinnitus volume was at 5 ~ 10
dB HL, which was higher than the auditory threshold of 3
~ 6 kHz. Family member II-1 had bilateral nonsyndromic
hearing loss with onset in his thirties, and member I-2 was
affected by progressive hearing impairment since her
twenties. The two affected members failed to pass the
DPOAE test bilaterally at most or all frequencies, and
their ABR results were consistent with the PTA results,
which revealed moderate sensorineural hearing loss (Fig.
2). Vestibular tests showed no obvious dysfunction in II-1
and II-5. The clinical examinations are listed in Table 1.
The unaffected participants’ examinations and evaluations
were normal, and no clinical syndromes were identified.

Targeted gene capture and next-generation sequencing

To identify the pathogenic variants in this Chinese family,
targeted gene capture sequencing was performed in the
two probands (II-5 and III-1). All variants were filtered
through NCBI dbSNP, the HapMap database, the 1000 Ge-
nomes database and the in-house databases. The ¢.5417C >
A mutation in MYHI4 and ¢.109G > A mutation in G/B2
were detected. Next, Sanger sequencing was used to screen
these two candidate variants in 15 family members (Supple-
mentary Table 2). Based on the inheritance pattern and
characteristics of deafness, combined with the results of
Sanger sequencing, one heterozygous missense mutation
¢5417C > A (p.A1806D) was identified, which cosegregated
with hearing impairment in this family and was inherited in
an autosomal dominant pattern. The ¢.5417C>A
(p.A1806D) variant, located in the tail domain of the
MYH14 gene, causes a change from alanine to aspartic acid
at codon 1806. The deleterious and pathogenic aspects of
the mutation ¢.5417C > A (p.A1806D) are listed in Table 2.

A novel missense mutation identified in MYH14
Sanger sequencing was employed to verify this candidate
mutation in all the family members. We found that three
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affected adults (I-2, II-1, III-1) and the three-year-old
daughter (IV-1) of patient III-1 harbored this heterozy-
gous variant ¢.5417C > A (p.A1806D). None of the other
subjects carried this variant (as shown in Fig. 1). Consid-
ering the age of onset of hearing loss in this family, the
three-year-old daughter of patient III-1 could have nor-
mal hearing despite carrying the pathogenic variant.
Additionally, consistent with our previous diagnosis, the
hearing impairment of patient II-5 was caused by noise
exposure, not by genetic mutation. To test the fre-
quency of the ¢.5417C > A (p.A1806D) variant in the
general population, Sanger sequencing was performed
in 200 people with normal hearing, and no mutation
was found at this site. Subsequently, we further ana-
lyzed the presence of the ¢.5417C>A (p.A1806D)

mutation by RFLP. As shown in Fig. 3, the PCR prod-
ucts from normal members were digested into two
fragments (308 bp and 204 bp), while the PCR prod-
ucts from the affected members (II-1, III-1) and the
daughter (IV-1) of III-1 were digested into three frag-
ments (308 bp, 204bp and 512bp) because of the
presence of the ¢.5417C>A (p.A1806D) mutation.
Figure 4 lists MYHI4 alignments from different spe-
cies, including Homo sapiens, Rattus norvegicus, Mus
musculus, Macaca mulatta, Pan troglodytes, Physeter
catodon and Bos taurus. The high conservation of ala-
nine at position 1806 in MYHI14 demonstrates that it
might play a key role in the biological function, and a
variant at this amino acid position could be
pathogenic.
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Discussion

MYH]I4 is involved in many motility processes, such as
organelle translocation, cytoskeleton rearrangement and
ion channel gating. The protein is more abundant in
adult tissues, with an approximately six-fold increase be-
tween E12.5 and E16.5 in the mouse cochlear duct [11,

23]. It has an active role in cellular remodeling in the

Table 1 Clinical features of individuals with sensorineural hearing loss in this family

epithelium of cochlear sensory cells. Inhibition of the
MYHI14 gene can lead to defects in extension of the
cochlear duct, which may be the physiological mechan-
ism of hearing impairment in subjects who carry
MYH]I14 gene mutations [24]. Mutations in the MYHI14

Examinations

[1-1

II-5

11-1

PTA threshold (dB HL)

SRS (%)

Tympanometry

ABR threshold (dB nHL)

DPOAE

Cochlear microphone
Vestibular bithermal calorid test
cVEMP

oVEMP

Optic nerve electroretinogram
Temporal bone HRCT
Brain MRI

56.25 / 58.75 (left/right)
64 / 64 (left/right)

"A" type

70 (both)

Absent (both)

No elicited

Normal

Normal

Low-amplitude in both ears

Normal
Normal

Normal

50.00 / 51.25 (left/right)
92 / 88 (left/right)

"A" type

70/60 (left/right)
Absent (both)

No elicited

Normal

Normal

Low-amplitude in left and normal in right

Normal
Normal

Normal

56.25 / 58.75 (left/right)

36 / 32 (left/right)

"A" type

60 (both)

Absent (both)

No elicited

Labyrinth reactivity lower (8.4°/5)
No wave

N1 and P1 waves recorded only
in right ear

Normal
Normal

Normal
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Table 2 Characteristics of the MYH14 variant, analysis of predicted protein structure and disease-causing effects

Variation
Gene Exon  Nucleotide®  Amino acid®  Type Status  SIFT PolyPhen 2 Mutation Taster  1000G  DVD  Clinvar  LOVD3
MYH14 39  c5417C>A  p.A1806D missense  Heter ~ Damaging Damaging  Disease causing - - - -

¢ variation at cDNA level, Clinvar Clinvar Database, DVD Deafness Variation Database, 1000G 1000 Genomes, Heter heterozygote, LOVD3 Leiden Open Variation
Database, p variation at protein level, MYH14 myosin heavy chain 14 (NM_001077186), PolyPhen 2 Polymorphism Phenotyping v2, SIFT sorts intolerant

from tolerant

2All nucleotide and amino acid are abbreviated according to the International Union of Pure and Applied Chemistry

gene can result in peripheral neuropathy, hoarseness,
myopathy, and hearing loss [6].

In our study, we examined a four-generation Han
Chinese family presenting with autosomal dominant
nonsyndromic deafness and identified a novel mis-
sense mutation, c¢.5417C>A (p.A1806D), in the
MYHI4 gene by using targeted gene capture and
Sanger sequencing. Patient III-1 and his father (II-1)
and grandmother (I-2) suffered from bilaterally sym-
metric SNHL with postlingual onset at ages ranging
from teens to thirties, and their hearing loss gradually
accelerated with aging. All three affected members
were identified as carrying this novel variant
c.5417C > A (p.A1806D) in the MYHI14 gene, but this
variant was absent in 200 normal controls and all the
other unaffected family members except for patient
III-1’s three-year-old daughter (IV-1). Considering the
late onset of SNHL in her family, we will closely
follow-up with the three-year-old girl. Interestingly,
the SRS of III-1 was much worse than that of II-1.
This finding might be related to the age of onset of
hearing loss, which exhibited a slow progression. We
should follow-up with these individuals from the
family.

Patient II-5 worked in a glassware factory and was ex-
posed to noise for more than 8 h every day over 10 years
since his twenties. His PTA hearing test showed an in-
crease in medium-high frequencies but normal levels in
low frequencies bilaterally, and the SRS values were 92%
for the left side and 88% for the right side, which also

suggested noise-induced hearing loss. The syndromic
features associated with the brain, heart and kidney in
this family were excluded.

Although there were no clinical symptoms of vestibu-
lar dysfunction in any of the members of this Chinese
family, the functional evaluation in proband III-1
showed vestibular impairment. Previous studies reported
that there was no detectable expression of MYHI4 in
vestibular epithelia in mice [7]. Therefore, despite the
presence of a missense mutation in MYHI14, patient III-
1 did not show any clinical vestibular symptoms, which
could be due to functional compensation of the vestibu-
lar system during the long course of disease.

Table 3 shows all the previously reported pathogenic
or likely pathogenic variants in the MYHI4 gene that
cause mild to severe degrees of nonsyndromic and pro-
gressive SNHL with postlingual onset, as well as the
novel variant identified in the current study. Interest-
ingly, among these missense mutations, only one muta-
tion has been reported to lead to syndromic hearing
loss, but the others cause nonsyndromic hearing loss
[26]. In this study, we demonstrated a new missense mu-
tation in MYHI14 that could have led to moderate non-
syndromic SNHL with postlingual onset in a Han
Chinese family. There are some East Asian alleles re-
ported in gnomAD, indicating that this mutation may be
an allele in Asians that causes hearing loss. The evolu-
tionary conservation of the alanine residue at codon
1806 (A1806D) in MYHI4 indicates to us that the vari-
ant could be pathogenic and cosegregated with the

S
[
o
T
[T
=

I1-1
I1-5
II-1
I1-3

Fig. 3 PCR-RFLP results confirms the identification of c5417C > A mutation in the MYH14 gene. 512-bp PCR products around ¢.5417C region
were digested with Fco130l and analyzed by electrophoresis through a 2% agarose gel stained with ethidium bromide
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Fig. 4 The protein alignment shows conservation across seven species. The mutation ¢.5417C > A occurred at evolutionarily conserved

Table 3 MYH14 gene mutations related with sensorineural hearing loss

Exon Mutation? Amino acid change Type of variant Reference DVD ClinVar LOVD3
E-1 c20C>A S7X Nonsense Donaudy(2004) [7] + + +
E-2 c/73C>T G25X Nonsense Kim(2016) [17] - - -
E-2 c359C>T S120L Missense Yang(2010) [16] + + +
E-2 c466C>T S120L Missense Yang(2005) [3] - - -
E-3 c541G>A A181T Missense Qing (2014) [25] + - +
E-3 c572 A>G A191G Missense Kim(2016) [17] - - -
E-9 c1126G>T G376C Missense Donaudy(2004) [7] - - -
E-12 c.1314del P438L Missense - - - +
E-16 c2176 C>A R726S Missense Donaudy(2004) [7] - - +
E-19 €2299C> A A767S Missense - + + -
E-20 C2569A > C L857G Missense - - - +
E-22 c.2594C>T T865 M Missense Qing (2014) [25] - - +
E-22 €2692A > C L898G Missense - + - -
E-23 c2717C>T To06M Missense - + - -
E-23 c2798G>T A933L Missense - - - +
E-23 c.2822G>T R941L Missense Choi(2011) [6, 26] - - -
E-24 c2921G>T A974L Missense - + + -
E-24 c2926C>T L976F Missense Donaudy(2004) [7] - - +
E-24 c2971G> A G991L Missense - - -
E-25 c3049C>T L1017P Missense - + -
E-33 c4780G > A G1594L Missense - - -

E-34 c4885C>T A1629C Missense - - -

E-35 c4903G > A G1635L Missense - - -
E-36 c.5008C>T A1670C Missense Vona (2014) [27] - -
E-39 c5417C>A A1806D Missense this study - - -
E-41 c5893G>T G1965X Nonsense - - - +
E-43 c6016G>T G2006T Missense - + - -

¢ variation at cDNA level, Clinvar Clinvar Database, DVD Deafness Variation Database, LOVD3 Leiden Open Variation Databas, MYH14 myosin heavy chain

14 (NM_001077186)

2All nucleotide and amino acid are abbreviated according to the International Union of Pure and Applied Chemistry
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disease in this family. PCR-RFLP was performed to fur-
ther confirm the results in all the family members and
200 individuals with normal hearing. However, the
mechanism by which the ¢.5417C > A (p.A1806D) vari-
ant is associated with hearing loss is not clear. Further
functional researches are required to analyze the patho-
physiologic mechanism underlying the auditory defects
caused by the variant in MYHI14 by constructing a trans-
genic mouse model.

Conclusion
This study identified the novel and potentially patho-
genic heterozygous missense variant c¢.5417C>A

(p.A1806D) in the MYHI4 gene; this variant is respon-
sible for postlingual nonsyndromic SNHL in a four-
generation Han Chinese family. The findings also
highlighted the combined application of gene capture
and Sanger sequencing is an efficient approach to screen
pathogenic variants associated with genetic diseases such
as autosomal dominant nonsyndromic deafness.
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