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Abstract

We present a model for the electric potential profile across the membranes of neuronal cells. We considered the resting and
action potential states, and analyzed the influence of fixed charges of the membrane on its electric potential, based on
experimental values of membrane properties of the spinal ganglion neuron and the neuroblastoma cell. The spinal ganglion
neuron represents a healthy neuron, and the neuroblastoma cell, which is tumorous, represents a pathological neuron. We
numerically solved the non-linear Poisson-Boltzmann equation for the regions of the membrane model we have adopted,
by considering the densities of charges dissolved in an electrolytic solution and fixed on both glycocalyx and cytoplasmic
proteins. Our model predicts that there is a difference in the behavior of the electric potential profiles of the two types of
cells, in response to changes in charge concentrations in the membrane. Our results also describe an insensitivity of the
neuroblastoma cell membrane, as observed in some biological experiments. This electrical property may be responsible for
the low pharmacological response of the neuroblastoma to certain chemotherapeutic treatments.
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Introduction

Electrostatic forces affect the passive and active transport of

charged particles through biological membranes. The flow rate of

ions through the membrane depends on the strength of the

intramembranous electric field. These forces also affect the

robustness of some ligands of the membrane [1]. In this work,

we study the influence of surface electric charges on the stability of

the cell membrane in the condition of equilibrium, by modeling

the electric potential profile. The profile describes the behavior of

the potential along the axis perpendicular to the cell membrane,

from the outer bulk region to the inner cytoplasmic region [2–5].

We do not consider here dynamical phenomena in the structure of

the membrane, and treat only the electrostatic situation, which

occurs once the system has reached equilibrium. We refer the

reader to studies such as [6,7] that treat dynamical, nonequilib-

rium phenomena, like the molecular dynamics of ion channels

associated with transmembrane ion transport, using the Poisson-

Nersnt-Planck theory [6] and the Poisson-Boltzmann-Nernst-

Planck model [7].

The electric potential on a cell surface is determined as the

difference of potential between the membrane-solution interface

and the bulk region [1]. It has been shown that the electrophoretic

behavior of neuroblastoma cells provides information about their

surface charges, in different phases of the cellular cycle [8–10].

These experiments show that membrane anionic groups are

mainly responsible for the surface charges of murine neuroblas-

toma cells [10]. It is known that neuroblastoma cells, like all other

cancerous cells, multiply quickly. Alterations of the dynamics of

cellular multiplication compromise the synthesis and structure of

components of the membrane, with possible degradation of these

components, promoting deformations of the structure and

composition of the plasma membrane [11].

We show a detailed and revised description of the model more

briefly presented by Cortez and collaborators in [3–5], which was

originally used to simulate the squid giant axon. This model is

based on the statistical mechanical theory of electrolyte solutions

and electric double layers [12–15]. We then present a study that

applies this model in a novel way to the neurons of mammals

(mice) [16,17], in order to investigate the alterations of the electric

potential and therefore, the capability of transmitting electric

signals in the membrane of cancerous neurons. Here, the spinal

ganglion neuron denotes a healthy neuron, and the neuroblastoma

cell represents a tumorous neuron. With simulations of this model,

we compare the effects of charges fixed onto the inner surface of

the membrane and those associated with cytoplasmic proteins, on

the electric potential on the surfaces of the membranes of both

types of cells, considering both natural states of neurons, the

resting and the action potential (AP) states. The AP state refers to

the state of the neuron in which it has been stimulated enough, so

that its physico-chemical conditions are such that the transmem-

brane potential reaches the maximum value of the AP. The

temporal evolution of the transmembrane potential was not
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considered. We also calculated the potential profile across the

membrane, including data from electrophoretic experiments in

our model.

Methods

Cortez and collaborators have proposed in [4] an axon

membrane model, to study how charges fixed onto the inner

surface of the membrane and those associated with cytoplasmic

proteins influence the electric potential of the squid axon

membrane. In their work, the effects of divalent ions were

included, with a numerical solution of the model equations. In the

present study, we apply this model to healthy and cancerous

mammalian neurons, to understand electrical characteristics of the

membranes of these cells. We present the formal derivation of the

complete model here, since it was not shown in [3,4] and because

we have found mistakes in some of the equations presented in [4].

We also describe, in Section Surface Potentials, a method for

calculating electric potentials on the interfaces of the neuronal

membrane, which was not discussed in previous work. We thus

present here a more detailed and revised description of the theory

and mathematical model of the electric potential across neuronal

membranes in equilibrium, which was originally discussed in [4].

In the neuronal membrane model we have adopted, shown in

Fig. (1), four different regions are presented: extracellular,

glycocalyx, bilayer and cytoplasm. The bilayer thickness is h and

the width of the glycocalyx is hg. Surface potentials are represented

as wSeg
for the potential on the surface Seg, between the

extracellular and glycocalyx regions, wSgb
is the potential on the

surface Sgb, between the glycocalyx and the bilayer, and wSbc
is the

potential on the surface Sbc, between the bilayer and cytoplasm.

We denote by w{? and wz? the potentials at {?, in the

electrolytic extracellular phase, and at z?, in the bulk

cytoplasmic region, respectively.

The Electric Potential in the Membrane Regions
To determine the potential profile across the membrane, we

first consider the Poisson equation [3,4,15],

+2wi(x,y,z)~
{4pri(z)

Ei

,

for i [ fext,g,b,cg,
ð1Þ

where wi(x,y,z) is the electric potential in any region i; i~ext for

the outer electrolytic region; i~g for the glycocalyx; i~b for the

bilayer; and i~c for the cytoplasm. The volumetric charge density

due to the electrolytes in solution of area i is ri(z), and Ei is the

dielectric constant in region i. There is no charge in the bilayer

(i~b), due to its hydrophobic property, and thus rb(z)~0.

We consider the further boundary conditions to calculate the

constants of integration:

1. When z tends to an extreme value, z?{? (in region ext) or

z?z? (in the cytoplasm), the electric potential tends to

limiting values represented by w{? and wz?, respectively.

Ionic concentrations assume limiting values in the bulk regions,

lim
z?{?

gc,ext(z)~gc,{? and lim
z?z?

gc,c(z)~gc,z?, respectively,

where c represents an ion, such as Naz, Kz, or Cl{.

2. When z~{hg{h=2 and z~+h=2, we consider the continu-

ity of the electric potentials, wSeg
, wSgb

and wSbc
, respectively.

3. There is a discontinuity of the electric field vector on the

surfaces between regions.

The Effect of Fixed Charges. When we include the effect of

fixed charges in the model, Poisson Eq. (1) becomes

+2wi(x,y,z)~
{4p(ri(z)zrfi)

Ei

, ð2Þ

where rfi is the density of charges fixed onto proteins of area i

(rfext~0, for the outer electrolytic region, rfg for the glycocalyx,

and rfc for the cytoplasm).

The volumetric charge density ri(z) is the sum of the charge

densities of positive and negative ions in the solution [3]

ri(z)~
X
cz

eVczgcz,i(z)z
X
c{

eVc{gc{,i(z), ð3Þ

where cz represents a positive ion, and c{, a negative ion. The

molar density for an ion c (ionic concentration) in region i is gc,i(z),

and Vc is the valency of ion c. For example, V
Ca2z~2 and

VCl{~{1. The absolute value of the electron charge is e. Due to

the electroneutrality condition, we can write

ð
ri(z)dz~0,

within the boundaries of each region.

In our model, we suppose that the surfaces are infinite in the x
and y directions, perpendicular to z, and that the distribution of

charges in these directions is homogeneous. Considering this, and

substituting Eq. (3) in Eq. (2), we obtain

d2wi(z)

dz2
~{

4p

Ei

X
cz

eVczgcz ,i(z)z

0
@ X

c{
eVc{gc{,i(z)

!
zai, ð4Þ

where

ai~{
4prfi

Ei

: ð5Þ

To determine gc,i(z), we use the equation for the electrochemical

potential, due to an ionic solute in a diluted solution [3,4]

mc,i(z)~m0
c,i(P,T)zKTln(gc,i(z))zeVcwi(z), ð6Þ

where K is Boltzmann’s constant, T is the temperature, m0
c,i(P,T)

is the standard chemical potential, dependent on pressure and

temperature, KTln(gc,i(z)) is a term that expresses the influence of

the ionic concentration gc,i(z), and eVcwi(z) is the contribution of

the electric potential.

Applying the ~++ operator in Eq. (6) and again considering the

homogeneous distribution of charges in the directions perpendic-

ular to z, we verify that

dmc,i(z)

dz
~

dm0
c,i(P,T)

dz
zKT

d

dz
ln(gc,i(z))zeVc

dwi(z)

dz
: ð7Þ

Considering that there is a condition of Boltzmann equilibrium in

the aqueous environments adjacent to the bilayer,
dmc,i(z)

dz
~0 and

dm0
c,i P,Tð Þ

dz
~0, and Eq. (7) becomes
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0~KT
d

dz
ln(gc,i(z))zeVc

dwi(z)

dz
: ð8Þ

The integration of Eq. (8) from z in one of the three regions,

extracellular, glycocalyx and cytoplasm, to a limiting boundary

region, for which we have experimentally measured quantities,

considering the electrolytes distributed over the adjacency of the

bilayer gives

ðgc,i,l

gc,i (z)

KT
d

dgc,i

ln(gc,i(z))dgc,i~{

ðwi,l

wi (z)

eVc
dwi(z)

dwi

dwi, ð9Þ

where wi,l and gc,i,l are limiting values of the electric potential and

the ionic concentration of c, respectively, in region i. The solution

of Eq. (9) results in

gc,i(z)~gc,i,l exp

{eVcDwi (z)
KT

� �
, ð10Þ

where

Dwi(z)~wi(z){wi,l : ð11Þ

The molar density for a positive c ion is thus given by

gcz ,i(z)~gcz ,i,l exp

{eZ
cz

Dwi (z)

KT

� �
, ð12Þ

and for a negative c ion

gc{,i(z)~gc{ ,i,l exp

eZc{Dwi (z)

KT

� �
, ð13Þ

where

Zc~jVcj: ð14Þ

Equations (12) and (13) are the Boltzmann distribution of charges

due to the presence of positive and negative c ions [15],

respectively, in the phases adjacent to the bilayer. Substituting

Eqs. (12) and (13) in Eq. (4), we obtain

d2wi(z)

dz2
~{

4p

Ei

|

X
cz

eZczgcz,i,l exp

{eZ
cz

Dwi (z)

KT

� �0
B@ {

X
c{

eZc{gc{,i,l exp

eZc{Dwi (z)

KT

� �1
CAzai:

ð15Þ

In the bulk regions, we can consider the electroneutrality condition

X
cz

eZczgcz ,i,l~
X
c{

eZc{gc{ ,i,l , ð16Þ

and, in a first approximation, we assume a symmetric electrolyte to

simplify our calculations, so that

gcz ,i,l~gc{,i,l~gc,i,l : ð17Þ

We have taken the boundary values from experimental measure-

ments in the bulk regions and on surface Seg, so that wext,l~w{?,

wc,l~wz?, and wg,l~wSeg
. For the ionic concentrations,

gc,ext,l~gc,{?, gc,c,l~gc,z?, and gc,g,l~gc,g({hg{h=2).

Throughout, we denote by wSij
the electric potential on surface

Sij between regions i and j.

Figure 1. Model for a neuronal membrane. Different regions are presented, with the corresponding symbols for the potentials on the surfaces
dividing regions. Symbols are explained in the text. Minus signs illustrate negative fixed charges on proteins.
doi:10.1371/journal.pone.0096194.g001
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We can now use Eq. (17) to rewrite Eq. (15) as

d2wi(z)

dz2
~{

X
c

4peZcgc,i,l

Ei

| exp

{eZcDwi (z)
KT

� �
{ exp

eZcDwi (z)
KT

� �0
B@

1
CAzai:

ð18Þ

If we consider that

exp

{eZcDwi (z)
KT

� �
{ exp

eZcDwi (z)
KT

� �
~{2 sinh

eZcDwi(z)

KT

� �
, ð19Þ

we can write Eq. (18) as

d2wi(z)

dz2
~
X

c

8peZcgc,i,l

Ei

sinh
eZcDwi(z)

KT

� �� �
zai: ð20Þ

Our model only considers mono (Z1~1) and divalent (Z2~2) ions

[4]. We thus limit the c sum to

d2wi(z)

dz2
~

8peg1,i,l

Ei

� �
sinh

eDwi(z)

KT

� �

z
16peg2,i,l

Ei

� �
sinh

2eDwi(z)

KT

� �
zai:

ð21Þ

To simplify further calculations, we denote

Ai~
8peg1,i,l

Ei

, Bi~
16peg2,i,l

Ei

,b~
e

KT
, ð22Þ

and Eq. (21) may be expressed as

d2wi(z)

dz2
~Ai sinh bDwi(z)ð ÞzBi sinh 2bDwi(z)ð Þzai: ð23Þ

Considering that

sinh 2bDwi(z)ð Þ~2 sinh bDwi(z)ð Þ cosh bDwi(z)ð Þ, ð24Þ

Eq. (23) can be rewritten as

d2wi(z)

dz2
~Ai sinh bDwi(z)ð Þ

z2Bi sinh bDwi(z)ð Þ cosh bDwi(z)ð Þzai:

ð25Þ

Multiplying Eq. (25) by

2dwi~2
dwi(z)

dz
dz, ð26Þ

and integrating, we have

ð
2

d2wi(z)

dz2

dwi(z)

dz
dz~

ð
2Ai sinh bDwi(z)ð Þdwi

z

ð
4Bi sinh bDwi(z)ð Þ cosh bDwi(z)ð Þdwi

z

ð
2aidwi,

ð27Þ

whose solution is

dwi(z)

dz

� �2

~
2Ai cosh bDwi(z)ð Þ

b
z

2Bi cosh2 bDwi(z)ð Þ
b

z2aiwi(z)zWi,

ð28Þ

where Wi is a constant of integration for region i.

To further simplify the symbolic representation of the equations,

considering Eqs. (5) and (22), we denote

Qmi
~2Ai, Qdi

~2Bi, and ,

gi~2ai,
ð29Þ

where Qmi
and Qdi

express the influence of boundary value

concentrations of monovalent and divalent ions, respectively, in

each region i. Eq. (28) is thus expressed as

dwi(z)

dz

� �2

~
Qmi

cosh bDwi(z)ð Þ
b

z
Qdi

cosh2 bDwi(z)ð Þ
b

zgiwi(z)zWi:

ð30Þ

We can rewrite Eq. (30) as

dwi(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji(z)zgiwi(z)zWi

p
, ð31Þ

where

ji(z)~
Qmi

cosh bDwi(z)ð Þ
b

z
Qdi

cosh2 bDwi(z)ð Þ
b

: ð32Þ

Equation (31) is the Poisson-Boltzmann equation for the electric

potential in any region i.
Solution of the Poisson-Boltzmann Equation for the

Extracellular Region. i~extð Þ
In the extracellular region, the effect of fixed charges is

negligible (rfext~0 and gext~0), and the solution of Eq. (31)

therefore only considers the electrolytic charges. Moreover, the

electric potential in z~{? is constant and we can write

dwext(z)

dz D(z~{?)
~0: ð33Þ

In order to use Eq. (31) to calculate the potential in the

extracellular region, we must find the value of Wext. We thus

consider an imaginary surface S{?, perpendicular to the z{axis,

at z1%({hg{h=2), where rfext~0. We then integrate Eq. (31)

from another position z2vz1 to z1. Since both z1 and z2 are in the

{? region, w{?~wext(z1)~wext(z2)~wS{? , and

Dwext(z2)~wext(z2){wS{?~0. We can then substitute Eq. (33)

Modeling the Electric Potential across Membranes
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and Dwext(z2)~0 in Eq. (31), to calculate Wext as

0~
Qmext

b
cosh 0ð Þz Qdext

b
cosh2 0ð ÞzWext, ð34Þ

and

Wext~
{Qmext{Qdext

b
: ð35Þ

We then substitute Eq. (35) in Eq. (31) to obtain the differential

equation for wext(z), for any position zv({hg{h=2), in the

extracellular region

dwext(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lext(z)zsext(z)

p
, ð36Þ

where

lext(z)~
Qmext cosh bDwext(z)ð Þ{1½ �

b
,

sext(z)~
Qdext cosh2 bDwext(z)ð Þ{1

	 

b

,

and , Dwext(z)~wext(z){w{?:

ð37Þ

Equation (36) can be simplified to

dwext(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xext(z)zvext(z)

p
, ð38Þ

where

xext(z)~2

Qmext sinh2 b

2
Dwext(z)

� �
b

,

and ,

vext(z)~
Qdext sinh2 bDwext(z)ð Þ

b
:

ð39Þ

Solution of the Poisson-Boltzmann Equation for the

Cytoplasmic Region. i~cð ÞBecause, in the cytoplasmic re-

gion, the potential in z~z? is also constant,

dwc(z)

dz D(z~z?)
~0: ð40Þ

As we did for the extracellular region, to calculate the potential in

the cytoplasmic region using Eq. (31), we must first find the value

of Wc. We thus consider an imaginary surface Sz?, perpendic-

ular to the z{axis, at z3&(h=2). We then integrate Eq. (31) from

another position z4wz3 to z3. As both z3 and z4 are in the z?
region, wz?~wc(z3)~wc(z4)~wSz? , and

Dwc(z4)~wc(z4){wSz?~0. We thus substitute Eq. (40) and

Dwc(z4)~0 in Eq. (31), to obtain Wc as

0~
Qmc

b
cosh 0ð Þz Qdc

b
cosh2 0ð Þzgcwz?zWc: ð41Þ

The constant of integration Wc is

Wc~
{Qmc{Qdc

b
{gcwz?: ð42Þ

We then substitute Eq. (42) in Eq. (31) to obtain the differential

equation for wc(z), for any zw(h=2), in the cytoplasmic region

dwc(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lc(z)zsc(z)zgcDwc(z)

p
, ð43Þ

where

lc(z)~
Qmc cosh bDwc(z)ð Þ{1½ �

b
,

sc(z)~
Qdc cosh2 bDwc(z)ð Þ{1
	 


b
,

and , Dwc(z)~wc(z){wz?:

ð44Þ

Equation (43) can be simplified to

dwc(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc(z)zvc(z)zgcDwc(z)

p
, ð45Þ

where

xc(z)~2

Qmc sinh2 b

2
Dwc(z)

� �
b

, and ,

vc(z)~
Qdc sinh2 bDwc(z)ð Þ

b
:

ð46Þ

Solution of the Poisson-Boltzmann Equation for the

Glycocalyx Region. i~gð ÞWe consider that the potential wSeg

on the surface Seg satisfies

dwg(z)

dz D(z~{hg{h=2)
ẑz~~EEgjSeg

, ð47Þ

where ẑz is the unit vector in the z direction, and ~EEkjSij
is the

electric field in region k, ~EEk(zij), at zij , the position of surface Sij

between regions i and j, e.g., ~EEgjSeg
~~EEg({hg{h=2) is the

electric field in the glycocalyx region at the position of surface Seg.

We have previously stated that the boundary condition for ionic

concentrations in the glycocalyx is defined as

gc,g,l~gc,g({hg{h=2). In order to obtain gc,g({hg{h=2) from

the experimentally measured gc,{?, we would need to apply Eqs.

(12) and (13). This would result in four values of gc,g({hg{h=2)

(for positive and negative, monovalent and divalent ions). In this

case, the symmetric electrolytes assumption (Eq. (17)) would not

hold, and the mathematical formalism leading to Eq. (31) would

not apply. Nevertheless, in Eq. (15), the difference in the

contributions of the terms involving gc,g,l for the different ions is

small compared to the value of the ai term, which is a few order of

magnitude larger. We thus assume that gc,g({hg{h=2)~gc,{?,

for monovalent and divalent ions.

In order to use Eq. (31) to calculate the potential in the

glycocalyx region, we need to find the value of Wg. We thus solve

Modeling the Electric Potential across Membranes
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Eq. (31) at z~{hg{h=2, on the surface Seg, and take

wg({hg{h=2)~wSeg
, and

Dwg({hg{h=2)~wg({hg{h=2){wSeg
~0. We can then substi-

tute Eq. (47) and Dwg({hg{h=2)~0 in Eq. (31), to calculate Wg

as

~EEgjSeg

� �2

~
Qmg

b
cosh (0)z

Qdg

b
cosh2 (0)zggwSeg

zWg: ð48Þ

The constant of integration Wg, for the glycocalyx region, is

therefore

Wg~ ~EEgjSeg

� �2

{
QmgzQdg

b

� �
{ggwSeg

: ð49Þ

We then substitute Eq. (49) in Eq. (31) to obtain the differential

equation for wg(z), for any position ({hg{h=2)vzv({h=2), in

the glycocalyx region

dwg(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lg(z)zsg(z)zggDwg(z)z~EEgj2Seg

q
, ð50Þ

where

lg(z)~
Qmg cosh bDwg(z)

� �
{1

	 

b

,

sg(z)~
Qdg cosh2 bDwg(z)

� �
{1

	 

b

,

and , Dwg(z)~wg(z){wSeg
:

ð51Þ

Equation (50) can be further simplified to

dwg(z)

dz
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xg(z)zvg(z)zggDwg(z)z~EEgj2Seg

q
, ð52Þ

where

xg(z)~2

Qmg sinh2 b

2
Dwg(z)

� �
b

, and ,

vg(z)~
Qdg sinh2 bDwg(z)

� �
b

:

ð53Þ

Solution of the Poisson-Boltzmann Equation for the

Bilayer. i~bð ÞAs mentioned earlier, because the bilayer is

highly hydrophobic, rb(z)~0, and therefore Eq. (2) assumes the

form

+2wb(x,y,z)~0, ð54Þ

and its solution is a family of linear functions. The electric field

within the bilayer (see Eq. (59)), ~EEb, can thus be expressed as

~EEb~
wSgb

{wSbc

h
ẑz: ð55Þ

Surface Potentials
In order to solve the differential Eqs. (38), (45) and (52) for the

extracellular, cytoplasmic and glycocalyx regions of the neuronal

membrane, respectively, we must know the values of the surface

potentials wSeg
, wSgb

and wSbc
. Although membrane surface

potentials in cells cannot be measured experimentally, it is possible

to obtain analytical predictions for the values of wSeg
, wSgb

and wSbc
,

from basic electrostatic relations, as we will now show.

Considering the surface densities of electric charges, Gauss’ law,

and the discontinuity of the electric field vector on the surfaces Seg,

Sgb and Sbc, we obtain

Eg
~EEgjSeg

{Eext
~EEextjSeg

~4pQSeg ẑz, ð56Þ

Eb
~EEbjSgb

{Eg
~EEgjSgb

~4pQSgb
ẑz, and , ð57Þ

Ec
~EEcjSbc

{Eb
~EEbjSbc

~4pQSbc
ẑz, ð58Þ

respectively, where ~EEbjSgb
~~EEbjSbc

~~EEb (see Eq. (55)). In the

above, QSeg , QSgb
and QSbc

stand for the charge density on the

Seg, Sgb and Sbc surfaces, respectively.

As

~EEi~{~++wi(z)~{
dwi(z)

dz
ẑz, ð59Þ

in order to determine the discontinuity of the electric field vector

on the surfaces Seg, Sgb and Sbc, we substitute Eq. (59) in Eqs. (56),

(57) and (58), and obtain

~EEgjSeg
~

4pQSeg {Eext
dwext(z)

dz
j(z~{hg{h=2)

Eg

ẑz, ð60Þ

~EEb~
4pQSgb

{Eg
dwg(z)

dz
j(z~{h=2)

Eb

ẑz, and , ð61Þ

~EEb~
{4pQSbc

{Ec
dwc(z)

dz
j(z~h=2)

Eb

ẑz: ð62Þ

As we have previously obtained the expression that determines the

electric field within the bilayer, ~EEb, we substitute Eq. (55) into Eqs.

(61) and (62), and obtain
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wSbc
~wSgb

{
h

Eb

4pQSgb
{Eg

dwg(z)

dz
j(z~{h=2)

� �
, ð63Þ

wSgb
~wSbc

{
h

Eb

4pQSbc
zEc

dwc(z)

dz
j(z~h=2)

� �
, ð64Þ

respectively.

Substituting Eqs. (52) and (60) in Eq. (63), we determine the

expression to calculate the surface potential wSbc

wSbc
~wSgb

{
4pQSgb

h

Eb

z
Egh

Eb

ffiffiffi
a
p

, ð65Þ

where

a~xg({h=2)zvg({h=2)zggDwg({h=2)z

4pQSeg {Eext
dwext(z)

dz
j(z~{hg{h=2)

Eg

 !2 ð66Þ

and here, Dwg({h=2)~wSgb
{wSeg

. In the same manner,

substituting Eq. (45) in Eq. (64), we determine the expression to

calculate the surface potential wSgb

wSgb
~wSbc

{
4pQSbc

h

Eb

{
Ech

Eb

ffiffiffi
k
p

, ð67Þ

where

k~xc(h=2)zvc(h=2)zgcDwc(h=2), ð68Þ

and here, Dwc(h=2)~wSbc
{wz?.

The electric potential on the surface Seg, wSeg
, is determined

from electrophoretic experiments [9,16,17] and the Helmholtz-

Smoluchowski equation [3]

m~
Eifi

4pni

, ð69Þ

where m is the electrophoretic mobility, fi~wSeg
{w{? is the zeta

potential, and ni is the viscosity of region i. As, in our model, we

define the potential w{?~0, the surface potential wSeg
is

wSeg
~

4pnim

Ei

: ð70Þ

Model Calculations for Spinal Ganglion Neurons and
Neuroblastoma Cells

We have used data obtained from experimental observations

[9,16,17] for values of parameters, in order to solve the first order

ordinary differential equations, obtained from the Poisson-

Boltzmann Eq. (31), for the different regions of the membrane.

Some experimental values were obtained from electrophoretic

experiments. Since each kind of cell presents a specific electro-

phoretic mobility, the values of some parameters are different for

the spinal ganglion neuron and the neuroblastoma cell, in our

calculations. Tables (1) and (2) show all experimental values of the

parameters used to solve the equations for the ganglion and the

neuroblastoma. The difference wz?{w{? is called the trans-

membrane potential and is denoted as wR in the resting state, and

wA in the AP state. We have defined w{?~0 in our calculations,

Table 1. Values of simulation parameters for both the spinal ganglion neuron and the neuroblastoma cell.

Parameter Symbol Value Value in CGS References

Dielectric constant in region b Eb 2 2 [3,4]

Dielectric constant in region i (i~ext,g,c) Ei 81 81 [4]

Glycocalyx width hg 2.5 nm 2:50|10{7 cm [4,9,16]

Bilayer thickness h 7.5 nm 7:50|10{7 cm [3,4,9,16]

Concentration of monovalent ions in bulk extracellular region g1,{? 0.154 M 9:27|1019 cm{3 [16,17,29,30]

Concentration of monovalent ions on Seg g1,Seg
0.154 M 9:27|1019 cm{3 [16,17,29,30]

Concentration of divalent ions in bulk extracellular region g2,{? 0.002 M 1:20|1018 cm{3 [16,17,29,30]

Concentration of divalent ions on Seg g2,Seg
0.002 M 1:20|1018 cm{3 [16,17,29,30]

Concentration of monovalent ions in bulk cytoplasmic region g1,z? 0.154 M 9:27|1019 cm{3 [29–31]

Concentration of divalent ions in bulk cytoplasmic region g2,z? 0.0004 M 2:41|1017 cm{3 [29,30]

Potential in {?, the extracellular region w{? 0 mV 0 statV [3,4]

Temperature T 310 K 310 K [4]

Boltzmann’s constant K 1:38|10{23 J/K 1:38|10{16 erg/K [32]

Absolute value of electron charge e 1:60|10{19 C 4:80|10{10 statC [32]

Viscosity of region i ni 0.1 Pa:s 1 P [3]

1CGS is the centimeter-gram-second system of units.
doi:10.1371/journal.pone.0096194.t001
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so that wR~wz? in the resting state, and wA~wz? in the AP

state. We have thus examined the influence of parameters that

represent electrical properties of the membrane, on the resting and

AP states, and analyzed the differences between the healthy spinal

ganglion neuron and the neuroblastoma cell.

We implemented an approximate heuristic for finding roots of

functions, to calculate wSgb
and wSbc

from Eqs. (65) and (67), which

is specified in the next subsection. As mentioned earlier, the

potential wSeg
was calculated with Eq. (70), from data obtained

from electrophoretic experiments.

As we included the density of charges fixed onto proteins within

the membrane regions in the Poisson Eq. (1), we obtained a non-

linear Poisson-Boltzmann Eq. (31), whose analytical solution has

not been found. We therefore calculated values of the potential

profiles with Eqs. (38), (45) and (52) numerically, using the Runge-

Kutta method. The model simulation code is available on GitHub

at https://github.com/pintotm/PLoSOne2014.

Roots of the System of Non-linear Equations. Because

there is no experimental method to directly measure values of the

surface potentials wSgb
and wSbc

, we use Eqs. (65) and (67) that form

a system of non-linear equations with two variables, wSgb
and wSbc

,

to determine these values. Some research work [3,4,9,16,17]

indicates that the values of these potentials in real cells are in a

limited region of the wSgb
|wSbc

plane. This means that we are

looking for one of the roots of Eqs. (65) and (67), in a known

region.

We can write the system of Eqs. (65) and (67) as

wSgb
~G wSbc

� �
wSbc

~F wSgb

� �
:

ð71Þ

Our simple method for finding the roots of this system consists in

the steps described in Algorithm_Roots. At the resting state,

min~{250 mV and max~{50 mV, while, at the AP state,

min~10 mV and max~100 mV.

Algorithm. Algorithm Roots

Step 0: dwmin
= 1024 mV

Step 1: Choose an initial value for wSbc

in min , wSbc
, max

Step 2: dw = 20 mV

Step 3: While dw . dw
min

do

begin

wSab
= G(wSbc

)

w�Sbc
= F(wSab

)

If DwSbc
{w2�Sbc

D , dw then

dw = DwSbc
{w2�Sbc

D
wSbc

= w2�Sbc

else

return to Step 1

end if

end While
Algorithm for determining wSgb

and wSbc
, for the spinal

ganglion neuron and the neuroblastoma cell. With the

wSbc
value found with this procedure, we use Eq. (67) to obtain the

corresponding wSgb
value. The surface potentials wSgb

and wSbc
for

the spinal ganglion neuron and the neuroblastoma cell, whose

values are shown in the following section, were obtained with

Algorithm_Roots.

Results

The hydrophilic heads of the phospholipids that form the

surfaces of the bilayer are negatively charged or polarized, and

attribute a fixed charge density to surfaces Sgb and Sbc. In the

situation of electrostatic equilibrium, which we are analyzing, both

bilayer surfaces, Sgb and Sbc, are surrounded by a ‘‘diffuse electric

layer’’ formed by the motion of free ions in the fluid ionic solution,

under the influence of electric attraction and thermal motion [12–

15].

It is known that the inner surface charge density (jQSbc
j) of the

membrane is significantly higher than the outer surface density,

due to the presence of negatively charged heads of phospholipids

on the inner surface (phosphatidylserine), while on the outer

surface the presence of neutral phospholipids dominates [18].

Moreover, the net charges fixed onto cytoplasmic proteins (jrfcj)
are considered to be higher than the fixed net charges distributed

in the glycocalyx region [19–21].

With our mathematical model, we first investigate the effect of

QSbc
and rfc on the electric potential on the surfaces of the

neuronal membranes of the spinal ganglion and the neuroblasto-

ma. However, there is little information in the literature, regarding

experimentally obtained quantities related to electric charges fixed

within biological membranes. This is mainly due to the difficulties

involved in obtaining the experimental measurements of these

quantities. We therefore examine the behavior of the potentials

wSgb
and wSbc

for a range of values of the ratios QSbc
=QSeg

and

rfc=rfg, given known experimental values of QSeg
and rfg, i.e. QSbc

and rfc are multiples of QSeg
and rfg, respectively. We note that

both glycocalyx and cytoplasm and their surfaces are negatively

charged, so that QSeg
v0, QSbc

v0, rfgv0 and rfcv0.

Figure (2) shows the behavior of wSgb
and wSbc

as we increase the

negative charge on Sbc, i.e. as we decrease QSbc
. We notice that for

both the resting and AP states, a decrease of QSbc
has almost no

effect on the surface potentials of both neuronal membranes.

These variations in QSbc
only determine a small gradual decay of

wSbc
during the resting state of the cells. The resting and AP states

were specified by boundary conditions, i.e. specific parametric

values applied to the model. Values for wSgb
and wSbc

are different

between these types of cells, due to their specific membrane

properties. We also observe that wSgb
remains constant at {34:97

mV and {25:17 mV, respectively for the spinal ganglion and

neuroblastoma cells, when they switch from the resting to AP

states, and vice versa. Moreover, during the AP state, wSbc
assumes

values near the transmembrane potentials (Fig. (2B)).

We also examine the electric potential on the surfaces of the

membranes of the healthy and the cancerous cells, in response to

variations in the density of charges fixed onto proteins of the

cytoplasm. Figure (3) presents the resulting wSgb
and wSbc

as we

increase this density of negative charges in the cytoplasm, i.e. as we

decrease rfc. For both the resting and AP states, wSgb
remains

constant when values of rfc vary. However, a decrease in rfc

causes a substantial fall of wSbc
, for both types of cells, at resting

and AP states. At the AP state, qSbc
presents a quick drop when

rfc=rfgv20 and tends to an asymptotic value, for decreasing

values of rfc, for both types of cells.

Besides investigating the effect of fixed charges on the potential

on the surfaces of these membranes, we study how the electric

potential profile changes across the membranes of spinal ganglion

neurons and neuroblastoma cells, for the resting and AP states.

Although the values of QSbc
and rfc are not known, jQSbc

j and jrfcj
are much larger than the corresponding charges in the outer
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regions. We thus chose fixed values of QSbc
~30QSeg

and

rfc~20rfg (which are the same fixed values in Figs. (3) and (2),

respectively) to calculate the potential profile in Fig. (4), for the

resting state and in Fig. (5), during the AP state. For both natural

states of these cells, we verify an accentuated decrease of the

potential along the z axis, from the extracellular region to the

surface of the glycocalyx. This decay is slightly more substantial for

the neuroblastoma than for the spinal ganglion neuron, although

the shapes of both curves are very similar.

In the spinal ganglion neuron, the potential maintains a

substantial drop across the glycocalyx. Interestingly, this phenom-

enon does not occur for the cancerous cells, whose electric

potential remains almost unchanged in this region. We observe

linear variations of the potential across the bilayer of these cells, for

both resting and AP states. During rest, the electric potential

assumes much lower values on Sbc than the asymptotic value in

the bulk cytoplasmic region, while during the AP state, these

values are similar. Before reaching the transmembrane potential

value, the intracellular potential exponentially increases from the

inner surface of the membrane to the bulk cytoplasmic region,

during the resting condition, while during the AP state, we see no

alteration in the electric potential in the cytoplasm, for both cells.

Discussion

There are other membrane phenomena due to electric charge

effects that we have not considered in our model, such as the

electric pump current [22]. We have not included these

phenomena here as they seem to be negligible, in a first

approximation, to the determination of the electric surface

potentials. For example, Jäckle [22] states that ‘‘the net electric

pump current is not a relevant parameter in the casual theory of

the resting potential’’.

Experiments have revealed important discrepancies in the

electrical properties of spinal ganglion neurons and neuroblastoma

cells [9,16]. These differences are reflected in the parameter values

we used in our simulations, as shown in Table (2). We notice that

the values for the electrophoretic mobility, and the charge densities

in the glycocalyx and on Seg are much more negative for the

neuroblastoma than for the ganglion. Because neuroblastoma cells

contain a higher amount of negative rfg, QSeg
and m compared

with ganglion neurons, we indeed expected to obtain lower wSeg

and wSbc
values for the neuroblastoma in our simulations.

Our simulations also demonstrate that variations in the electric

charges fixed onto the inner surface of the membrane have a small

effect on the electric potential of the surfaces that compose the

neuronal membranes (Fig. (2)). We observe only a gentle gradual

drop in wSbc
of the spinal ganglion and the neuroblastoma cells

during the resting state, as charges fixed on Sbc decrease (more

negative values). However, our model shows that decreasing the

density of charges fixed onto proteins of the cytoplasm (increasing

jrfcj and rfc=rfg) results in a substantial decay of wSbc
, in both cells

(Fig. (3)).

Nonetheless, variations of intracellular charges fixed on the

membrane and on the cytoplasmic proteins have no effect on the

potential on Sgb (Figs. (2) and (3)). This is related to the fact that

the membrane plays a role in electrically isolating the intracellular

and extracellular regions, due to the absence of charges within the

lipidic bilayer (see Eq. (54)).

The results we obtained for the spinal ganglion neurons and the

neuroblastoma cells are generally similar to those obtained for the

squid axon membrane in [4]. These authors showed that a

decrease of QSbc
provokes a gentle decrease of wSbc

of the squid
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axon membrane. This behavior was also observed in our

simulations for the membranes of spinal ganglion neurons and

neuroblastoma cells. Nevertheless, their results indicate that a

decrease of QSbc
causes a sensitive increase of wSgb

during the AP

state and a small decrease of wSgb
during the resting state, whereas

our results show a constant wSgb
value for ganglion and

neuroblastoma cells. The insensitivity of wSgb
to variations of

QSbc
which we have found seems more reasonable, given the above

mentioned isolating effect of the lipidic bilayer.

Cortez and collaborators [4] have shown that a decrease of rfc

(in the same range of rfc=rfg which we studied) causes practically

no change in the surface potentials. A possible reason for this may

be that the rfg value for the squid axon is approximately zero, so

that the values of rfc, in the domain of their graphs, are very close

to zero. In contrast, our simulations indicate that a decrease of rfc

provokes an expressive fall of wSbc
. In our case, rfg (and rfc) values

for ganglion neurons and neuroblastoma cells are much more

negative than those observed for squid axons and, therefore, a

decrease of rfc has a high influence on wSbc
.

An interesting result of our calculations is that, in the spinal

ganglion neuron, the electric potential across the glycocalyx

decreases, and this does not occur in the neuroblastoma cell. This

reveals an important discrepancy of the electric fields in the

glycocalyx of both types of cells (Figs. (4) and (5)), and may explain

the difference between their electrophoretic behavior, which was

observed in experiments [9,16]. As expected, the electric potential

presents a linear behavior within the bilayer of the membrane

during the resting and AP states, due to the absence of electric

charges in this region.

The strong negative electric potential on Sbc is a characteristic

of the potential profile in the resting state, and this probably occurs

for all types of neuronal cells (Fig. (4)). The steep increase of the

potential from Sbc towards the bulk cytoplasmic region is regulated

Figure 2. Sensitivity of the membrane surface potentials to inner surface charge density. Electric potential on the surfaces of regions of
the membranes of the spinal ganglion neuron (|) and the neuroblastoma cell (�), as a function of the ratio QSbc

=QSeg
, as QSeg

is kept constant. In the
resting state (A), wSbc

~{190:97 mV, for the ganglion neuron and wSbc
~{198:97 mV, for the neuroblastoma, when QSbc

=QSeg
~1 (maximum values),

while wSbc
~{194:25 mV (ganglion) and wSbc

~{203:30 mV (neuroblastoma), for QSbc
=QSeg

~50 (minimum). In the AP state (B), wSbc
~39:99 mV, for

the ganglion neuron and wSbc
~29:99 mV, for the neuroblastoma, when QSbc

=QSeg
~1 (maximum), while wSbc

~39:97 mV (ganglion) and wSbc
~29:97

mV (neuroblastoma) for QSbc
=QSeg

~50 (minimum). In all simulations, for resting and AP states, wSgb
~{34:97 mV, for the ganglion, and

wSgb
~{25:17 mV, for the neuroblastoma. In both graphs, rfc~20rfg .

doi:10.1371/journal.pone.0096194.g002

Figure 3. Sensitivity of the membrane surface potentials to charge density in the cytoplasm. Electric potentials wSgb
and wSbc

as a function
of rfc=rfg , as rfg is kept constant, for the spinal ganglion neuron (|) and the neuroblastoma cell (�). In the resting state (A), wSbc

~{129:63 mV, for

the ganglion neuron and wSbc
~{130:36 mV, for the neuroblastoma, when QSbc

=QSeg
~1 (maximum values), while wSbc

~{213:74 mV (ganglion) and
wSbc

~{219:56 mV (neuroblastoma), for QSbc
=QSeg

~50 (minimum). In the AP state (B), wSbc
~82:26 mV, for the ganglion neuron and wSbc

~66:57 mV,
for the neuroblastoma, when QSbc

=QSeg
~1 (maximum), while wSbc

~42:13 mV (ganglion) and wSbc
~31:28 mV (neuroblastoma) for QSbc

=QSeg
~50

(minimum). In all simulations, for resting and AP states, wSgb
~{34:97 mV, for the ganglion, and wSgb

~{25:17 mV, for the neuroblastoma. In both

graphs, QSbc
~30QSeg

.
doi:10.1371/journal.pone.0096194.g003

Modeling the Electric Potential across Membranes

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e96194



by the negative charges spatially distributed in the cytoplasm.

Even though the net value of charges of proteins is predominantly

negative in the cytoplasm, our simulations indicate that the

contribution of these charges to the intracellular potential profile is

much smaller than the effect of charges fixed on Sbc. This is shown

by the curvature of the potential in the cytoplasmic region.

The neuroblastoma cells, like all cancerous cells, multiply

quickly. Alterations of the dynamics of cellular multiplication

mediate changes in the synthesis, structure and degradation of the

membrane components [11], which result in deformations on the

structure and composition of the surfaces of membranes [23].

These deformations provoke changes in the composition of electric

charges on the membrane. Our results indicate that the alteration

of these charges and of those within the cells may influence the

behavior of the potential on the inner surface of the neuroblastoma

cells.

Experimental observations have suggested that the resting state

and the generation of action potentials in human neuroblastoma

cells depend on the degree of the morphological differentiation of

the cell. Some of these cells are relatively non-excitable [24,25].

Kuramoto et al. [26] stimulated the growth of SK-N-SH human

neuroblastoma cells under standard culture conditions. These

cancerous cells remained morphologically undifferentiated, par-

tially responded to injections of pulses of electric current, and

presented deficiency of the depolarizing component of the

mechanism that generates the action potential. We included these

findings in our simulations, and Fig. (5) is consistent with the fact

that the depolarization of the electric potential in the neuroblas-

toma, during generation of the action potential, is less intense than

in the healthy spinal ganglion neuron. The neuroblastoma should

thus generate a lower firing rate in response to its input excitation,

and this may affect the transmission of signals through networks of

these neurons and their functions of storage and communication of

information.

Mironov and Dolgaya [17] have suggested that the outer

electric charges for the neuroblastoma cells and erythrocytes are

similar, but the spinal ganglion neurons strongly differ from these

cells. Therefore, the molecular structure (and the resulting

constitution of charges) on the outer surface of the membrane of

the neuroblastoma cells would be similar to the erythrocytes, and

may be constituted by ^ 40% of peripheral proteins and ^ 60%

of gangliosides. Our results illustrate that the drop of the potential

across the glycocalyx for the neuroblastoma cell is much smaller

than for the spinal ganglion neuron, during both resting and AP

states. This corroborates previous studies which show a smaller

decay of the potential for the erythrocyte in the glycocalyx than for

the neuron [2,4,5]. The different behavior of the potential across

the glycocalyx, for the neuroblastoma and the spinal ganglion

neuron, should indicate important differences among these cells, of

the properties that enable the transmission of electric signals

through the membrane. This occurs due to the fact that different

molecular structures of these membranes interact differently with

(i) the outer electric field, which is responsible for the orientation of

the charged particles that are closer to the membrane, and (ii) the

potential on the outer surface of the membrane. The nature of

these interactions are crucial for many cell processes, such as the

beginning of the process of triggering of the action potential, which

depends on the opening of specific Naz channels.

Our results may also contribute to understanding the resistance

of the neuroblastoma to certain chemotherapeutic treatments

[27,28]. The smaller change of the potential, in response to

changes in properties of cellular cultures (pH values, for instance)

and to the amount of fixed charges present in the membrane due

to alterations in its composition and structure, may be an electric

property responsible for the low pharmacological response.

Author Contributions

Conceived and designed the experiments: TMP RSW CMC. Performed

the experiments: TMP. Analyzed the data: TMP RSW CMC. Contributed

reagents/materials/analysis tools: TMP RSW CMC. Wrote the paper:

TMP RSW CMC.

Figure 4. Electric potential across the membranes of spinal
ganglion neurons and neuroblastoma cells, during resting
state. Solutions of Eq. (52) with boundary wSeg

, and Eq. (45) with
boundary wz? = wR result respectively in wSgb

~{34:97 mV and

wSbc
~{192:22 mV, for the spinal ganglion neuron (solid), and for the

neuroblastoma cell (dashed) in wSgb
~{25:17 mV and wSbc

~{200:66 mV.

For all simulations, QSbc
~30QSeg

and rfc~20rfg .

doi:10.1371/journal.pone.0096194.g004

Figure 5. Electric potential across the membranes of spinal
ganglion neurons and neuroblastoma cells, during AP state.
Solutions of Eq. (52) with boundary wSeg

, and Eq. (45) with boundary
wz? = wA result respectively in wSgb

~{34:97 mV and wSbc
~39:99 mV,

for the spinal ganglion neuron (solid), and for the neuroblastoma cell
(dashed) in wSgb

~{25:17 mV and wSbc
~29:99 mV. For all simulations,

QSbc
~30QSeg

and rfc~20rfg .

doi:10.1371/journal.pone.0096194.g005
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