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Coupling gene expression dynamics to cell size
dynamics and cell cycle events: Exact and approximate
solutions of the extended telegraph model

Chen Jia1 and Ramon Grima2,3,*
SUMMARY

The standard model describing the fluctuations of mRNA numbers in single cells
is the telegraph model which includes synthesis and degradation of mRNA, and
switching of the gene between active and inactive states. While commonly
used, this model does not describe how fluctuations are influenced by the cell cy-
cle phase, cellular growth and division, and other crucial aspects of cellular
biology. Here, we derive the analytical time-dependent solution of an extended
telegraph model that explicitly considers the doubling of gene copy numbers
upon DNA replication, dependence of the mRNA synthesis rate on cellular vol-
ume, gene dosage compensation, partitioning of molecules during cell division,
cell-cycle duration variability, and cell-size control strategies. Based on the
time-dependent solution, we obtain the analytical distributions of transcript
numbers for lineage and population measurements in steady-state growth and
also find a linear relation between the Fano factor of mRNA fluctuations and
cell volume fluctuations. We show that generally the lineage and population dis-
tributions in steady-state growth cannot be accurately approximated by the
steady-state solution of extrinsic noise models, i.e. a telegraph model with pa-
rameters drawn fromprobability distributions. This is because themRNA lifetime
is often not small enough compared to the cell cycle duration to erase the
memory of division and replication. Accurate approximations are possible
when this memory is weak, e.g. for genes with bursty expression and for which
there is sufficient gene dosage compensation when replication occurs.
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INTRODUCTION

Experiments have revealed a large cell-to-cell variation in the number of mRNAmolecules in isogenic pop-

ulations.1–3 This can in part be explained by stochastic effects in gene expression due to the low copy

numbers of many components, including DNA and important regulatory molecules.4 Live-cell imaging

approaches allow a direct visualization of stochastic bursts of gene expression in living cells.5 However,

these experiments are challenging and hence more commonly one measures the mRNA expression per

cell from single-molecule fluorescence in situ hybridization5 or single-cell RNA-sequencing (scRNA-seq)

experiments.6

The experimental distributions of mRNA numbers are fitted to the predictions of mathematical models, by

which one can obtain estimates of the rates of several important transcriptional processes.7–10 The most

common model of this type is the so-called two-state or random telegraph model of gene expression.11,12

This is composed of four (effective) reactions

G/
s1

G�; G� /
s0

G; G� /
r
G� +M; M/

d
B; (Equation 1)

where the first two reactions describe the switching of the gene between an active stateG� and an inactive

state G, the third reaction describes transcription while the gene is in the active state, and the fourth reac-

tion describes the degradation of the mRNA M. The chemical master equation (CME) describing the tele-

graph model can be exactly solved in steady state, as well as in time.12–15 Extensions of this model to

include more than two gene states have also been considered.16–18
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Table 1. Exactly solvable gene expression models that explicitly describe cell birth, growth, and division

Gene replication

not considered

Gene replication

considered

Effective one-state models

volume-independent transcription Ref. 45 Refs. 46–48

volume-dependent transcription Ref. 49 Refs. 22,48

Two-state models

volume-independent transcription 3 3

volume-dependent transcription Ref. 49 3
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A substantial number of genes are inactive most of the time and in the brief time that they are active, a large

number of mRNAmolecules are transcribed but not degraded.19 This leads to bursty expression. The prob-

ability of r new mRNA molecules being transcribed before the gene switches off, i.e. a burst of size r, is

PðrÞ = prð1 � pÞ, where p = r=ðr +s0Þ is the probability that the gene synthesizes an mRNA molecule,

conditional on it being in the active state.20 This distribution is geometric with mean r=s0. The average

time between two consecutive bursts is 1=s0 + 1=s1z1=s1 since the gene spends most of its time off

ðs0 [s1Þ; in other words, the rate of burst production is approximately s1. It follows that the reaction

scheme given in Equation 1 can be reduced to an effective one-state model composed of only two

reactions

G/
s1

G+ kM; M/
d
B; (Equation 2)

where k is the transcriptional burst size which is geometrically distributed with mean r=s0. The geometric

burst size distribution has been validated experimentally.1 The CME for this model can be solved exactly in

steady state leading to the well-known negative binomial distribution of mRNA numbers,21,22 which is also

widely used in scRNA-seq analysis.23 Because of the unimodality of this distribution, this simplified model

cannot explain bimodality in gene expression,24,25 a feature that can be explained by the two-state model.

However, the conventional one-state and two-state models are very limited in their predictive power

because they lack a description of many cellular processes that are known to have a profound impact on

the distribution of mRNA numbers in single cells, e.g. the doubling of gene copy numbers upon DNA repli-

cation,26 partitioning of molecules during cell division,27 scaling of the mRNA synthesis rate with cell vol-

ume,28–32 and stochasticity in the cell cycle duration and growth rate that is related to cell-size control

strategies.33–39 Recently, numerous efforts have been made to extend the conventional one-state and

two-state models to include some description of these processes and yet retain analytical tractability.

Some studies focused on the moment statistics (mean and variance) of mRNA and protein numbers,40–44

while other studies additionally obtain the analytical distributions of molecule numbers.22,45–49 Please refer

to Table 1 for a summary of exactly solvable extensions of the one-state and two-statemodels that explicitly

capture cell birth, growth, and division.

Due to mathematical complexity, most previous work is limited to the effective one-state model with the

gene product (mRNA or protein) produced in a constitutive or bursty manner.22,45–48 Some of thesemodels

incorporate the scaling of transcription activity with cell volume,22,48 while the rest do not. We note that the

latter case is not to be seen as unphysical since while the scaling of transcription with volume is commonly

observed, it is by no means a universal phenomenon (in both prokaryotic50,51 and eukaryotic cells,52–55

there are examples where there is no such scaling). As for the conventional one-state model shown in Equa-

tion 2, the main limitation is the assumption of instantaneous bursts, while in reality there is a finite time for

the bursts to occur. A distinct advantage of the extended one-state models over the conventional one is

that those which describe gene replication47 are able to produce bimodal distributions.

The exact solution of extended two-state models that incorporate cell birth, growth, and division has not

received much attention. A recent study49 made progress in this direction. In particular, the two-state tele-

graph model in growing and dividing cells was shown to be exactly solvable when (i) the mRNA synthesis

rate scales linearly with cell volume and (ii) there is no variation of gene copy numbers across the cell cycle,

i.e. gene replication is not taken into account. As previously mentioned, while (i) is common, it is not uni-

versal. The assumption behind (ii) is of course a means to simplify themodel but clearly unrealistic. Relaxing
2 iScience 26, 105746, January 20, 2023
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any one of these two properties means that within the theoretical framework presented in Ref. 49, it is not

possible to obtain an exact solution for the distribution of mRNA numbers.

While the aforementioned literature summarized in Table 1 has sought to fix the biological limitations of

the conventional one-state and two-state models by directly introducing more processes and solving

the master equation of the resulting complex models, a different indirect approach has also been pro-

posed. This approach takes the point of view that biological processes not explicitly modeled by the con-

ventional models can be incorporated by considering the model parameters themselves to vary between

cells, and therefore to be drawn from probability distributions;4,56–58 we call this an extrinsic noise model

(ENM). This model can be solved exactly in steady state for various distributions of parameter values (see

Table I of Ref. 58). It is expected that such an approach produces meaningful results provided the param-

eters controlling cell-to-cell variability change very slowly. Under certain conditions, the solution of the

ENM might even exactly match that of complex models of stochastic gene expression. For example, it

has recently been shown that the exact solution of the two-state telegraph model in growing and dividing

cells where gene replication is ignored and where the mRNA synthesis rate scales with cell volume is pre-

cisely the same as that of the ENM with the mRNA synthesis rate sampled from the distribution of cellular

volume and with the mRNA degradation rate being replaced by an effective rate that also incorporates the

dilution of molecules at cell division.49 A natural question is, if in a two-state telegraph model we introduce

gene replication and allow the mRNA synthesis rate potentially to be volume dependent, then does the

ENM still provide an exact or at least an accurate approximation of this model?

In this paper, we first exactly solve an extension of the telegraph model that explicitly describes cell birth,

growth, division, replication, and an mRNA synthesis rate that can be either independent of cell volume or

else that linearly scales with it. Many of the known exact solutions of the one-state and two-state models to-

date can be shown to be special cases of the present theory. The analytical distribution of transcript

numbers is subsequently used to study the accuracy of the ENM. We show that the transcript number dis-

tribution in steady-state growth is generally not well approximated by the steady-state distribution of the

ENM. Conditions under which the ENM provides an accurate approximation are derived and verified using

simulations.
RESULTS

Model

We consider an extension of the telegraph model which takes into account cell growth, cell division, gene

replication, gene dosage compensation, and volume-dependent transcription (see Figure 1 for an illustra-

tion). The specific meaning of all model parameters can be found in Table 2. The model has the following

properties.

1) Let T denote the cell cycle duration and let VðtÞ denote the cell volume at time t. We assume that cell

volume grows exponentially within each cell cycle, i.e. VðtÞ = Vbe
gt for any 0% t%T , where Vb is the

cell volume at birth and g is the growth rate. The exponential growth of cell volume is commonly

observed for various types of cells.37,39,59,60 For simplicity, we assume that the doubling time T

and the growth rate g do not involve any stochasticity.22 Generalization of the model to stochastic

cell volume dynamics will be discussed at the end of the paper.

2) In each cell cycle, we use a two-state model to describe the gene expression dynamics. LetG andG�

denote the inactive and active states of the gene, respectively, and let M denote the corresponding

mRNA. Consider a gene expression model described by the effective reactions

G/
s1

G�; G� /
s0

G; G�/
rVðtÞb

G� +M; M/
d
B;

where s0 and s1 are the switching rates between the two gene states, and d is the mRNA degradation rate.

For many genes in fission yeast,28,29 mammalian cells,30,31 and plant cells,32 there is evidence that the

mRNA number scales linearly with cell volume in order to maintain approximately constant concentrations

(concentration homeostasis; for a recent review see61). This is due to a coordination of the mRNA synthesis

rate with cell volume—we shall refer to this mechanism as balancedmRNA synthesis. However, in both pro-

karyotic50,51 and eukaryotic cells,52–55 there are examples where there is no such scaling. Since each cell has
iScience 26, 105746, January 20, 2023 3
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Figure 1. Model

Schematic of an extension of the telegraph model of gene expression in growing and dividing cells. The volume VðtÞ of a
cell grows exponentially with constant growth rate g and doubling time T . The gene expression dynamics is characterized

by a two-state model with volume-dependent transcription and volume-independent degradation. Specifically, the gene

can switch between an active stateG� and an inactive stateG. Transcription occurs when the gene is active. The synthesis

rate of mRNA depends on cell volume VðtÞ via a power law form with power b˛ ½0; 1�, and the degradation rate of mRNA is

a constant. Gene replication occurs at a time T0 where w = T0=T ˛ ð0; 1Þ is some fixed proportion of the cell cycle. Upon

replication, the activation rate for each gene copy decreases from s1 to s01 due to gene dosage compensation.
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a different volume, the mechanism of volume-dependent transcription is a source of extrinsic noise,57

potentially accounting for a significant amount of the observed cell-to-cell variation in mRNA numbers.

To unify non-balanced and balanced mRNA synthesis, we assume that the mRNA synthesis rate depends

on cell volume VðtÞ via a power law form with proportionality constant r and power b˛ ½0; 1�. Then b = 1

ðb = 0Þ corresponds to the situation where the mRNA synthesis rate scales linearly with cell volume

(does not depend on cell volume). It has recently been postulated that the nonlinear scaling between

gene expression levels and cellular volume is due to the heterogeneous recruitment abilities of promoters

to RNA polymerases.62

3) The replication of the gene of interest occurs at a fixed proportion w ˛ ð0; 1Þ of the cell cycle. This is

known as a stretched cell cycle model, which is supported by experiments.63 Under this assumption,

the time before replication within a cell cycle is wT and the time after replication is ð1 � wÞT . We shall

refer to the gene copy that is replicated as the mother copy and to the duplicated gene copies as the

daughter copies. For haploid cells, there is only one mother copy before replication and two daughter

copies after replication; for diploid cells, the number of gene copies varies from two to four upon repli-

cation. For diploid cells, we assume that the two alleles act independently of each other.64,65

4) At replication, the daughter copies inherit the gene state from the mother copy.22,66 The presence of

specific histone marks dictate transcription permissiveness67 and the landscape of histone modifica-

tions is copied during DNA replication.68 An alternative case is the one where all daughter copies are

reset to the inactive state upon replication—potentially a mechanism to avoid the risk of conflict be-

tween replication and transcription (and the resulting DNA damage).22 Here, we only consider the

former perfect state copying mechanism.
4 iScience 26, 105746, January 20, 2023



Table 2. Model parameters and their meaning

Parameters Meaning

Vb cell volume at birth

g growth rate of cell volume

T = logð2Þ=g cell cycle duration

b strength of balanced mRNA synthesis

w proportion of cell cycle before replication

s1 switching rate of the gene from OFF to ON

before replication

s01 switching rate of the gene from OFF to ON

after replication

s0 switching rate of the gene from ON to OFF

r proportionality constant of themRNA synthesis

rate

d mRNA degradation rate

deff = d +g effective mRNA decay rate

h = d=g ratio of the degradation rate to the growth rate
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5) A doubling of gene copy numbers upon replication would be expected to also double the amount of

mRNA molecules. However, experiments show that this is not always the case26,30,69 principally due

to a decrease of the gene activation rate upon replication, a phenomenon known as gene dosage

compensation. We model this by choosing the gene activation rate before replication s1 to be

potentially different than that after replication s01. In the absence of dosage compensation,

we have s01 = s1. Perfect dosage compensation occurs when s01 = s1=2; in this case, the total

burst frequency for all gene copies is unaffected by replication (since the gene copy number doubles

upon replication, the burst frequency for each gene copy halves when dosage compensation is

perfect).

6) At division, the mother cell is divided into two daughter cells. The volumes of the two daughter cells

are assumed to be the same and exactly one half of the volume of the mother cell before division (of

course there is some stochasticity in the partitioning of cell size70,71 which we are here ignoring).

Moreover, we assume that each mRNA molecule has probability 1=2 of being allocated to

each daughter cell. With this assumption, the number of transcripts that are allocated to each

daughter cell has a binomial distribution. We also assume that gene state is not changed upon

cell division.
Time-dependent mRNA distribution within a cell cycle

Here, we compute the time-dependent distribution of the mRNA number within a cell cycle under arbitrary

initial conditions. We first consider the dynamics before replication for haploid cells. The microstate of

the gene of interest can be described by an ordered pair ði; nÞ, where i denotes the state of the gene

with i = 0; 1 corresponding to the inactive and active states, respectively, and n denotes the number of

mRNA molecules. Let pi;nðtÞ denote the probability of having n transcripts at time t˛ ½0;wT � when the

gene is in state i. Note that t = 0 corresponds to cell birth. Then, the stochastic gene expression dynamics

before replication is governed by the coupled set of CMEs

_p0;n = d
h
ðn+ 1Þp0;n+ 1 � np0;n

i
+
h
s0p1;n � s1p0;n

i
;

_p1;n = rVðtÞb
h
p1;n�1 � p1;n

i
+d
h
ðn+ 1Þp1;n+ 1 � np1;n

i
+
h
s1p0;n � s0p1;n

i
;

(Equation 3)

where p1;� 1 = 0 by default, the term involving r represents mRNA synthesis, the terms involving d repre-

sent mRNA degradation, and the terms involving s0 and s1 represent gene state switching, which will be

referred to simply as gene switching in what follows. To solve them, we define a pair of generating functions

Fiðt; zÞ =
PN

n = 0pi;nðtÞðz + 1Þn for i = 0; 1. Note that here we use ðz + 1Þn rather than the conventional zn in

the definition of the generating function—with this choice, the formulas given below are much more

concise. In addition, let pnðtÞ = p0;nðtÞ+p1;nðtÞ denote the probability of having n transcripts at time t
iScience 26, 105746, January 20, 2023 5
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and let Fðt; zÞ = F0ðt; zÞ+ F1ðt; zÞbe the corresponding generating function. In terms of the generating func-

tions, Equation 3 can be converted into the first-order linear partial differential equations (PDEs)

vtF0 = � dzvzF0 + s0F1 � s1F0;
vtF1 = rVðtÞbzF1 � dzvzF1 + s1F0 � s0F1:

(Equation 4)

To solve them, we first convert them into a second-order parabolic PDE and then transform the second-or-

der PDE into a hypergeometric differential equation through a change of variables. Complicated compu-

tations show that for each t˛ ½0;wT �, the generating functions Fi , i = 0; 1 can be computed in closed form as

(see STAR Methods for the proof)

F0ðt; zÞ = K00ðt; zÞF0

�
0; e�dtz

�
+K01ðt; zÞF1

�
0;e�dtz

�
;

F1ðt; zÞ = K10ðt; zÞF0

�
0;e�dtz

�
+K11ðt; zÞF1

�
0;e�dtz

�
:

(Equation 5)

Here Fið0; zÞ and i = 0; 1 are the generating functions at t = 0 which can be determined by the initial con-

ditions, and the functions Kij , i; j = 0; 1 are given by

K00ðt; zÞ = b � a

b

h
M
�
1+ a � b; 1 � b; ue�dtz

�
M
�
a; 1+b;uebgtz

�
+

a

b � a
e�ðr + bgÞt

3M
�
1+ a; 1+b; ue�dtz

�
M
�
a � b; 1 � b; uebgtz

��
e� ue�dt z ;

K01ðt; zÞ = b � a

b

�
M
�
a � b;1 � b;ue�dtz

�
M
�
a;1+b;uebgtz

� � e�ðr + bgÞt

3M
�
a;1+b; ue�dtz

�
M
�
a � b;1 � b;uebgtz

��
e� ue�dt z ;

K10ðt; zÞ = a

b

�
M
�
1+ a � b; 1 � b; ue�dtz

�
M
�
1+ a;1+b;uebgtz

� � e�ðr + bgÞt

3M
�
1+ a;1+b; ue�dtz

�
M
�
1+ a � b; 1 � b; uebgtz

��
e� ue�dt z ;

K11ðt; zÞ = a

b

�
M
�
a � b;1 � b;ue�dtz

�
M
�
1+ a;1+b; uebgtz

�
+
b � a

a
e�ðr +bgÞt

3M
�
a; 1+b;ue�dtz

�
M
�
1+ a � b;1 � b;uebgtz

��
e� ue�dt z ;

(Equation 6)

where the parameters r, a, b, and u are given by

r = s0 + s1 � bg; a =
s1

d + bg
; b =

s0 + s1

d + bg
; u =

rVb

b

d + bg
: (Equation 7)

Adding the two identities in Equation 5 gives the explicit expression of the generating function F before

replication, i.e.

F
�
t; z
�
= L0

�
t; z
�
F0

�
0; e�dtz

�
+ L1

�
t; z
�
F1

�
0;e�dtz

�
; t ˛

�
0;wT

�
; (Equation 8)

where the functions Li, i = 0; 1 are given by

L0ðt; zÞ =
�
M
�
1+ a � b;1 � b;ue�dtz

�
M
�
a;b; uebgtz

�
+

auz

bðb � 1Þe
� rt

3M
�
1+ a;1+b; ue�dtz

�
M
�
1+ a � b;2 � b; uebgtz

��
e� ue�dt z ;

L1ðt; zÞ =
�
M
�
a � b;1 � b;ue�dtz

�
M
�
a;b;uebgtz

� � ðb � aÞuz
bðb � 1Þ e

� rt

3M
�
a;1+b;ue�dtz

�
M
�
1+ a � b;2 � b;uebgtz

��
e� ue�dt z :

(Equation 9)

When b = 1, the term b � 1 appears in the dominator of these equations and the equalities should

be understood in the limiting sense. Note that when the mRNA synthesis rate is volume independent

ðb = 0Þ, the expression of F given in Equation 8 coincides with the time-dependent solution of the stan-

dard telegraph model.14

We next focus on the dynamics after replication for haploid cells. Since there are two daughter gene copies

after replication, to distinguish them, we call them daughter copy A and daughter copy B. The dynamics of

each gene copy is governed by the CMEs given in Equation 3 with s1 being replaced by s01. Let pnðtÞ denote
the probability of having n transcripts at time t˛ ½wT ;T � and let Fðt; zÞ = PN

n = 0pnðtÞðz + 1Þn be the
6 iScience 26, 105746, January 20, 2023
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corresponding generating function. In STAR Methods, we prove that the generating function F after repli-

cation can be computed in closed form as

F
�
t; z
�
= L

0
0ðt � wT ; zÞ2F0

�
wT ; e�dðt�wTÞz

�
+ L

0
1ðt � wT ; zÞ2F1

�
wT ;e�dðt�wTÞz

�
; t ˛

h
wT ;T

i
;

where L00 and L01 are functions obtained from L0 and L1 by replacing the parameters r, a, b, and u with

r 0 = s0 + s1
0 � bg; a0 =

s1
0

d + bg
; b0 =

s0 + s1
0

d + bg
; u0 = 2bwu:

In summary, we have derived the analytical expression of the generating function F at any time t˛ ½0;T �
within a cell cycle, which is given by

Fðt; zÞ =

8>>>><
>>>>:

X1
i = 0

Liðt; zÞFi

�
0;e�dtz

�
; t ˛ ½0;wT �;

X1
i = 0

L
0
iðt � wT ; zÞ2Fi

�
wT ;e�dðt�wTÞz

�
; t ˛ ½wT ;T �;

(Equation 10)

where FiðwT ; zÞ and i = 0; 1 are determined by Equation 5. The time-dependent distribution of the mRNA

number can be recovered by taking the derivatives of the generating function F at z = � 1, i.e.

pnðtÞ = 1

n!

vn

vzn
Fðt; zÞjz = �1: (Equation 11)

Our analytical expression of the transient mRNA distribution is rather complicated. However, it can be

greatly simplified in some special cases. In STAR Methods, we show how the analytical solution can be

simplified for two non-trivial special cases: (i) the gene switches rapidly between the active and inactive

states ðs0;s1 [gÞ; (ii) the mRNA is produced in a bursty manner ðs0 [ s1Þ, i.e. the gene is mostly inactive

but transcribes a large number of mRNAwhen it becomes active.72–75 In the latter case, the burst frequency

is s1 before replication and the total burst frequency for the two gene copies is 2s01 after replication.

Thus far, we have obtained the transient mRNA distribution for haploid cells. For diploid cells, since the two

alleles act independently and since each allele has the mRNA distribution given in Equation 11, the gener-

ating function for the total number of transcripts at any time t˛ ½0;T � is given by Fdiploidðt; zÞ = Fðt; zÞ2,
where Fðt; zÞ is given by Equation 10. Here, we have used the fact that the generating function of two in-

dependent random variables is the product of their respective generating functions. Due to independence

of the two alleles, when the rate parameters for each allele are fixed, the gene expression noise (measured

by the coefficient of variation squared of mRNA numbers) in diploid cells is one half that in haploid cells.

Without loss of generality, we always focus on haploid cells in what follows.
Time-dependent mRNA distribution across cell cycles

Thus far, we have derived the exact mRNA distribution at any time within a cell cycle. Here, we focus on the

full time-dependence of the mRNA distribution across cell cycles under arbitrary initial conditions. To this

end, we not only need the expression of F at any time t˛ ½0;T � but also need the expressions of Fi, i = 0; 1.

Recall that Equation 5 gives the analytical expressions of the generating functions Fi , i = 0; 1 before repli-

cation under any initial conditions. In particular, at replication, we have

FiðwT ; zÞ = Ki0ðwT ; zÞF0

�
0;e�dwTz

�
+Ki1ðwT ; zÞF1

�
0;e�dwTz

�
: (Equation 12)

Now, we focus on the dynamics of daughter copy A after replication. Let pi;nðtÞ denote the probability

of having n transcripts at time t˛ ½wT ;T � when the daughter copy A is in state i and let

Fiðt; zÞ =
PN

n = 0pi;nðtÞðz + 1Þn be the corresponding generating function. In STAR Methods, we prove that

the generating functions Fi, i = 0; 1 after replication can be computed exactly as

Fiðt; zÞ = K
0
i0ðt � wT ; zÞL0

0ðt � wT ; zÞF0

�
wT ;e�dðt�wTÞz

�
+K

0
i1ðt � wT ; zÞL0

1ðt � wT ; zÞF1

�
wT ;e�dðt�wTÞz

�
; t ˛ ½wT ; T �; (Equation 13)

where K 0
ij and i; j = 0; 1 are functions obtained from Kij by replacing the parameters r, a, b, and u with the

parameters r 0, a0, b0, and u0, respectively. Inserting Equation 12 into Equation 13 and taking t = T , we

obtain
iScience 26, 105746, January 20, 2023 7
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FiðT ; zÞ = ~Ki0ðzÞF0

�
0; e�dTz

�
+ ~Ki1ðzÞF1

�
0;e�dT z

�
; (Equation 14)

where

K
�
ijðzÞ = K

0
i0ðð1� wÞT ; z ÞL0

0ðð1� wÞT ; z ÞK0j

�
wT ; e�dð1�wÞTz

�
+K

0
i1ðð1� wÞT ; z ÞL0

1ðð1� wÞT ; z ÞK1j

�
wT ; e�dð1�wÞTz

�
; i; j = 0;1:

(Equation 15)

Suppose that the daughter cell with daughter copy A is tracked after division. Since we have assumed bino-

mial partitioning of molecules at division, the probability pnext
i;n ð0Þ at birth in the next generation is given by

pnext
i;n ð0Þ =

XN
m = n

pi;mðTÞ
	
m
n


	
1

2


m

: (Equation 16)

In terms of the generating function, the above relation can be written as

Fnext
i ð0; zÞ = FiðT ; z = 2Þ: (Equation 17)

This gives the initial conditions for the next generation and the time-dependent mRNA distribution within

the next cell cycle can be computed via Equation 10. Applying Equations 14 and 17 repeatedly, we are able

to compute the full time-dependence of the Fi functions across cell cycles; substituting these in Equation 10

gives the full time-dependence of the mRNA distribution across cell cycles.

As a check of our analytical solutions, we compare the exact distributions of the mRNA number with the

numerical ones obtained from a modified version of the finite-state projection (FSP) algorithm76 at three

different time points (birth, replication, and division) across four cell cycles (Figure 2). In this algorithm,

we couple the standard FSP with cell cycle events; for details see STAR Methods. Here, we assume that

initially there are no mRNA molecules in the cell and the gene is off. This mimics the situation where the

gene has been silenced by some repressor over a period of time such that all transcripts have been

removed via degradation (while after silencing there may be some background level of mRNA, for

simplicity we assume that all transcripts have been degraded). At time t = 0, the repressor is removed

and we study how gene expression recovers. When using FSP, we truncate the state space (to exclude

states that are visited very rarely) and solve the associated truncated master equation numerically using

the MATLAB function ODE45 with the dynamics before and after replication solved separately. Note

that while the FSP and the stochastic simulation algorithm (SSA) yield comparable distributions of molecule

numbers, the computational time of the former is much less than of the latter, provided the biochemical

reaction networks are small enough—hence here we used the FSP. As expected, the analytical and simu-

lated solutions coincide with each other completely at all times, and the mRNA distributions at birth, repli-

cation, and division reach a steady state within a few cell cycles. This can be also seen from Figure S1, where

we illustrate the time-dependent mean and Fano factor of the mRNA number across four cell cycles.

Another interesting observation is that the time-dependent mRNA distributions for our detailed telegraph

model may exhibit three modes (Figure 2)—this is the combined effect of gene replication and slow switch-

ing between gene states. The zero mode is since there is no transcription when the gene is off while the two

non-zero modes are due to transcription when the gene is turned on during the pre-replication and post-

replication phases of the cell cycle. According to simulations, distributions with more than three modes are

not observed in our model. This is different from the prediction of the conventional telegraph model12

whose distribution has at most two modes.
Time-dependent mRNA distribution under cyclo-stationary conditions

Thus far, we have obtained the full time-dependence of the mRNA distribution across cell cycles

under arbitrary initial conditions. After several generations, the distribution at any fixed time within a

cell cycle (such as the distributions at birth, replication, and division) becomes independent of the gener-

ation number. This is also called the cyclo-stationary condition in the literature46 or steady-state growth.20

Next, we compute the time-dependent mRNA distribution within a cell cycle under cyclo-stationary

conditions.

Before computing the mRNA distribution, we first derive the probabilities of the gene being in the active

and inactive states at any time within a cell cycle under cyclo-stationary conditions. Let ponðtÞ denote the

probability of each gene copy being in the active state at time t˛ ½0;T �. Before replication, the dynamics
8 iScience 26, 105746, January 20, 2023
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Figure 2. Time-dependent mRNA distributions at birth, replication, and division across four cell cycles

The blue curves show the analytical distributions computed by applying Equations 10, 14, and 17 repeatedly, and the red circles show the numerical ones

obtained from FSP. The model parameters are chosen as Vb = 1;g = 1;b = 1;w = 0:4;d = 5; r = 20 deff ; s0 = 1:5; s1 = 3; s01 = 2:4 .
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of the active probability satisfies the differential equation _pon = s1ð1 � ponÞ � s0pon. Solving this equa-

tion gives rise to

ponðtÞ =
a

b
+
h
ponð0Þ � a

b

i
e�ðr +bgÞt ; t ˛ ½0;wT �; (Equation 18)

where we have used the fact that a=b = s1=ðs0 +s1Þ and r +bg = s0 +s1 (see Equation 7). Recall that

the gene activation rate decreases from s1 to s01 upon replication. After replication, the dynamics of

the active probability satisfies the differential equation _pon = s01ð1 � ponÞ � s0pon. Solving this equation

yields

ponðtÞ = a0

b0 +
h
pon

�
wT
�
� a0

b0

i
e�ðr 0 + bgÞðt�wTÞ; t ˛

h
wT ;T

i
; (Equation 19)
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where ponðwTÞ is determined by Equation 18. Combining Equations 18 and 19, we obtain the active prob-

ability of the gene at division, i.e.

ponðTÞ =
a0

b0 +
ha
b
� a0

b0

i
e�ðr 0 + bgÞð1�wÞT +

h
ponð0Þ � a

b

i
e�ðr + bgÞwT �ðr 0 + bgÞð1�wÞT :

Under cyclo-stationary conditions, the active probabilities at cell birth in two successive generations

must be the same, i.e. pss
onð0Þ = pss

onðTÞ. Then, the steady-state active probability of the gene at birth is

given by

pb
on = pss

onð0Þ =
a0
b0
�
1 � e�ðr 0 + bgÞð1�wÞT �+ a

be
�ðr 0 + bgÞð1�wÞT �1 � e�ðr + bgÞwT�

1 � e�ðr + bgÞwT �ðr 0 + bgÞð1�wÞT ; (Equation 20)

and thus the steady-state inactive probability at birth is given by pb
off = 1 � pb

on. It then follows from Equa-

tion 18 that the steady-state active probability of the gene at replication is given by

pr
on = pss

onðwTÞ =
a
b

�
1 � e� ðr +bgÞwT�+ a0

b0e�ðr + bgÞwT�1 � e�ðr 0 + bgÞð1�wÞT �
1 � e�ðr + bgÞwT �ðr 0 + bgÞð1�wÞT ; (Equation 21)

and thus the steady-state inactive probability at replication is given by pr
off = 1 � pr

on.

Next, we focus on the time-dependent mRNA distributions under cyclo-stationary conditions. Recall that

we have obtained the time-dependent mRNA distributions within a cell cycle, whose generating function

Fðt; zÞ is given by Equation 10, provided that the initial conditions Fið0;zÞ, i = 0; 1 are known. Under cyclo-

stationary conditions, the values of Fið0; zÞ in two successive generations must be the same, i.e. Fið0;zÞ =

Fnext
i ð0;zÞ, where Fnext

i ð0; zÞ has been derived in Equations 14 and 17. It then follows that the steady-state

values of Fið0; zÞ should satisfy  
Fss
0 ð0; zÞ

Fss
1 ð0; zÞ

!
= RðzÞ

 
Fss
0

�
0;e�dTz

�
2
�

Fss
1

�
0;e�dTz

�
2
�
!
; (Equation 22)

where

RðzÞ =

	
~K00ðz=2Þ ~K01ðz=2Þ
~K10ðz=2Þ ~K11ðz=2Þ




is a matrix-valued function with ~Kij, i; j = 0; 1 being given in Equation 15. Applying Equation 22 repeatedly,

we obtain

 
Fss
0 ð0; zÞ

Fss
1 ð0; zÞ

!
=
Yn� 1

k = 0

R
��

e�dT
�
2
�k
z
� Fss

0

�
0;
�
e�dT

�
2
�n
z
�

Fss
1

�
0;
�
e�dT

�
2
�n
z
�
!
:

Taking n/N in the above equation yields 
Fss
0 ð0; zÞ

Fss
1 ð0; zÞ

!
=
YN
k = 0

R
��

e�dT
�
2
�k
z
� pb

off

pb
on

!
; (Equation 23)

where we have used the fact that

lim
n/N

Fss
0

�
0;
�
e�dT

�
2
�n
z
�

= Fss
0 ð0;0Þ = pb

off ;

lim
n/N

Fss
1

�
0;
�
e�dT

�
2
�n
z
�

= Fss
1 ð0;0Þ = pb

on:

Once we have derived the steady-state values of Fið0;zÞ, i = 0; 1, it immediately follows from Equation 10

that the time-dependent generating function F under cyclo-stationary conditions is given by

Fssðt; zÞ =

8>>>><
>>>>:

X1
i = 0

Liðt; zÞFss
i

�
0;e�dtz

�
; t ˛ ½0;wT �;

X1
i = 0

L0iðt � wT ; zÞ2Fss
i

�
wT ;e�dðt�wTÞz

�
; t ˛ ½wT ;T �:

(Equation 24)
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Comparison with the effective dilution model

Special case 1

Consider the case where gene replication is not taken into account ðw = 1Þ and when the mRNA synthesis

rate scales with cell volume ðb = 1Þ.49 In this case, the functions ~KijðzÞ given in Equation 15 reduce to
~KijðzÞ = KijðT ;zÞ, and it is not difficult to see that Equation 22 can be solved analytically as

Fss
0 ð0; zÞ =

b � a

b
Mða;b + 1; uzÞ;Fss

1 ð0; zÞ =
a

b
Mða + 1;b + 1; uzÞ:

Inserting these equations into Equation 24 yields

Fss
�
t; z
�
= L0

�
t; z
�
Fss
0

�
0;e�dtz

�
+ L1

�
t; z
�
Fss
1

�
0;e�dtz

�
= M

�
a;b; uegtz

�
; t ˛

�
0;T

�
For a given cell of volume V , its age is given by t = logðV =VbÞ=g. Substituting t = logðV =VbÞ=g in the above

equation shows that the steady-state generating function for a cell of constant volume V is given by

FV ðzÞ = Mða;b; ~uzÞ, where a = s1=ðd +gÞ, b = ðs0 +s1Þ=ðd +gÞ, and ~u = rV=ðd +gÞ. We make a crucial

observation that this is exactly the steady-state generating function of the mRNA distribution for the con-

ventional telegraph model.12

G/
s1

G�; G� /
s0

G; G�/
rV

G� +M; M/
d +g

B: (Equation 25)

This result has been found in Ref. 49, which states that when w = b = 1, the steady-state mRNA distribution

for a cell of constant volume V of the detailed telegraph model is the same as that of the conventional tele-

graph model with effective decay rate deff = d +g. Note that the two terms in this rate capture the

fact that transcripts are lost both by active degradation (with rate d) and by dilution at cell division (with

rate g)—hence a model of this type is known as an effective dilution model (EDM).77 Intuitively, the EDM con-

siders a population of cells with synchronized cell cycles so that at each time, all cells have the same volume.

Special case 2

Experiments have shown that in bacteria, most mRNAs have a half-life that is much shorter than the cell

cycle duration, i.e. d[g (see Table S1 for the typical values of d and g in various cell types), and thus

are very unstable. The value of h = d=g can be used to measure the stability of mRNA. For unstable mRNAs

ðh [ 1Þ, the terms e�dt and e�dðt�wTÞ in Equation 10 are very small and thus can be approximated by zero

(whenever t is not very close to 0 and wT ). In this case, the time-dependent generating function F under

cyclo-stationary conditions reduces to

Fssðt; zÞ =

(
pb
offL0ðt; zÞ+pb

onL1ðt; zÞ; t ˛ ð0;wT �;
pr
offL

0
0ðt � wT ; zÞ2 +pr

onL
0
1ðt � wT ; zÞ2; t ˛ ðwT ;T �;

(Equation 26)

where we have used the fact that Fið0; 0Þ =
PN

n = 0pi;nð0Þ and FiðwT ; 0Þ =
PN

n = 0pi;nðwTÞ are the probabilities
of the gene being in state i at birth and at replication, respectively. Imposing the term e�dt as zero in Equa-

tion 9 yields

L0ðt; zÞ = M
�
a;b; uebgtz

�
+

auz

bðb � 1Þe
� rtM

�
1+ a � b;2 � b;uebgtz

�
;

L1ðt; zÞ = M
�
a;b;uebgtz

� � ðb � aÞuz
bðb � 1Þ e

� rtM
�
1+ a � b;2 � b; uebgtz

�
:

(Equation 27)

When one of the gene switching rates s0 and s1 is very large, we have r = s0 +s1 � bg[g and thus the

second term on the right-hand side of Equation 27 can be neglected. This may occur when (i) the gene

switches rapidly between the two states ðs0;s1 [gÞ, or (ii) the mRNA is produced in a constitutive manner

ðs1 [s0;gÞ, or (iii) the mRNA is produced in a bursty manner ðs0 [s1;gÞ. In this case, the cyclo-stationary

generating function Fss can be simplified significantly as

Fssðt; zÞ =

(
M
�
a;b;uebgtz

�
; t ˛ ð0;wT �;

M
�
a0;b0;uebgtz

�2
; t ˛ ðwT ; T �: (Equation 28)

This contains much information. For a given cell of volume V < 2wVb, its age is given by t = logðV =VbÞ= g<

wT and hence there is only one gene copy in the cell. Substituting t = logðV =VbÞ=g in the above equation

shows that the steady-state generating function for a cell of constant volume V is given by FV ðzÞz
Mða;b; ~uzÞ, where
iScience 26, 105746, January 20, 2023 11
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a =
s1

d + bg
z

s1

deff
; b =

s0 + s1

d + bg
z
s0 + s1

deff
; u

�
=

rV b

d + bg
z
rVb

deff
:

Here, we have used the fact that deff=ðd +gÞz1 when mRNA is very unstable. Note that FV ðzÞ is exactly the
steady-state generating function of the mRNA distribution for the EDM

G/
s1

G�; G� /
s0

G; G�/
rVb

G� +M; M/
deff

B: (Equation 29)

On the other hand, for a given cell of volume V > 2wVb, its age is given by t = logðV =VbÞ=g>wT and hence

there are two gene copies in the cell. In this case, the EDM should be modified as

GA /
s1

0
G�

A; G�
A /
s0

GA; GB /
s1

0
G�

B; G�
B /
s0

GB;

G�
A/

rVb

G�
A +M; G�

B/
rVb

G�
B +M; M/

deff
B;

(Equation 30)

whereGA andGB denote the two daughter copies whose dynamics are both governed by the conventional

telegraph model. Substituting t = logðV =VbÞ=g in Equation 28 shows that the steady-state generating

function for a cell of constant volume V is given by FV ðzÞ = Mða;b; ~uzÞ2, where a0zs01=deff and b0z
ðs0 +s01Þ=deff . Note that FV ðzÞ is exactly the steady-state generating function of the mRNA distribution

for the EDM given in Equation 30 since the two gene copies are independent of each other.

In summary, our analysis shows that for mRNAs with short lifetimes, the EDMmakes a good approximation

when one of the gene switching rates s0 and s1 is large (here the cell age t cannot be very close to 0 andwT ,

i.e. newborn cells and cells that have just finished gene replication should be excluded). This can be under-

stood as follows. Previous studies78 have shown that the relaxation speed of the EDM to the steady state is

governed by both the mRNA degradation rate d and the total gene switching rate stot = s0 + s1. When d

and stot are both large, any memory at birth from the previous cycle (due to binomial partitioning of mol-

ecules at division and to the gene state prior to division) and any memory at replication (due to gene state

copying of the two daughter copies) will be rapidly erased. Each time that the volume changes, the mRNA

distribution instantaneously equilibrates and hence the EDMworks. Note that when the cell age t is close to

0 and wT , the memory at birth and at replication cannot be erased, which leads to the failure of the EDM.

Relatively slow mRNA degradation and relative slow gene switching will both result in a deviation of the

EDM from the full model.
Testing the accuracy of the EDM approximation

In Figure 3, we compare the exact mRNA distributions with the numerical ones obtained from FSP at three

different time points (birth, replication, and division) across the cell cycle under cyclo-stationary conditions.

The truncated master equations are solved across several (usually less than five) cell cycles until the Hellin-

ger distance betweenmRNA distributions at birth in two successive generations is less than 10� 4. This gua-

rantees that cyclo-stationary conditions are reached. When gene replication is not taken into account

ðw = 1Þ and when the mRNA synthesis rate scales with cell size ðb = 1Þ, the distributions of the full model

agree perfectly with those of the EDM given in Equation 25 (Figure 3A). This coincides with our theoretical

predictions. When gene replication is taken into account, the EDMs before and after replication are given

by Equations 29 and 30, respectively. In this case, the EDMmay deviate remarkably from the full model with

the deviation being much larger at early stages of the cell cycle (Figure 3B), especially when mRNA degra-

dation and gene switching are relatively slow. This can be understood as follows. According to the steady-

state properties of the conventional telegraph model, in the presence of gene replication, the mean and

the Fano factor of the mRNA number at birth for the EDM are given by

CnDEDMð0Þ = au

b
; FanoEDMð0Þ = 1+

ða+ 1Þu
b + 1

;

and the mean and the Fano factor of the mRNA number at division are given by

CnDEDMðTÞ = 2b+ 1a
0
u

b0 ; FanoEDMðTÞ = 1+
2bða0

+ 1Þu
b0 + 1

+
1

2
CnDEDMðTÞ:

Under cyclo-stationary conditions, it follows from Equation 16 that the mean mRNA numbers at birth

and at division for the full model should satisfy CnDðTÞ = 2CnDð0Þ and FanoðTÞ = 2Fanoð0Þ � 1. However,

these two restrictions in general do not hold for the EDM—the EDM satisfies these two restrictions

only when
12 iScience 26, 105746, January 20, 2023



A

B

pr
ob

ab
ilit

y
pr

ob
ab

ilit
y

rebmunANRmrebmunANRmrebmunANRm

birth divisionreplication

w
 = 1

w
 = 0.4

0

0.021

0.042

0.063

0 20 40 60
0

0.007

0.014

0.021

0 40 80 120

0

0.017

0.034

0.051

0 20 40 60
0

0.014

0.028

0.042

0 25 50 75
0

0.021

0.042

0.063

0 15 30 45

analytical solution
FSP
EDM approximation

0

0.018

0.036

0.054

0 20 40 60

0

0.019

0.038

0.057

0 20 40 60
0

0.015

0.03

0.045

0 25 50 75
0

0.01

0.02

0.03

0 40 80 120

C

pr
ob

ab
ilit

y w
 = 0.4

Figure 3. Comparison between the full model and the EDM

(A) Steady-state mRNA distributions at birth, replication, and division for the full model and the EDM when gene replication is not taken into account. The

blue curves show the analytical distributions given in Equations 23 and 24, the red circles show the numerical ones obtained from FSP, and the gray regions

show the distributions of the EDM.

(B) Same as (A) but when gene replication is taken into account. In (A) and (B), the model parameters are chosen as

Vb = 1;g = 1; b = 1;d = 4; r = 20 deff ; s0 = 1:5; s1 = 3;s01 = 2:4 . The parameter w is chosen as w = 1 in (A) and w = 0:4 in (B).

(C) Same as (B) but in the special case wheremRNA synthesis is balanced and bursty, and dosage compensation is perfect. Themodel parameters are chosen

as Vb = 1;g = 1;b = 1;w = 0:4;d = 4;r = 200 deff ;s0 = 300;s1 = 30;s01 = 15.
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2ba
0

b0 =
a

b
; 2b�1

�
a0 + 1

b0 + 1
+
a0

b0

�
=
a+ 1

b + 1
:

Note that when mRNA synthesis is balanced ðb = 1Þ and bursty ðs0 [s1Þ, the above restrictions are satisfied

when dosage compensation is perfect ðs01 = s1 =2Þ, i.e. when the total burst frequency does not change when

replication occurs. When these three conditions are satisfied, the EDM makes accurate predictions and the

mRNA number follows a negative binomial distribution (Figure 3C). The breakdown of the above restrictions

will give rise to thedeviation of theEDM from the full model, as observed in Figure 3B. Intuitively, this is because

themRNAdistribution at birth is affected by the fluctuations of the two gene copies at division and thus in gen-

eral it cannot be captured solely by an EDMwith only one gene copy. Note that special case 2 discussed above

may not satisfy the above moment equalities since in this special case, the EDM fails for newborn cells.
Distribution and moment analysis for lineage and population measurements

We next compute the steady-state distributions of transcript numbers measured over a cell lineage or from

a population snapshot . In lineage measurements, the mRNA number from an individual cell is tracked at
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any point in time, i.e. once the cell divides, only one of the two daughter cells is tracked. Clearly, the prob-

ability of observing a cell of age t˛ ½0;T � is 1=T for lineage measurements. As a result, the generating

function of the steady-state distribution along a cell lineage is given by

FlinðzÞ =
1

T

Z T

0

Fssðt; zÞdt: (Equation 31)

In contrast, in populationmeasurements, themRNA numbers in a population of isogenic cells are observed

at a particular time. Previous studies20 have shown that the probability of observing a cell of age t˛ ½0;T � is
2ð1� t=TÞðlog 2Þ=T = 2ge�gt for populationmeasurements. Thus, the generating function of the steady-state

distribution in a population of cells is given by

FpopðzÞ = 2g

Z T

0

Fssðt; zÞe�gtdt: (Equation 32)

Our analytical expression of the steady-state distribution is rather complicated since we have to integrate

the time-dependent distribution over time which involves complex confluent hypergeometric functions.

However, it can be simplified to a large extent in some special cases. In STAR Methods, we show how

the analytical solution can be simplified in two non-trivial special cases: (i) the mRNA is unstable and the

gene switches rapidly between the two states; (ii) the mRNA is unstable and the gene switches slowly be-

tween the two states. In particular, in the latter case, the steady-state distribution for lineagemeasurements

is given by

plin
n =

�
wpb

off + ð1 � wÞpr
off

�
d0ðnÞ

+
1

ðlog 2Þbn!
n
pb
on

�
Gðn;uÞ � G

�
n;2bwu

� �
+pr

on

h
Gðn; 2u0 Þ � G

�
n;2bð1�wÞ+ 1u

0
� io

;

(Equation 33)

and the steady-state distribution for population measurements is given by

ppop
n =

��
2 � 21�w

�
pb
off +

�
21�w � 1

�
pr
off

�
d0ðnÞ+ 2u1=bpb

on

bn!

�
G

	
n � 1

b
; u



� G

	
n � 1

b
;2bwu


�

+
21�wð2u0 Þ1=bpr

on

bn!

�
G

	
n � 1

b
;2u

0



� G

	
n � 1

b
; 2bð1�wÞ+ 1u

0

�

;

(Equation 34)

where Gðn; lÞ = RN
l

tn� 1e� tdt is the incomplete gamma function and d0ðnÞ is the Kronecker delta which

takes the value of 1 when n = 0 and takes the value of 0 otherwise. Interestingly, for the two types of mea-

surements, the mRNA distribution has a zero-inflated part (the first part). Indeed, numerous biostatistical

papers79–81 have used zero-inflatedmodels to characterize mRNA distributions in scRNA-seq data analysis.

For population data such as in scRNA-seq, our theory predicts that the probability of true zeros, i.e.

dropout events that are not due to purely technical reasons, is ppop
0 = ð2 � 21�wÞpb

off + ð21�w � 1Þpr
off .

This is important for interpreting scRNA-seq data and may be potentially useful for data imputation.

Figures 4A and 4B compare the population mRNA distribution given in Equation 34 and the numerical one

obtained from FSP. Clearly, the two distributions agree perfectly when the transcripts are highly unstable

and when the gene switching rates are very small. Particularly, we find that themRNAdistribution is capable

of exhibiting three modes, corresponding to the three terms in Equation 34 (left panel of Figure 4A). This

shows that a trimodal distributionmay occur in the special case of unstable mRNA and slow gene switching.

When the transcripts are relatively stable, trimodality becomes less apparent and Equation 34 fails to cap-

ture the real mRNA distribution, while it can still well capture the probability of zero observations (right

panel of Figure 4A).

We next analyze the moments of transcript numbers. Here, we consider the general case without

making any simplifying assumptions. The mean and the second factorial moment of the mRNA number

at any time t˛ ½0;T �within a cell cycle can be recovered by taking the derivatives of the generating function

F at z = 0, i.e.

CnDðtÞ = v

vz
Fðt; zÞjz = 0; Cn2DðtÞ � CnDðtÞ = v2

vz2
Fðt; zÞjz = 0:
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Figure 4. Distribution and moment analysis for population measurements

(A) Steady-state mRNA distribution in a cell population when gene switching is very slow. The blue curves show the

analytical distributions given in Equation 34 and the red circles show the numerical ones obtained from FSP. The model

parameters are chosen as Vb = 1;g = 1; b = 1;w = 0:3; r = 8 deff ;s0 = 2310� 4; s1 = 10� 3; s01 = 9310� 4 . The mRNA

degradation rate is chosen as d = 50 in the left panel and d = 10 in the right panel.

(B) Fano factor of the mRNA number versus the Fano factor of cell volume in a cell population. The blue line is computed

from the analytical expressions given in Equations 35 and 37 and the red circles are obtained from FSP. The model

parameters are chosen to be the same as in the left panel of (A).
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Straightforward computations show that

CnDðtÞ =


½CnDð0Þ � l � m�e�dt + lebgt +me� rt ; t ˛ ½0;wT �;
½CnDðwTÞ � 2l0 � 2m0�e�dðt�wTÞ + 2l0ebgðt�wTÞ + 2m0e� r 0 ðt�wTÞ; t ˛ ½wT ;T �; (Equation 35)

where CnDð0Þ is the mean of the initial mRNA number, l = au=b, l0 = a0u0=b0, and

m =
u
�
apb

off � ðb � aÞpb
on

�
bðb � 1Þ ; m

0
=
u

0�
a

0
pr
off � ðb0 � a

0 Þpr
on

�
b0 ðb0 � 1Þ :

Under cyclo-stationary conditions, the mean at division should be twice that at birth, i.e. CnDðTÞ = 2CnDð0Þ.
This shows that the steady-state mean at birth is given by

CnD
ssð0Þ = 1

2h+ 1 � 1

h
l
�
2ðh+ bÞw � 1

�
+m
�
2ðh� r=gÞw � 1

�
+ 2l

0
�
2h+ bð1�wÞ � 2hw

�
+ 2m

0
�
2h�ðr 0 =gÞð1�wÞ � 2hw

�i
;

(Equation 36)

where h = d=g. Inserting this equation into Equation 35 gives the steady-state mean at any time within a

cell cycle.

The explicit expression for the second moment is extremely complicated since we need to take

the second derivative of a complex generating function. However, when the mRNA is unstable, the

generating function has a relative simple expression (see Equation 26) and taking the second

derivative of this function yields the second factorial moment of the mRNA number at any time within a

cell cycle:

Cn2DðtÞ � CnDðtÞ =

8><
>:

luð1+ aÞ
1+b

e2bgt +
2muð1+ a � bÞ

2 � b
eðbg� rÞt ; t ˛ ð0;wT �;

A0e2bgðt�wTÞ +B0eðbg� r 0 Þðt�wTÞ +C0e� 2r 0 ðt�wTÞ; t ˛ ðwT ;T �;
(Equation 37)

where

A0 = 2l0u0
�
a0

b0 +
1+ a0

1+b0

�
; B0 = 4m0u0

�
a0

b0 +
1+ a0 � b0

2� b0

�
; C0 =

2u02
h
a02pr

off + ðb0 � a
0 Þ2pr

on

i
b02ðb0 � 1Þ2 :

The steady-state moments of the mRNA number for lineage and population measurements can then

be obtained by integrating Equations 35 and 37 over time. For example, the mean and second factorial

moment of the mRNA number for population measurements are given by

CnDpop = 2g

Z T

0

CnDðtÞe�gtdt; Cn2Dpop � CnDpop = 2g

Z T

0

�
Cn2DðtÞ � CnDðtÞ �e�gtdt:
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These explicit expressions can be obtained but are omitted here since they are too complicated. In STAR

Methods and Figure S2, we find that the lineage mean is always greater than the population mean, and the

difference between them is at most 10%.

A crucial observation made from the analytical results is that for both types of measurements, the Fano

factor of mRNA number fluctuations, FanomRNA, and the Fano factor of cell volume fluctuations,

Fanovolume, must satisfy the following relation when mRNA synthesis is balanced (see STAR Methods

for the proof):

FanomRNA = 1+C Fanovolume; (Equation 38)

where C is a constant independent of the birth volume Vb and the growth rate g. In Figure 4B, we validate

this relation using both the exact solution and FSP. Our result shows that the fluctuations in gene expres-

sion and cell volume, characterized by the Fano factors, are linearly correlated when the mRNA synthesis

rate scales with cell size. This may be potentially useful for checking whether mRNA synthesis is balanced in

living organisms.

In particular, when the mRNA is unstable and when gene expression is bursty, the Fano factor of mRNA

number fluctuations can be computed explicitly by integrating Equations 35 and 37 over time:

FanomRNA = 1+


að1+ aÞð2w � 1Þ+ 2a0ð1+ 2a0Þð2 � 2wÞ

ðlog 2Þ½aw + 2a0ð1 � wÞ� � 2ðlog 2Þ½aw + 2a0ð1 � wÞ�
�

rVb

s0
:

When dosage compensation is perfect, we have 2a0 = a and thus the above equation reduces to

FanomRNA = 1 +


1

log 2
+ a

�
1

log 2
� 2 ðlog 2Þ2

��
r

s0
z1+

rVb

ðlog 2Þs0
;

where we have used the fact that 2 ðlog 2Þ2z1. Note that when gene expression is bursty, the

mean burst size at time t is rVðtÞ=s0 and hence the mean burst size over the whole cell cycle is

given by B = ðrVbÞ=½ðlog 2Þs0�, which can be obtained by averaging rVðtÞ=s0 over time. In this case,

we have FanomRNAz1+B, which reduces to the well-known result for the conventional telegraph

model.72
Comparison with the extrinsic noise model

Our detailed telegraph model involves the coupling between gene expression dynamics, cell volume dy-

namics, and cell cycle events. In STAR Methods and Figure S3, we show that the steady-state distribution

of the detailed model cannot be captured by the steady-state solution of the conventional telegraph

model given in Equation 1 with volume-independent rates, even when gene replication is not taken

into account ðw = 1Þ. In previous studies, the lineage and population distributions for the detailed

model have often been approximated by the distributions for the ENM.49 In the ENM, the mRNA distri-

bution for a cell of constant volume V is exactly the one predicted by the EDM, and the fluctuations of

cell volume V are regarded as extrinsic noise.57,58 In other words, the mRNA distribution for the ENM is

given by

pENMðnÞ =

Z 2Vb

Vb

pEDMðnjVÞPðVÞdV ; (Equation 39)

where PðVÞ is the distribution of cell volume. We emphasize here that the EDM varies depending on the

number of gene copies and thus also depending on cell volume. For a cell of volume V < 2wVb, there is

only one gene copy and the EDM is given by Equation 29; for a cell of volume V R 2wVb, there are two

gene copies and the EDM is given by Equation 30. In addition, note that the distribution of cell volume

is different for lineage and population measurements. Since cell volume VðtÞ and cell age t are related

by VðtÞ = Vbe
gt , the cell volume distribution can be obtained from the cell age distribution which has

already been given above (see the paragraphs before Equations 31 and Equation 32). Specifically, the vol-

ume distribution for lineage measurements is given by70

PðVÞ = 1

ðlog 2ÞV ; Vb %V % 2Vb; (Equation 40)

and the volume distribution for population measurements is given by
16 iScience 26, 105746, January 20, 2023
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Figure 5. Comparison between the full model and the ENM

(A) Heat plot of the Hellinger distance D between lineage distributions for the full model and the ENM as s0=s1 and s01=s1 vary. The model parameters are

chosen as Vb = 1;g = 1; b = 1;w = 0:5;d = 5; s1 = 30 .

(B) Comparison between the lineage distributions for the full model and the ENM as s0=s1 and s01=s1 vary. The blue curves show the analytical distributions

for the full model given in Equation 31, the red circles show the numerical ones obtained from FSP, and the gray regions show the distributions for the ENM.

The model parameters are chosen as in (A). The parameter s0 is chosen as s0 = 10s1 (bursty case) and s0 = 0:5s1 (non-bursty case). The parameter s01 is

chosen as s01 = s1=2 (perfect dosage compensation) and s0 = s1 (no dosage compensation). The parameters associated with the four panels are marked in

(A) by stars.

(C) Heat plot of D as b and s01=s1 vary. The model parameters are chosen as Vb = 1;g = 1;w = 0:5;d = 5; s0 = 300;s1 = 30 .

(D) Heat plot of D as h and stot=g vary. The model parameters are chosen as Vb = 1;g = 1;b = 1;w = 0:5;s0 = 2:5s1;s
0
1 = s1.

(E) The model parameters are chosen to be the same as in the third panel of (B) but h is varied. In (A)–(E) the parameter r is chosen so that CnDlin = 30.
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PðVÞ = 2Vb

V2
; Vb %V %2Vb: (Equation 41)

Inserting the above two equations into Equation 39 gives the mRNA distribution for the ENM.

To evaluate the performance of the ENM approximation, we first illustrate the Hellinger distance D between

the lineage distributions of the full model and the ENM as a function of s0=s1 and s01=s1 whenmRNA synthesis

is balanced, i.e. b = 1 (Figure 5A). It can be seen that the ENM serves as a good approximation when gene

expression is bursty ðs0 [s1Þ and when dosage compensation is perfect ðs01 = s1 =2Þ. This is indeed a

sufficient condition for mRNA to display concentration homeostasis when gene replication is taken into ac-

count.48 A proof of this condition can be found in STAR Methods. The breaking of either dosage
iScience 26, 105746, January 20, 2023 17
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compensation or bursty expression will give rise to a significant deviation of the ENM from the full model (Fig-

ure 5B). In particular, the distribution of the ENM can show bimodality whereas that of the full model is

unimodal.

It is still unclear how the ENM performs when mRNA synthesis is not balanced ðb < 1Þ. To see this, we

further illustrate D as a function of b and s01=s1 when gene expression is bursty (Figure 5C). Interestingly,

there is a region of parameter space (shown in dark blue) where D is minimized. In particular, when the

mRNA synthesis rate is volume independent ðb = 0Þ, the ENM works well when s01=s1 is between 0.65

and 0.8. This shows that to maintain the effectiveness of the ENM approximation, a lack of balanced

mRNA synthesis requires also a lower degree of dosage compensation. Recent studies have shown

that even when b< 1, strong concentration homeostasis (characterized by a small coefficient of variation

of the mean concentrations across the cell cycle) can still be obtained when s01=s1z1=
ffiffiffi
2

p b+ 1
(shown by

the yellow dashed line) and when replication occurs halfway through the cell cycle ðw = 0:5Þ.48 Note

that the region where D is minimized is exactly around the yellow dashed line. This shows that the

effectiveness of the ENM approximation is closely related to concentration homeostasis even when

b< 1.

To further confirm our results, we use the transcriptional parameters inferred in Ref. 26. In this case, the

mRNA distributions for two bursty genes Oct4 and Nanog in mouse embryonic stem cells were measured

as a function of time in the cell cycle from which all the rate parameters involved in our model were esti-

mated. Since the cell-to-cell variability in volume within each cell cycle phase was quite small, it was

assumed that b = 0, i.e. the mRNA synthesis rate is volume independent. Dosage compensation was

found to be apparent for both genes, with s01=s1 estimated to be 0.63 for Oct4 and 0.71 for Nanog. Based

on the inferred parameters, we compare the mRNA distributions of population measurements for the full

model and the ENM (Figure S4A). We find that the ENM performs well for both genes. This agrees with our

prediction that the ENM is valid when b = 0 and when s01=s1 is around 0.7 (Figure 5C). However, if we keep

all rate parameters the same but reset s01=s1 to 1 (no dosage compensation), then the EDM approximation

will become significantly less satisfying (Figure S4B). This also coincides with the simulations shown in

Figure 5C.

When mRNA synthesis is balanced and bursty, we have seen that the ENM approximation is accurate

when dosage compensation is strong. However, in bacteria and budding yeast, there has been some

evidence that dosage compensation is not widespread.50,82 It is unclear under what conditions the

ENM is still valid when dosage compensation is weak. To see this, we also depict D as a function of

h = d=g and stot=g when there is no dosage compensation, i.e. s01 = s1 (Figure 5D). In this case, we

find that the ENM still works well when the mRNA is very unstable ðd [gÞ and when the total gene

switching rate is very large ðstot [gÞ. This is fully consistent with our earlier theoretical predictions

for the accuracy of the EDM, on which the ENM depends. In particular, when gene expression is bursty

ðs0 [s1;gÞ, increasing the mRNA degradation rate will give rise to a better ENM approximation (Fig-

ure 5E). Note that this is not true when the total gene switching rate is slow (Figure 5D). We emphasize

that while Figures 5B and 5E show the mRNA distributions for lineage measurements, the same results

are applicable for population measurements (Figure S5).

The value of h = d=g can be determined experimentally since both d and g can be measured. In bacteria, h

is typically between 6 � 30, depending strongly on the strain and the growth condition; in yeast, it is typi-

cally between 3 � 8; and in mammalian cells, it is typically between 2 � 4 (see Table S1 for the median and

range of h in various cell types). This suggests that the ENM approximation may be generally most useful in

bacteria and less useful in yeast and mammalian cells.

Including stochasticity in cell cycle duration and cell size dynamics

Thus far, we have considered a detailed telegraph model of gene expression with a cell cycle description

when the cell volume dynamics and the cell cycle duration are deterministic. However, in naturally occur-

ring systems, the cell cycle duration is appreciably stochastic (see Figure 1C of Ref. 47 for experimental

distributions of cell cycle durations in eight different cell types). Moreover, there has been ample evi-

dence33–39 that the amount of growth produced during the cell cycle must be controlled such that, on

average, larger cells at birth have shorter cell cycle durations than smaller ones. This mechanism main-

tains size homeostasis.
18 iScience 26, 105746, January 20, 2023
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Figure 6. Effects of stochastic cell volume dynamics on mRNA fluctuations

(A) Typical trajectories of cell size and mRNA number as se increases.

(B) Cell volume distribution of lineage measurements as se increases. In (A) and (B), the model parameters are chosen as v = 1;g = 1;b = 1;w = 0:4;d = 4;

r = 20deff ;s0 = 1:5;s1 = 3;s01 = 2:4;a = 1.

(C) Comparison between the steady-state mRNA distributions of lineage measurements for deterministic and stochastic cell size dynamics under different

size control strategies. The blue curves show the analytical distributions for stochastic cell size dynamics, the red circles show the numerical ones obtained

from the SSA, and the gray regions show the distributions for deterministic cell size dynamics. The model parameters are chosen as v = 1;g = 1;b = 1;

w = 0:5;d = 5;s0 = s1 = 100;s01 = 50;se = 0:4. The parameter r is chosen so that CnDlin = 10 for deterministic cell size dynamics. Previous studies93 have

shown that the timer strategy with a = 2 is not stable since it cannot produce a finite and nonzeromean of cell volume. Hence, we choose a = 1:8 for the timer

strategy here.

(D) Steady-state mRNA distributions at birth, replication, and division as se increases. The model parameters are the same as in (A) and (B).

(E) Comparison between the lineage distributions of the full model and the ENM for stochastic cell size dynamics. The gray regions show the distributions for

the ENM. The model parameters are chosen to be the same as in Figure 5B.
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To model cell-cycle duration variability and size homeostasis, we use the size-additive autoregressive

model of stochastic cell volume dynamics.36,83 The model assumes that the volume at birth Vb and the vol-

ume at division Vd are connected by the relation

Vd = aVb + ð2 � aÞv + e; (Equation 42)

where 0%a% 2 is the strength of size control, v > 0 is the typical (average over generations) birth volume

which is a time-independent constant, and e � Nð0;s2e Þ is a Gaussian noise term independent of Vb. The

idea behind the model is as follows: upon being born with volume Vb, the cell attempts to grow for a period

of time such that its target volume at division is f ðVbÞ = aVb + ð2 � aÞv, but due to stochasticity, the actual

volume at division may deviate from the target volume. Due to exponential cell growth, the cell cycle duration

T is given by

T =
1

g
log

Vd

Vb
=

1

g
log

�
a +

ð2 � aÞv + e

Vb

�
; (Equation 43)

where for simplicity we have assumed constant growth rate g across generations. This implies that on

average, larger cells at birth have shorter cell cycle durations than smaller ones. Different size control stra-

tegies correspond to different values of a. When a = 0, the target division volume f ðVbÞ = 2v is constant;

this corresponds to the sizer strategy, where cells have to reach a certain size before division occurs. When

a = 1, the cell attempts to add a constant volume f ðVbÞ � Vb = v to its newborn size; this corresponds to

the adder strategy. Since the growth is exponential, attempting to grow for a constant time is the same as

having f ðVbÞ = 2Vb; hence a = 2 corresponds to the timer strategy. The adder or near-adder behavior has

been observed in bacteria, budding yeast, and mammalian cells,35,37,39 while fission yeast exhibits a near-

sizer behavior.33

When se = 0, the model reduces to deterministic (previously considered) cell volume dynamics, in which

case the timer, adder, and sizer strategies are exactly the same since Vb = v is a constant. As se increases,

the time series of cell volume becomes much more noisy; however, it is difficult to identify whether there

is a change in the magnitude of fluctuations solely from the time series of the mRNA number (Figure 6A).

Note that when se is small, the model produces a steady-state cell size distribution (from lineage simu-

lations) characterized by three features: a fast increase in the size count for small cells, a slow decay for

moderately large cells, and a fast decay for large cells (Figure 6B). This is consistent with the cell size

distribution in E. coli.70 A natural question is what are the values of se in naturally occurring systems.

To see this, we examined the publicly available lineage data of cell size in E. coli and fission yeast36,84

and found that the typical value of se is between 0:2v and 0:3v (see STAR Methods for a discussion about

the inference of se and the estimated values of se in E. coli and fission yeast under different growth

conditions).

To compute the mRNA distribution for stochastic cell volume dynamics, note that the evolution of the sys-

tem within a cell cycle is controlled by four random variables: (i) the gene state at birth ab, (ii) the mRNA

number at birth Nb, (iii) the birth volume Vb, and (iv) the cell cycle duration T . Once the values of the

four variables are fixed, the generating function F at any time t˛ ½0;T � within a cell cycle is given by Equa-

tion 10, i.e.
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Fðt; zjab;Nb;Vb; TÞ =

8>>>><
>>>>:

X1
i = 0

Liðt; zjVbÞFi

�
0; e�dtz

��ab;Nb

�
; t ˛ ½0;wT �;

X1
i = 0

L0iðt � wT ; zjVbÞ2Fi

�
wT ;e�dðt�wTÞz

��ab;Nb;Vb;T
�
; t ˛ ½wT ;T �:

(Equation 44)

Here, the initial conditions Fið0;zÞ, i = 0; 1 are determined by ab and Nb as

Fab
ð0; zjab;NbÞ = zNb ; F1�ab

ð0; zjab;NbÞ = 0: (Equation 45)

The functions Li and L0i , i = 0; 1 given in Equation 9 depend on Vb since the parameters u and u0 are functions

of Vb; the replication time wT depends on T . Hence, the generating function F depends on all the four vari-

ables. Once we know the joint distribution of the four variables in some generation, we can use Equation 42

to compute their joint distribution in the next generation. In this way, we obtain the full time-dependence of

the mRNA distribution cross cell cycles. In STAR Methods, we have generalized the analytical results ob-

tained previously to themodel with stochastic cell volume dynamics. Specifically, we have derived the exact

time-dependent mRNA distribution for a cell of any age in any generation, as well as the exact steady-state

distribution for lineage measurements.

To reveal the influence of cell-cycle duration variability and size homeostasis on gene expression, we

compare the lineage distributions for the model with deterministic cell size dynamics and the model

with stochastic cell size dynamics under different size control strategies (Figure 6C). The two distributions

deviate remarkably from each other for the timer strategy, but the deviation is much smaller for the adder

and sizer strategies. This demonstrates the advantage of the adder and sizer strategies in reducing gene

expression noise. In addition, Figure 6D illustrates the steady-state mRNA distribution at three different

points (birth, replication, and division) across the cell cycle as noise in cell size dynamics, characterized

by se, varies. Clearly, larger noise in cell size results in larger noise in gene expression, as expected. A suf-

ficiently large se may even change the number of modes of the mRNA distribution. Interestingly, we find

that when the mRNA distribution exhibits multimodality, increasing se will not change the height of the

zero peak but may affect the height and position of non-zero peaks (Figure 6D).

Finally, we investigate the accuracy of the ENM approximation for stochastic cell volume dynamics. Note

that we can no longer use the EDM to approximate the mRNA distributions at birth, replication, and divi-

sion, since the cell volumes are stochastic. We compare the steady-state mRNA distributions at birth, repli-

cation, and division for the full model with their ENM approximations in Figure S6 and also compare the

lineage distribution for the full model with its ENM approximation in Figure 6E (see STAR Methods for

the analytical expressions of the ENM approximations). The model parameters in the two figures are cho-

sen to be the same as in Figures 3B and 3C and 5B, respectively. We can see that in the presence of fluc-

tuations in cell volume, the results of the present paper are still valid—the ENM does not work in general

but performs well when mRNA synthesis is balanced and bursty and when dosage compensation is perfect.

Comparing Figure S6 with Figures 3B and 3C and comparing Figure 6E with Figure 5B, we also find that the

differences between the mRNA distributions for the full model and the ENM are slightly diminished when

the cell volume dynamics is stochastic.
DISCUSSION

In this work, we analytically solved a detailed model of stochastic gene expression with cell cycle and cell

volume descriptions including gene switching, cell growth, cell division, volume-dependent transcription,

gene replication, and gene dosage compensation. We first considered the case where the cell volume dy-

namics is deterministic and then generalized the results to include cell-cycle duration variability and cell-

size control strategies. Previous models of stochastic mRNA dynamics in growing and dividing cells22,47

can be seen as special cases of the present modeling framework. For example, when mRNA synthesis

scales with cell volume and when the gene inactivation rate is much higher than the gene activation

rate, our model reduces to the one studied in Ref. 22. Under this timescale separation assumption, there

is essentially only one gene state and the computation is much easier than the one given in the present pa-

per. If the intrinsic noise due to the random birth-death of transcripts is ignored, then our model reduces to

the one-state model studied in Ref. 40. In addition, we emphasize that our model not only characterizes the

mRNA dynamics but can also be used to describe the protein dynamics. For example, when gene
iScience 26, 105746, January 20, 2023 21



ll
OPEN ACCESS

iScience
Article
expression is bursty and when the degradation rate is taken to be zero, our model reduces to the effective

one-state model of the protein dynamics proposed in Refs. 41,42,46.

Our work is also distinctive from recent related work49 since our derivations of the distributions of mRNA

numbers as a function of cell age and generation number, and of the distributions in steady-state growth

do not need the assumption of stochastic concentration homeostasis (SCH); the relaxation of this assump-

tion is crucial to model the variation of gene copy numbers across a cell cycle due to DNA replication. We

have also investigated how well can the model be approximated by the effective dilution and extrinsic

noise models (EDM/ENM). When gene replication is taken into account, we showed that the mRNA distri-

butions of the full model may differ significantly from the predictions of the EDM/ENM. We elucidated

three cases where the EDM/ENM makes accurate approximations.

The first case occurs when themRNA is very unstable and the total gene switching rate (the sum of the gene

activation and inactivation rates) is very large such that on the timescale of volume change, the mRNA dis-

tribution instantaneously equilibrates. This condition is intuitive and has been discussed in earlier work.57

However, as we showed using data from various cell types, the typical mRNA lifetime in eukaryotes (espe-

cially mammalian cells) is generally not small enough compared to the cell cycle duration to enforce instan-

taneous equilibrium; rather, the fluctuations have memory of birth and replication events.

The second case takes place whenmRNA synthesis is balanced and bursty and when dosage compensation

is perfect. While our model does not generally obey SCH due to gene copy number variation upon repli-

cation, however, in this case, parameter conditions effectively enforce SCH. Note that if expression is

balanced and it is bursty with weak dosage compensation or else it is constitutive with perfect dosage

compensation, there is an apparent breakdown of the EDM/ENM’s ability to accurately approximate the

full model. This is since in these cases the dependence of the mean mRNA numbers with cellular volume

is significantly influenced by the doubling of gene copy numbers at replication. Examples where expression

is balanced but the effects of replication are not completely buffered by dosage compensation are starting

to be uncovered, e.g. in human cells while the overall mRNA synthesis rates increase with cell volume, how-

ever, S/G2-phase cells show increased synthesis rates compared to G1-phase cells of the same volume.85

As pointed out in Ref. 61, this is reminiscent of a step-increase in RNA production during or after S phase

which was previously observed in synchronized HeLa cell populations and other organisms86—this sug-

gests that perfect dosage compensation in mammalian cells may not be common.

The third case is when mRNA synthesis is non-balanced and bursty, and when dosage compensation is of

an intermediate strength such that concentration homeostasis is approximately maintained, i.e. there is

only a small variation of the mean mRNA concentration throughout the cell cycle—note that this is a

much weaker condition than SCH. We showed that this is indeed the case for two genes Oct4 and Nanog

in mouse embryonic stem cells, whose parameters have been previously estimated before and after gene

replication.26 Recent studies48 have shown, using both theory and data, that when gene expression is

bursty, deviations from SCH show up as deviations from the gamma distribution in the mRNA concentra-

tion. This can be used to test whether SCH is approximately valid in vivo.

Our model is complex due to the coupling between gene expression dynamics, cell volume dynamics, and

cell cycle events. A natural question is whether all the parameters involved in the model can be inferred

accurately. In fact, parameter inference for models that are more complex than the telegraph model but

simpler than our model has been made in our previous papers using the method of distribution matching48

or power spectrum matching.66 Whether accurate parameter estimation is possible by fitting mRNA distri-

butions from population snapshot data to the analytical expression given by our calculations remains an

open question.
Limitations of the study

In summary, our work shows that caution is needed when the ENM is applied to explain data collected in

growing and dividing cells and that the accuracy of this reduced model of gene expression cannot be a

priori assumed genome-wide. Our model, though detailed, has some limitations. We have focused on

models that explain cell-to-cell variability in the synthesis rates due to their dependence on cell size. How-

ever, likely other descriptors of cell state (such as shape, local cell crowding, mitochondrial abundance, and

capacity to respond to Ca2+) can explain a higher degree of cell-to-cell variability than cell size alone.87,88 In
22 iScience 26, 105746, January 20, 2023
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addition, here we have not considered the G0 phase, where cells are not growing and are outside of the

replicative cell cycle. For the subpopulation of cells permanently in G0 such as senescent and many differ-

entiated cells, since cells do not grow and divide, we can always use the ENM to characterize their gene

expression dynamics.

Last but not least, here we have considered the expression of unregulated genes but it is well known that

many genes regulate each other resulting in complex gene regulatory networks.89 Overcoming the last lim-

itation is particularly pressing but it is analytically challenging because suchmodels have nonlinear propen-

sities stemming from the modeling of bimolecular interactions between transcriptional factors and

genes.90 Progress in this direction will be reported in a separate paper. We also anticipate that the results

of the present paper can be generalized to include more than two gene states.16–18
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45. Jędrak, J., Kwiatkowski, M., and Ochab-
Marcinek, A. (2019). Exactly solvable model of
gene expression in a proliferating bacterial
cell population with stochastic protein bursts
and protein partitioning. Phys. Rev. E 99,
042416.

46. Beentjes, C.H.L., Perez-Carrasco, R., and
Grima, R. (2020). Exact solution of stochastic
gene expression models with bursting, cell
cycle and replication dynamics. Phys. Rev. E
101, 032403.

47. Perez-Carrasco, R., Beentjes, C., and Grima,
R. (2020). Effects of cell cycle variability on
lineage and population measurements of
messenger RNA abundance. J. R. Soc.
Interface 17, 20200360.

48. Jia, C., Singh, A., and Grima, R. (2022).
Concentration fluctuations in growing and
dividing cells: insights into the emergence of
concentration homeostasis. PLoS Comput.
Biol. 18, e1010574.

49. Thomas, P., and Shahrezaei, V. (2021).
Coordination of gene expression noise with
cell size: extrinsic noise versus agent-based
models of growing cell populations. J. R. Soc.
Interface 18, 20210274.

50. Wang, M., Zhang, J., Xu, H., and Golding, I.
(2019). Measuring transcription at a single
gene copy reveals hidden drivers of bacterial
individuality. Nat. Microbiol. 4, 2118–2127.

51. Kalita, I., Iosub, I.A., Granneman, S., and El
Karoui, M. (2021). Fine-tuning of RecBCD
expression by post-transcriptional regulation
is required for optimal DNA repair in
Escherichia coli. Preprint at bioRxiv. https://
doi.org/10.1101/2021.10.23.465540.

52. Marguerat, S., and Bähler, J. (2012).
Coordinating genome expression with cell
size. Trends Genet. 28, 560–565.

53. Neurohr, G.E., Terry, R.L., Lengefeld, J.,
Bonney, M., Brittingham, G.P., Moretto, F.,
Miettinen, T.P., Vaites, L.P., Soares, L.M.,
Paulo, J.A., et al. (2019). Excessive cell growth
causes cytoplasm dilution and contributes to
senescence. cell 176, 1083–1097.e18.

54. Dolatabadi, S., Candia, J., Akrap, N., Vannas,
C., Tesan Tomic, T., Losert, W., Landberg, G.,
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Stewart-Morgan, K.R., Petryk, N., Flury, V.,
Graziano, S., Johansen, J.V., Jakobsen, J.S.,
Alabert, C., and Groth, A. (2018). Accurate
recycling of parental histones reproduces the
histone modification landscape during DNA
replication. Mol. Cell 72, 239–249.e5.
69. Voichek, Y., Bar-Ziv, R., and Barkai, N. (2016).
Expression homeostasis during DNA
replication. Science 351, 1087–1090.

70. Jia, C., Singh, A., and Grima, R. (2021). Cell
size distribution of lineage data: analytic
results and parameter inference. iScience 24,
102220.

71. Jia, C., Singh, A., and Grima, R. (2022).
Characterizing non-exponential growth and
bimodal cell size distributions in fission yeast:
an analytical approach. PLoS Comput. Biol.
18, e1009793.

72. Paulsson, J. (2005). Models of stochastic gene
expression. Phys. Life Rev. 2, 157–175.

73. Jia, C., Zhang, M.Q., and Qian, H. (2017).
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lineage data of cell volume in fission yeast Ref. 84 https://pubmed.ncbi.nlm.nih.gov/28632741

transcriptional parameters for

Oct4 and Nanog in mouse

embryonic stem cells

Ref. 26 https://pubmed.ncbi.nlm.nih.gov/26824388

Software and algorithms

Modified FSP algorithm this work https://github.com/chenjiacsrc/telegraph-model
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Ramon Grima (ramon.grima@ed.ac.uk).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data produced in this study are included in the published article, its supplemental information, or are

available from the lead contact upon request.

d The MATLAB codes for computing mRNA distributions using the FSP algorithm and the analytical solu-

tion can be found on GitHub https://github.com/chenjiacsrc/telegraph-model.
METHOD DETAILS

Derivation of the generating function F before replication

Here we derive the analytical expression of the generating function F before replication. Adding the two

identities in Equation 4 shows that F1 can be represented by F as

F1 =
vtF +dzvzF

sðtÞz : (Equation 46)

Inserting this equation into the second equation of (4) shows that F satisfies the second-order para-

bolic PDE

vttF + 2dzvtzF +d2z2vzzF + ½r � d � sðtÞz�vtF +dz½r � sðtÞz�vzF � s1sðtÞzF = 0; (Equation 47)

where r = s0 +s1 � bg. Following Ref. 14, we introduce a new variable t = log z � dt. Let ~Fðt; zÞ and
~Fiðt; zÞ be the functions with variables t and z that are associated with Fðt; zÞ and Fiðt;zÞ, respectively, i.e.

Fðt; zÞ = F
�ðlog z � dt; zÞ;Fiðt; zÞ = F

�
iðlog z � dt; zÞ; i = 0;1:

Then Equation 47 can be simplified to a large extent as

d2zvzz ~F + d½r � sðtÞz�vz ~F � s1sðtÞ~F = 0: (Equation 48)

If we fix the variable t, this is an ordinary differential equation (ODE) with respect to the variable z. Note that

sðtÞ = rV b

be
bgt = rVb

be
bgðlog z� tÞ=d = rV b

be
�ðbg=dÞtzbg=d : (Equation 49)

Inserting this equation into Equation 48 yields
iScience 26, 105746, January 20, 2023 27
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d2zvzz ~F + d
�
r � rV b

be
�ðbg=dÞtzbg=d + 1

�
vz ~F � s1rV

b

be
�ðbg=dÞtzbg=d ~F = 0:

This is a modified version of the confluent hypergeometric differential function and its solution can be writ-

ten in general form as

~Fðt; zÞ = 40ðetÞH0ðt; zÞ+41ðetÞH1ðt; zÞ; (Equation 50)

where

H0ðt; zÞ = M
�
a;b; ue� ðbg=dÞtzbg=d + 1

�
;

H1ðt; zÞ = z1� r=dM
�
1+ a � b;2 � b;ue�ðbg=dÞtzbg=d +1

�
:

(Equation 51)

with a = s1=ðd + bgÞ, b = ðs0 +s1Þ=ðd +bgÞ, u = rVb

b=ðd +bgÞ, and with Mða;b; xÞ being the confluent

hypergeometric function.

The remaining question is how to determine the functions 40 and 41 based on the initial conditions. By the

definition of ~Fi , it is easy to see that

F
�
iðlog z; zÞ = Fið0; zÞ; i = 0;1:

Taking t = log z in Equation 50 yields

40ðzÞI0ðzÞ + 41ðzÞI1ðzÞ = ~Fðlog z; zÞ = Fð0; zÞ; (Equation 52)

where

I0ðzÞ = H0ðlog z; zÞ = Mða;b;uzÞ;
I1ðzÞ = H1ðlog z; zÞ = z1� r=dMð1+ a � b;2 � b;uzÞ:

Moreover, it follows from Equation 46 that

dvz ~Fðt; zÞ = sðtÞ ~F1ðt; zÞ = rVb

be
�ðbg=dÞtzbg=d ~F1ðt; zÞ:

This shows that

dvz ~Fðlog z; zÞ = rV b

b
~F1ðlog z; zÞ = uðd + bgÞF1ð0; zÞ:

It follows from Equation 50 that

vz ~Fðlog z; zÞ = 40ðzÞvzH0ðlog z; zÞ+41ðzÞvzH1ðlog z; zÞ:
Combining the above two equations yields

40ðzÞJ0ðzÞ + 41ðzÞJ1ðzÞ = uðbg =d + 1ÞF1ð0; zÞ; (Equation 53)

where

J0ðzÞ = vzH0ðlog z; zÞ = auðbg=d + 1Þ
b

Mð1+ a;1+b; uzÞ;
J1ðzÞ = vzH1ðlog z; zÞ = ð1 � bÞðbg=d + 1Þz� r=dMð1+ a � b;1 � b;uzÞ:

Combining Equations 52 and 53, we obtain	
I0ðzÞ I1ðzÞ
J0ðzÞ J1ðzÞ


	
40ðzÞ
41ðzÞ



=

	
Fð0; zÞ

uðbg=d + 1ÞF1ð0; zÞ


:

This shows that

40ðzÞ =
J1ðzÞF0ð0; zÞ+ ½J1ðzÞ � uðbg=d + 1ÞI1ðzÞ �F1ð0; zÞ

I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ ;

41ðzÞ =
½uðbg=d + 1ÞI0ðzÞ � J0ðzÞ �F1ð0; zÞ � J0ðzÞF0ð0; zÞ

I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ :

(Equation 54)

By means of the Wronskian of confluent hypergeometric functions, it is easy to check that

I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ = ð1 � bÞðbg =d + 1Þz� r=deuz :

Moreover, straightforward computations show that
28 iScience 26, 105746, January 20, 2023
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J1ðzÞ � uðbg=d + 1ÞI1ðzÞ = ð1 � bÞðbg=d + 1Þz� r=dMða � b; 1 � b; uzÞ;
uðbg=d + 1ÞI0ðzÞ � J0ðzÞ = ðb � aÞuðbg=d + 1Þ

b
Mða; 1+b;uzÞ:

Inserting the above two equations into Equation 54, we obtain

40ðzÞ = e� uz ½Mð1+ a � b;1 � b;uzÞ F0ð0; zÞ+M ða � b;1 � b;uzÞF1ð0; zÞ �;
41ðzÞ =

u

bðb � 1Þ z
r=de� uz ½aMð1+ a;1+b; uzÞ F0ð0; zÞ � ðb � aÞM ða;1+b; uzÞF1ð0; zÞ �:

(Equation 55)

In terms of the original variables t and z, it follows from Equation 50 that the generating function F is

given by

Fðt; zÞ = ~Fðlog z � dt; zÞ = 40

�
e�dtz

�
H0ðlog z � dt; zÞ+41

�
e�dtz

�
H1ðlog z � dt; zÞ:

Interesting Equations 51 and 55 into the above equation, we finally obtain the analytical expression of the

generating function F, which is given by

Fðt; zÞ = L0ðt; zÞF0

�
0;e�dtz

�
+ L1ðt; zÞF1

�
0;e�dtz

�
: (Equation 56)

Here F0ð0; zÞ and F1ð0; zÞ are the generating functions at t = 0 which can be determined by the initial con-

ditions, and the functions L0 and L1 are given by

L0ðt; zÞ =
�
M
�
1+ a � b;1 � b;ue�dtz

�
M
�
a;b; uebgtz

�
+

auz

bðb � 1Þe
� rt

3M
�
1+ a; 1+b; ue�dtz

�
M
�
1+ a � b;2 � b;uebgtz

��
e� ue�dt z ;

L1ðt; zÞ =
�
M
�
a � b; 1 � b; ue�dtz

�
M
�
a;b;uebgtz

� � ðb � aÞuz
bðb � 1Þ e

� rt

3M
�
a;1+b;ue�dtz

�
M
�
1+ a � b; 2 � b; uebgtz

��
e� ue�dt z :

Derivation of the generating functions F0 and F1 before replication

Here we derive the analytical expression of the generating functions F0 and F1 before replication. From the

first equation of (4), F1 can be represented by F0 as

F1 =
1

s0
ðvtF0 + dzvzF0 + s1F0Þ: (Equation 57)

Inserting into the second equation of (4) shows that F0 satisfies the second-order parabolic PDE

vttF0 + 2dzvtzF0 +d2z2vzzF0 + ½R � d � sðtÞz�vtF0 +dz½R � sðtÞz�vzF0 � s1sðtÞzF0 = 0; (Equation 58)

where R = s0 + s1 +d. Using the new variables t and z, Equation 58 can be simplified to

d2zvzz ~F0 + d½R � sðtÞz�vz ~F0 � s1sðtÞ~F0 = 0: (Equation 59)

If we fix the variable t, this is exactly an ODE with respect to the variable z. Inserting Equation 49 into Equa-

tion 59 yields

zvzz ~F0 +
�
R � re� bguzbg+ 1

�
vz ~F0 � s1re

� bguzbg ~F0 = 0:

This is a modified version of the confluent hypergeometric differential function and its solution can be writ-

ten in general form as

~F0ðt; zÞ = 40ðetÞH0ðt; zÞ+41ðetÞH1ðt; zÞ; (Equation 60)

where

H0ðt; zÞ = M
�
a;1+b; ue�ðbg=dÞtzbg=d + 1

�
;

H1ðt; zÞ = z1�R=dM
�
a � b;1 � b;ue�ðbg=dÞtzbg=d + 1

�
:

(Equation 61)

The remaining question is how to determine the functions 40 and 41 based on the initial conditions. By the

definition of ~Fi , it is easy to see that

F
�
iðlog z; zÞ = Fið0; zÞ; i = 0;1:
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Taking t = log z in Equation 60 yields

40ðzÞI0ðzÞ + 41ðzÞI1ðzÞ = ~F0ðlog z; zÞ = F0ð0; zÞ; (Equation 62)

where

I0ðzÞ = H0ðlog z; zÞ = Mða; 1+b; uzÞ;
I1ðzÞ = H1ðlog z; zÞ = z1�RMða � b; 1 � b; uzÞ:

Moreover, it follows from Equation 57 that

vz ~F0 =
1

dz
½s0

~F1 � s1
~F0� =

bg=d + 1

z
½ðb � aÞ~F1 � a~F0�:

This shows that

vz ~F0ðlog z; zÞ =
bg=d + 1

z
½ðb � aÞF1ð0; zÞ � aF0ð0; zÞ�:

It follows from Equation 60 that

vz ~F0ðlog z; zÞ = 40ðzÞvzH0ðlog z; zÞ+41ðzÞvzH1ðlog z; zÞ:
Combining the above two equations yields

40ðzÞJ0ðzÞ + 41ðzÞJ1ðzÞ =
bg=d + 1

z
½ðb � aÞF1ð0; zÞ � aF0ð0; zÞ�; (Equation 63)

where

J0ðzÞ = vzH0ðlog z; zÞ = auðbg=d + 1Þ
1+b

M ð1+ a; 2+b;uzÞ;
J1ðzÞ = vzH1ðlog z; zÞ = � bðbg=d + 1Þz�R=dM ða � b; �b;uzÞ:

Combining Equations 62 and 63, we obtain

	
I0ðzÞ I1ðzÞ
J0ðzÞ J1ðzÞ


	
40ðzÞ
41ðzÞ



=

0
B@ F0ð0; zÞ

bg=d + 1

z
½ðb � aÞF1ð0; zÞ � aF0ð0; zÞ �

1
CA:

This shows that

40ðzÞ =
½zJ1ðzÞ+ ðbg=d + 1ÞaI1ðzÞ �F0ð0; zÞ � ðbg=d + 1Þðb � aÞI1ðzÞF1ð0; zÞ

z½I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ � ;

41ðzÞ =
ðbg=d + 1Þðb � aÞI0ðzÞF1ð0; zÞ � ½zJ0ðzÞ+ ðbg=d + 1ÞaI0ðzÞ �F0ð0; zÞ

z½I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ � :

(Equation 64)

By means of the Wronskian of confluent hypergeometric functions, it is easy to check that

I0ðzÞJ1ðzÞ � I1ðzÞJ0ðzÞ = � bðbg =d + 1Þz�R=deuz :

Moreover, straightforward computations show that

zJ1ðzÞ+ ðbg+ 1ÞaI1ðzÞ = � ðb � aÞðbg=d + 1Þz1�R=dM ð1+ a � b;1 � b;uzÞ;
zJ0ðzÞ+ ðbg+ 1ÞaI0ðzÞ = aðbg=d + 1ÞM ð1+ a;1+b; uzÞ:

Inserting the above two equations into (64), we obtain

40ðzÞ =
b � a

b
e� uz ½Mð1+ a � b; 1 � b; uzÞF0ð0; zÞ+Mða � b;1 � b;uzÞF1ð0; zÞ �;

41ðzÞ =
1

b
zR=d� 1e� uz½aMð1+ a;1+b;uzÞF0ð0; zÞ � ðb � aÞMða;1+b;uzÞF1ð0; zÞ �:

(Equation 65)

In terms of the original variables t and z, it follows from Equation 60 that the generating function F0 is

given by

F0ðt; zÞ = F0

�
ðlog z � dt; zÞ = 40

�
e�dtz

�
H0ðlog z � dt; zÞ+41

�
e�dtz

�
H1ðlog z � dt; zÞ

Inserting Equations 61 and 65 into the above equation, we finally obtain the analytical expression of the

generating function F0, which is given by
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F0ðt; zÞ = K00ðt; zÞF0

�
0;e�dtz

�
+K01ðt; zÞF1

�
0;e�dtz

�
: (Equation 66)

Here F0ð0; zÞ and F1ð0; zÞ are the generating functions at t = 0 which can be determined by the initial con-

ditions, and the functions K00 and K01 are given by

K00ðt; z;VbÞ = b � a

b

�
M
�
1+ a � b;1 � b;ue�dtz

�
M
�
a;1+b; uebgtz

�
+

a

b � a
e�ðr + bgÞt

3M
�
1+ a;1+b;ue�dtz

�
M
�
a � b;1 � b;uebgtz

��
e� ue�dt z ;

K01ðt; z;VbÞ = b � a

b

�
M
�
a � b;1 � b;ue�dtz

�
M
�
a; 1+b;uebgtz

� � e�ðr + bgÞt

3M
�
a;1+b; ue�dtz

�
M
�
a � b;1 � b;uebgtz

��
e� ue�dt z ;

where we have used the fact that R = r +d +bg. Since we have derived both F0 and F, we finally obtain the

explicit expression of F1 = F � F0, which is given by

F1ðt; zÞ = K10ðt; zÞF0

�
0; e�dtz

�
+K11ðt; zÞF1

�
0;e�dtz

�
; (Equation 67)

where

K10ðt; z;VbÞ = a

b

h
M
�
1+ a � b; 1 � b; ue�dtz

�
M
�
1+ a;1+b;uebgtz

� � e�ðr + bgÞt

3M
�
1+ a; 1+b;ue�dtz

�
M
�
1+ a � b;1 � b;uebgtz

��
e� ue�dt z ;

K11ðt; z;VbÞ = a

b

�
M
�
a � b;1 � b;ue�dtz

�
M
�
1+ a;1+b;uebgtz

�
+
b � a

a
e�ðr + bgÞt

3M
�
a;1+b; ue�dtz

�
M
�
1+ a � b; 1 � b; uebgtz

��
e� ue�dt z :

Derivation of the generating function F after replication

We next focus on the dynamics after replication for haploid cells. Since there are two daughter gene copies

after replication, to distinguish them, we call them daughter copy A and daughter copy B. For convenience,

we assume that all mRNA molecules are allocated to daughter copy A when replication occurs, while no

molecules are allocated to daughter copy B. Similarly, the microstate of each daughter copy can be

described by an ordered pair ði;nÞ, where i = 0; 1 denotes the gene state and n denotes the number of

mRNA molecules belonging to that daughter copy, i.e. the molecules allocated to that daughter copy at

replication and the molecules produced by that daughter copy after replication. The total number of mol-

ecules after replication is then the sum of the numbers of molecules that belong to the two daughter

copies. Note that other choices for how the mRNA molecules are allocated to each of the gene copies

have no effect on the calculation of the statistics of the total number of molecules after replication.

Let pA
i;nðtÞ denote the probability of having n transcripts that belong to daughter copy A at time t˛ ½wT ;T �

when daughter copy A is in state i. Similarly, let pB
i;nðtÞ denote the same quantity for daughter copy B. Recall

that the gene activation rate decreases from s1 to s01 upon replication. Then the stochastic gene expression

dynamics for each gene copy after replication is governed by the CMEs

_pl
0;n = d

h
ðn+ 1Þpl

0;n+ 1 � npl
0;n

i
+
h
s0p

l
1;n � s

0
1p

l
0;n

i
;

_pl
1;n = rVðtÞb

h
pl
1;n� 1 � pl

1;n

i
+d
h
ðn+ 1Þpl

1;n+ 1 � npl
1;n

i
+
h
s

0
1p

l
0;n � s0p

l
1;n

i
;

(Equation 68)

where l = A;B indicates which daughter copy is considered. To solve these, for each l = A;B, we define a

pair of generating functions

Fl
i ðt; zÞ =

XN
n = 0

pl
i;nðtÞðz + 1Þn; i = 0;1: (Equation 69)

In addition, let pl
nðtÞ = pl

0;nðtÞ+pl
1;nðtÞ denote the probability of having n transcripts that belong to

daughter copy l at time t and let Flðt; zÞ = Fl
0ðt; zÞ+Fl

1ðt; zÞ be the corresponding generating function.

Then Equation 68 can be converted into the PDEs

vtF
l
0 = � dzvzF

l
0 + s0F

l
1 � s0

1F
l
0;

vtF
l
1 = sðtÞzFl

1 � dzvzF
l
1 + s0

1F
l
0 � s0F

l
1:

(Equation 70)
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For any t˛ ½0;wT �, let aðtÞ denote the state of the mother copy and let XðtÞ denote the number of mRNA

molecules at time t. For any t˛ ½wT ;T � and j = A;B, let ajðtÞdenote the state of daughter copy j and let XjðtÞ
denote the number of mRNA molecules that belong to daughter copy j at time t. Since the two daughter

copies inherit the gene state of the mother copy at replication, we have

aAðwTÞ = aBðwTÞ = aðwTÞ:
Since all molecules are allocated to daughter copy A and no molecules are allocated to daughter copy B at

replication, we have

XAðwTÞ = XðwTÞ;XBðwTÞ = 0:

Since aAðwTÞ = aBðwTÞ, the initial distributions for the two daughter copies are correlated and thus the

dynamics for the two daughter copies after replication are not independent of each other. However,

once the gene state of the mother copy at replication is fixed (conditioned on aðwTÞ = k with k = 0; 1),

the initial distributions for the two daughter copies are (conditionally) independent of each other, and

hence the dynamics for the two daughter copies after replication are also (conditionally) independent of

each other. We now use the conditional independence of the two daughter copies to compute the gener-

ating function F after replication.

Recall that Fðt; zÞ is the generating function of

pnðtÞ = P
�
XAðtÞ + XBðtÞ = n

�
;

which denotes the probability of having n mRNA molecules in the cell at time t. Moreover, recall that

FAðt; zÞ is the generating function of

pA
n ðtÞ = P

�
XAðtÞ = n

�
;

which denotes the probability of having n mRNA molecules that belong to daughter copy A at time t. In

addition, recall that FBðt; zÞ is the generating function of

pB
n ðtÞ = P

�
XBðtÞ = n

�
;

which denotes the probability of having n mRNA molecules that belong to daughter copy B at

time t. Using the probabilistic notation, the generating functions Fðt;zÞ, FAðt;zÞ, and FBðt; zÞ can be repre-

sented by

Fðt; zÞ = Eðz + 1ÞXAðtÞ+XBðtÞ; FAðt; zÞ = Eðz + 1ÞXAðtÞ; FBðt; zÞ = Eðz + 1ÞXBðtÞ;

where 1A denotes the indicator function of the set A.

We now make a crucial observation that conditioned on aðwTÞ = j, i.e. the gene state of the mother

copy is j at replication, the dynamics faAðtÞ;XAðtÞgwT % t%T for daughter copy A and the dynamics

faBðtÞ;XBðtÞgwT % t%T for daughter copy B are independent of each other. This shows that

Fðt; zÞ =
P1
k = 0

E
h
ðz + 1ÞXAðtÞ+XBðtÞ

���aðwTÞ = k
i
PðaðwTÞ = k Þ

=
P1
k = 0

E
h
ðz + 1ÞXAðtÞ

���aðwTÞ = k
i
E
h
ðz + 1ÞXBðtÞ

���aðwTÞ = k
i
FkðwT ;0Þ;

(Equation 71)

where we have used the fact that FkðwT ; 0Þ = PðaðwTÞ = kÞ. Note that E½ðz + 1ÞXAðtÞ
���aðwTÞ = k� is the

generating function of pA
n ðtÞ conditioned on aðwTÞ = k. Similarly to the proof of Equation 56, it is easy

to prove that

E
h
ðz + 1ÞXAðtÞ

���aðwTÞ = k
i
=
X1
j = 0

L0jðt � wT ; zÞFA
j

�
wT ;e�dðt�wTÞz

��aðwTÞ = k
�
; (Equation 72)

where L0j , i; j = 0; 1 are functions obtained from Lj by substituting the parameters r, a, b, and u with the pa-

rameters r 0, a0, b0, and u0, respectively,

FA
0

	
wT ; z

����aðwTÞ = 0



=
F0ðwT ; zÞ
F0ðwT ;0Þ; FA

1

	
wT ; z

����aðwTÞ = 0



= 0;

and
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FA
0

	
wT ; z

��aðwTÞ = 1
�
= 0; FA

1

�
wT ; z

��aðwTÞ = 1



=
F1ðwT ; zÞ
F1ðwT ;0Þ :

Note that E½ðz + 1ÞXBðtÞ
���aðwTÞ = k� is the generating function of pB

nðtÞ conditioned on aðwTÞ = k. Similarly to

the proof of Equation 72, we have

E
h
ðz + 1ÞXBðtÞ

���aðwTÞ = k
i
=
X1
j = 0

L0jðt � wT ; zÞFB
j

�
wT ; e�dðt�wTÞz

��aðwTÞ = k
�
; (Equation 73)

where

FB
0

�
wT ; z

��aðwTÞ = 0
�
= 1; FA

1

�
wT ; z

��aðwTÞ = 0
�
= 0;

and

FB
0

�
wT ; z

��aðwTÞ = 1
�
= 0; FA

1

�
wT ; z

��aðwTÞ = 1
�
= 1:

Inserting Equations 72 and 73 into Equation 71, we finally obtain the generating function F after replica-

tion, i.e.

Fðt; zÞ = L
0
0ðt � wT ; zÞ2F0

�
wT ;e�dðt�wTÞz

�
+ L

0
1ðt � wT ; zÞ2F1

�
wT ; e�dðt�wTÞz

�
; t ˛ ½wT ;T �: (74)

In summary, we have derived the analytical expression of the generating function F at any time t˛ ½0;T �
within a cell cycle, which is given by

Fðt; zÞ =

8>>>><
>>>>:

X1
i = 0

Liðt; zÞFi

�
0;e�dtz

�
; t ˛ ½0;wT �;

X1
i = 0

L
0
iðt � wT ; zÞ2Fi

�
wT ;e�dðt�wTÞz

�
; t ˛ ½wT ;T �;

where FiðwT ; zÞ, i = 0; 1 are determined by Equations 66 and 67. The time-dependent distribution of the

mRNA number can be recovered by taking the derivatives of the generating function F at z = � 1.
Derivation of the generating functions F0 and F1 after replication

We next compute the generating functions Fi, i = 0; 1 after replication. Recall that Fiðt; zÞ is the generating

function of

pi;nðtÞ = P
�
aAðtÞ = i;XAðtÞ + XBðtÞ = n

�
;

which denotes the probability of having nmRNAmolecules in the cell at time t when the daughter copy A is

in state i. In addition, recall that FA
i ðt; zÞ is the generating function of

pA
i;nðtÞ = P

�
aAðtÞ = i;XAðtÞ = n

�
;

which denotes the probability of having nmRNA molecules that belong to daughter copy A at time t when

daughter copy A is in state i. It is easy to see that the generating functions Fiðt; zÞ and FA
i ðt; zÞ can be rep-

resented by

Fiðt; zÞ = Eðz + 1ÞXAðtÞ+XBðtÞ1faAðtÞ = ig;FA
i ðt; zÞ = Eðz + 1ÞXAðtÞ1faAðtÞ = ig;

where 1A denotes the indicator function of the set A.

We now make a crucial observation that conditioned on aðwTÞ = j, i.e. the gene state of the mother copy

is j at replication, the dynamics faAðtÞ;XAðtÞgwT % t%T for daughter copy A and the dynamics

faBðtÞ;XBðtÞgwT % t%T for daughter copy B are independent of each other. This shows that

Fiðt; zÞ =
P1
k = 0

E
h
ðz + 1ÞXAðtÞ+XBðtÞ1faAðtÞ = ig

���aðwTÞ = k
i
PðaðwTÞ = k Þ

=
P1
k = 0

E
h
ðz + 1ÞXAðtÞ1faAðtÞ = ig

���aðwTÞ = k
i
E
h
ðz + 1ÞXBðtÞ

���aðwTÞ = k
i
FkðwT ; 0Þ;

(Equation 75)
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where we have used the fact that FkðwT ;0Þ = PðaðwTÞ = kÞ. Note that E½ðz + 1ÞXAðtÞ1faAðtÞ = ig
���aðwTÞ = k� is

the generating function of pA
i;nðtÞ conditioned on aðwTÞ = k. Similarly to the proof of Equations 66 and 67, it

is easy to prove that

E
h
ðz + 1ÞXAðtÞ1faAðtÞ = ig

���aðwTÞ = k
i
=
X1
j = 0

K 0
ijðt � wT ; zÞFA

j

�
wT ; e�dðt�wTÞz

��aðwTÞ = k
�
;

(Equation 76)

where K 0
ij, i; j = 0; 1 are functions obtained from Kij by substituting the parameters r, a, b, u, and v with the

parameters r 0, a0, b0, u0, and v 0, respectively,

FA
0

	
wT ; z

����aðwTÞ = 0



=
F0ðwT ; zÞ
F0ðwT ;0Þ; FA

1

	
wT ; z

����aðwTÞ = 0



= 0;

and

FA
0

	
wT ; z

��aðwTÞ = 1
�
= 0; FA

1

�
wT ; z

��aðwTÞ = 1



=
F1ðwT ; zÞ
F1ðwT ;0Þ :

Inserting Equations 73 and 76 into Equation 75, we obtain

Fiðt; zÞ = K
0
i0ðt � wT ; zÞL0

0ðt � wT ; zÞF0

�
wT ;e�dðt�wTÞz

�
+K

0
i1ðt � wT ; zÞL0

1ðt � wT ; zÞF1

�
wT ;e�dðt�wTÞz

�
; t ˛ ½wT ;T �:

Modified FSP algorithm

Input

1. All model parameters Vb;g;b;w;d;r;s0;s1;s1
0

2. Truncation size N = 8r=deff

3. Initial distribution of the gene state and mRNA number

Output

1. the time-dependent mRNA distribution across cell cycles

2. the steady-state mRNA distribution at birth

3. the steady-state mRNA distribution at replication

4. the steady-state mRNA distribution at division

5. the steady-state mRNA distribution for lineage measurements

6. the steady-state mRNA distribution for population measurements

Algorithm

1. Set the initial Hellinger distance D = 1

2. Generate the initial distribution of the gene state and mRNA number while D> 10�4

3. Solve the truncated CME before replication numerically using FSP

4. Generate the distribution of the gene state and mRNA number for the two daughter copies at

replication

5. Solve the truncated CME after replication numerically using FSP

6. Generate the distribution of the gene state and mRNA number for the mother copy at birth in the

next generation based on binomial partitioning of molecules at division

7. Compute the Hellinger distance D between the mRNA distributions at birth in two successive

generations end

8. Record the steady-state mRNA distribution at birth

9. Solve the truncated CME before replication numerically using FSP
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10. Record the steady-state mRNA distribution at replication

11. Compute alinn = 1
T

RwT
0 pnðtÞdt for lineage measurements

12. Compute apopn = 2g
RwT
0 pnðtÞe�gtdt for population measurements

13. Solve the truncated CME after replication numerically using FSP

14. Record the steady-state mRNA distribution at division

15. Compute blin
n = 1

T

R T
wT pnðtÞdt for lineage measurements

16. Compute bpop
n = 2g

R T
wT pnðtÞe�gtdt for population measurements

17. Compute the steady-state mRNA distribution plin
n = alinn +blin

n for lineage measurements

18. Compute the steady-state mRNA distribution ppop
n = apopn +bpop

n for population measurements
Special cases of the time-dependent mRNA distribution

Next we focus on two non-trivial special cases where the time-dependent distribution given in Equa-

tion 11 can be greatly simplified. We assume the same setup as Figure 2, i.e. initially there is no

mRNA molecules in the cell and the gene is in the inactive state. In this case, we have F0ð0; zÞ = 1 and

F1ð0; zÞ = 0.

The first special case occurs when the gene switches rapidly between the two states, i.e. s0; s1 [ d;g.

In this case, we have a;b; r[ 1 and thus the confluent hypergeometric function term in Equation 9

reduces to

Mða;b; zÞz
XN
n = 0

�a
b

�n zn

n!
= eaz=b:

Direct computations show that the generating function given in Equation 10 reduces to Fðt; zÞ = emðtÞz ,
where

mðtÞ =


l
�
ebgt � e�dt

�
; t ˛ ½0;wT �;

mðwTÞe�dðt�wTÞ + 2l0
�
ebgðt�wTÞ � e�dðt�wTÞ�; t ˛ ½wT ;T �;

with l = au=b and l0 = a0u0=b0. Then the time-dependent mRNA distribution is given by

pnðtÞ =
mðtÞn
n!

e�mðtÞ;

which is a Poisson distribution with mean mðtÞ.

The second special case occurs when the mRNA is produced in a bursty manner, i.e. s0 [s1 and r= s0 is

finite.74 In this case, the gene is mostly in the inactive state, but when it becomes active, it produces a large

number of mRNA molecules. Clearly, we have b[ a, u=b is finite, and thus the confluent hypergeometric

function terms in Equation 9 reduce to

Mð1+ a � b;1 � b;uzÞ = euzMð � a; 1 � b; � uzÞzeuz
XN
n = 0

ð� aÞn
n!

�uz
b

�n
= euzð1 � uz=bÞa;

Mða;b;uzÞz
XN
n = 0

ðaÞn
n!

�uz
b

�n
= ð1 � uz=bÞ� a

;

where we have used Kummer’s transformation in the first equation. Straightforward computations show

that the generating function given in Equation 10 can be simplified as

Fðt; zÞ =

8>>>><
>>>>:

	
1 � AðtÞz
1 � BðtÞz


a

; t ˛ ½0;wT �;

	
1 � AðwTÞe�dðt�wTÞz
1 � BðwTÞe�dðt�wTÞz


a
 
1 � 2bwAðt � wTÞz
1 � 2bwBðt � wTÞz

!2a0

; t ˛ ½wT ;T �;

where AðtÞ = ðu =bÞe�dt is a decay term due to mRNA degradation and BðtÞ = ðu =bÞebgt is the mean burst

size at time t˛ ½0;wT �. In the bursty limit, the burst frequency for each gene copy decreases from s1 to s01
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upon replication. When s01 = s1=2, the total burst frequency does not change when replication

occurs and dosage compensation is perfect. In this case, we have 2a0 = a and the generating function F re-

duces to

Fðt; zÞ =
	
1 � AðtÞz
1 � BðtÞz


a

; t ˛ ½0; T �:

Then the time-dependent mRNA distribution is given by

pnðtÞ =
ðaÞn
n!

	
BðtÞ

1+BðtÞ

n	1+AðtÞ

1+BðtÞ

a

2F1

	
� n; � a; 1 � a � n;

AðtÞð1+BðtÞÞ
BðtÞð1+AðtÞÞ



:

If the mRNA has a much shorter lifetime compared to the cell cycle duration, i.e. d[g, then AðtÞz 0 and

thus the mRNA number has the negative binomial distribution

pnðtÞ =
ðaÞn
n!

	
BðtÞ

1+BðtÞ

n	 1

1+BðtÞ

a

:

Special cases of the steady-state mRNA distribution

In some special cases, the integrals in Equations 31 and 32 can be computed explicitly. The first case occurs

whenmRNA is unstable and the gene switches rapidly between the two states. In this case, we have a;b[

1 and thusMða;b; zÞzeaz=b. It then follows from Equations 26 and 27 that the generating function Fssðt; zÞ at
any time within a cell cycle is given by

Fssðt; zÞ =


elebgt z ; t ˛ ð0;wT �;
e2l0ebgðt�wTÞz ; t ˛ ðwT ; T �;

where l = au=b and l0 = a0u0=b0. Hence the steady-state distribution for lineage measurements

can be recovered from the generating function FlinðzÞ given in Equation 31 by taking the derivatives at

z = � 1, i.e.

plin
n =

1

ðlog 2Þbn!
h
Gðn; lÞ � G

�
n;2bwl

�
+ Gðn; 2l0Þ � G

�
n;2bð1�wÞ+ 1l0

�i
;

whereGðn; lÞ = RN
l

tn� 1e� tdt is the incomplete gamma function. Similarly, the steady-state distribution for

population measurements can be recovered from the generating function FpopðzÞ given in Equation 32 and

is given by

ppop
n =

2l1=b

bn!

�
G

	
n � 1

b
; l



� G

	
n � 1

b
;2bwl


�

+
21�wð2l0Þ1=b

bn!

�
G

	
n � 1

b
; 2l0



� G

	
n � 1

b
; 2bð1�wÞ+ 1l0


�
:

The second case occurs when mRNA is unstable and the gene switches slowly between the two states. In

this case, we have a;b � 1 and thus

Mða;b; zÞz1 +
a

b

XN
n = 1

zn

n!
= 1 +

a

b
ðez � 1Þ;Mð1; 2; zÞ =

1

z
ðez � 1Þ:

From Equations 26 and 27, the generating function Fssðt; zÞ at any time within a cell cycle is given by

Fssðt; zÞ =

8<
:pb

off +pb
one

uebgt z ; t ˛ ð0;wT �;
pr
off +pr

one
2u0ebgt z ; t ˛ ðwT ; T �:

Hence it follows from Equation 31 that the lineage distribution is given by

plin
n =

�
wpb

off + ð1 � wÞpr
off

�
d0ðnÞ

+
1

ðlog 2Þbn!
n
pb
on

�
Gðn;uÞ � G

�
n;2bwu

� �
+pr

on

h
Gðn; 2u0 Þ � G

�
n;2bð1�wÞ+ 1u

0
� io

;

where d0ðnÞ is the Kronecker delta which takes the value of 1 when n = 0 and takes the value of 0 otherwise,

and it follows from Equation 32 that the population distribution is given by
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ppop
n =

��
2 � 21�w

�
pb
off +

�
21�w � 1

�
pr
off

�
d0ðnÞ+ 2u1=bpb

on

bn!

�
G

	
n � 1

b
; u



� G

	
n � 1

b
;2bwu


�

+
21�wð2u0 Þ1=bpr

on

bn!

�
G

	
n � 1

b
;2u

0



� G

	
n � 1

b
;2bð1�wÞ+ 1u

0

�

:

Further moment analysis for lineage and population measurements

Recall that the steady-state means of the mRNA number for lineage and population measurements are

given by

CnDlin =
1

T

Z T

0

CnD
ssðtÞdt; CnDpop = 2g

Z T

0

CnD
ssðtÞe�gtdt (Equation 77)

If gene replication is not taken into account, i.e. w = 1, we have shown that the steady-state mRNA distri-

bution at any time within a cell cycle is given by

CnD
ssðtÞ = l

"
ebgt � 2h+ 1 � 2h+b

2h+ 1 � 1
e�dt

#
: (Equation 78)

Inserting Equation 88 into Equation 77 gives the explicit expressions of the lineage and population

means, i.e.

CnDlin =
l

log 2

"
2b � 1

b
�
�
2 � 2b

�ð2h � 1Þ
h
�
2h+ 1 � 1

�
#
; CnDpop =

l
�
2 � 2b

�ðh+ bÞ
ð1 � bÞðh+ 1Þ : (Equation 79)

The explicit expression in the general case is too complicated and is omitted here.

We have seen that the mRNA means for the two types of measurements have different expressions. A

natural question is how far the lineage statistics deviates from the population one. Figures S2A and S2B

show the the ratio of the lineage mean to the population mean, R1 = CnDlin=CnDpop, as functions of b, h,

w, and s01=s1. Clearly, R1 is always greater than 1, which means that the lineage mean is greater than the

population mean.46 As well, R1 is largest when the mRNA synthesis rate scales with cell volume ðb = 1Þ,
mRNA is unstable ðh [ 1Þ, and there is no dosage compensation ðs01 = s1Þ. When these three conditions

are satisfied, it follows from Equation 35 that

CnDðtÞ =


legt ; t ˛ ð0;wT �;
21+wlegðt�wTÞ; t ˛ ðwT ;T �:

In this case, the lineage and population means can be obtained exactly as

CnDlin =
l

log 2
ð3 � 2wÞ; CnDpop = ð2 log 2Þlð2 � wÞ;

and it is easy to see that R1 attains its maximum of Rmax
1 z1:1 when wz0:6 (Figure S2B). In other words, the

lineage mean can differ from the population mean by at most 10%.

Moreover, we have also compared the variances of themRNA number for lineage and populationmeasure-

ments and the ratio R2 of the lineage variance to the population variance is shown in Figures S2C and S2D as

functions of b, h, w, and s01=s1. Similarly, R2 is also large when the mRNA synthesis rate scales with cell vol-

ume, mRNA is unstable, and there is no dosage compensation.
Fluctuation relation between gene expression and cell volume

Here we give the proof of Equation 38. For simplicity, we only focus on populationmeasurements; the proof

for lineage measurements is totally the same. Note that the Fano factor of the mRNA number in a popu-

lation of cells can be decomposed as

FanomRNA =
Cn2Dpop � CnD

2
pop

CnDpop
= 1 � CnDpop +

Cn2Dpop � CnDpop
CnDpop

: (Equation 80)

When mRNA synthesis is balanced ðb = 1Þ, it follows from Equations 35 and 37 that the mean mRNA num-

ber scales with the birth volume Vb and the second factor moment scales with V2
b , i.e.
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CnDpopfVb; Cn2Dpop � CnDpopfV2
b : (Equation 81)

This is because the parameters u, u0, l, l0, m, and m are all proportional to Vb when b = 1. On the other hand,

the cell volume distribution for population measurements is given by Equation 41. It is easy to see that the

mean and variance of cell volume in a population of cells are given by

hVipop = 2ðlog 2ÞVb;
�
V2
�
pop

� hVi2pop = 2
h
1 � 2 ðlog 2Þ2

i
V2
b :

Hence the Fano factor of cell volume is given by

Fanovolume =

�
V 2
�
pop

� hVi2pop
CV Dpop

=
1 � 2 ðlog 2Þ2

log 2
Vb; (Equation 82)

which also scales with Vb. Inserting Equations 81 and 82 into Equation 80, we immediately obtain

Equation 38.
Comparison with the conventional telegraph model

Another important question is whether the conventional telegraph model without a cell cycle description

can capture the dynamic properties of the detailed telegraph model with such a description. Note that this

is impossible when gene replication is taken into account since the mRNA distribution for the former has at

most two modes, while the latter can have more than two modes. Hence, in the following, we only focus on

the case when gene replication is not taken into account, i.e. w = 1.49

Recall that the conventional telegraph model (with no volume-dependent rates) is characterized by the

effective reactions

G/
s1

G�; G� /
s0

G; G� /
�r
G� +M; M/

deff
B;

where deff = d +g is the effective decay rate of mRNA. To make a fair comparison of the two models, the

mRNA synthesis rate r of the conventional model is taken to be the time-average of the detailed model

within a cell cycle, i.e.

r =
1

T

Z T

0

rVðtÞbdt =

�
2b � 1

�
rVb

b

ðlog 2Þb :

It is well known12 that the steady-state mRNA mean for the conventional model is given by

CnDconv =
s1

s0 + s1
$

r

deff
=

�
2b � 1

�ðh+ bÞl
ðlog 2Þbðh+ 1Þ ; (Equation 83)

where l = au=b and h = d=g. Interestingly, when the mRNA synthesis rate is proportional to cell volume

ðb = 1Þ, we have CnDconv = l=ðlog 2Þ, which agrees with the lineage mean given in Equation 79. When the

mRNA synthesis rate is independent of cell volume ðb = 0Þ, we have CnDconv = hl=ðh + 1Þ, which coincides

with the population mean given in (79). In addition, it follows from Equations 79 and 83 that the means for

the conventional and detailed models are related by

CnDconv =

�
2b � 1

�ð1 � bÞ
ðlog 2Þb�2 � 2b

�CnDpop:
This shows that the mean ratio R0 = CnDconv=CnDpop for the two models only depends on b (Figure S3A). It at-

tains its minimum R0
min = 1 when b = 0 and attains its maximum R0

max = 1=2 ðlog 2Þ2z1:04 when b = 1. As a

result, the conventional model can accurately capture the mRNA mean of the detailed model.

While the conventional model can capture themean of the detailedmodel, it cannot accurately capture the

mRNA distribution. To see this, recall that the steady-state distribution pconv
n of the mRNA number for the

conventional telegraph model has the generating function12

FconvðzÞ =
XN
n = 0

pconv
n ðz + 1Þn = Mða;b;uzÞ; (Equation 84)

where a = s1=deff , b = ðs0 +s1Þ=deff , and u = r=deff . Figure S3B illustrates the Hellinger distance be-

tween the distributions for the two models as a function of b and h. It can be seen that they coincide
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with each other when the transcription rate is volume-independent ðb = 0Þ and mRNA is unstable ðh [ 1Þ.
In other cases, they deviate from each other significantly — the conventional model has a much smaller

gene expression noise than the detailed model (Figure S3C). This can be explained as follows. When

w = 1, the steady-state inactive probability of the gene at birth is pb
off = ðb � aÞ=b and the active proba-

bility of the gene at birth is pb
on = a=b. Hence for unstable mRNAs, the time-dependent generating func-

tion can be simplified significantly as

Fssðt; zÞ = b � a

b
L0ðt; zÞ+ a

b
L1ðt; zÞ = M

�
a;b;uebgtz

�
; t ˛

	
0;T

�
: (Equation 85)

In particular, when b = 0 and h[ 1, the steady-state mRNA distribution at any time within a cell cycle is

independent of time t. Hence the generating functions of the lineage and population distributions are

the same and are given by

FlinðzÞ = FpopðzÞ = Mða;b;uzÞ; (Equation 86)

where a = s1=d, b = ðs0 +s1Þ=d, and u = r=d. When b = 0 and h[ 1, we have r = r and d= deffz 1. In

this case, the two generating functions given in Equations 84 and 86 are approximately equal and thus the

conventional model makes the correct prediction. We emphasize that there have been numerous studies

that estimated the rate constants of stochastic gene expression dynamics based on the conventional tele-

graph model.9,19 Our results suggest that parameters estimated using this approach maybe unreliable.

While the conventional model fails to capture the mRNA distribution of the detailed model, we find that

that it is capable of capturing the modality (unimodality or bimodality) of the distribution. To see this,

following,91,92 we define the strength of bimodality as

k =
Hlow � Hvalley

Hhigh
;

where Hlow is the height of the lower peak, Hhigh is the height of the higher peak, and Hvalley is the height of

the valley between them. For unimodal distributions, k is automatically set to be 0. For bimodal distribu-

tions, k is a quantity between 0 and 1 since Hvalley <Hlow %Hhigh. In general, to display strong bimodality,

the following two conditions are necessary: (i) the two peaks should have similar heights and (ii) there

should be a deep valley between them. The former ensures that the time periods spent in the low and

high expression states are comparable, while the latter guarantees that the two expression levels are distin-

guishable. Clearly, k is large if both conditions are satisfied and is small if any one of the two conditions is

violated. Hence, k serves as an effective indicator that characterizes the strength of bimodality.

Figures S3D and S3E illustrate k as a function of the gene switching rates s0 and s1 for the two models.

Clearly, both models display unimodality in the regime of fast gene switching and display bimodality in

the slow switching regime. Furthermore, we find that the regions in parameter space where the twomodels

show bimodality are very close to each other, except that the detailedmodel needs a larger gene activation

rate s1 to obtain the same strength of bimodality (shown by the blue and orange dashed lines in

Figures S3D and S3E). This indicates the two models in general show the same modality but the heights

of the modes may be different.

Emergence of concentration homeostasis

Here we focus on two special cases for mRNA to display concentration homeostasis. The first special case

takes place where gene replication is not taken into account ðw = 1Þ, the gene activation and inactivation

probabilities at birth are given by pb
off = ðb � aÞ=b and pb

on = a=b. This implies that m = 0 and thus the

steady-state mean at birth can be simplified to a large extent as

CnDssð0Þ =
l
�
2h+b � 1

�
2h+ 1 � 1

: (Equation 87)

Inserting this equation into Equation 35 yields

CnD
ssðtÞ = l

"
ebgt � 2h+ 1 � 2h+b

2h+ 1 � 1
e�dt

#
: (Equation 88)

In particular, when b = 1, we have CnDssð0Þ = l and CnDssðtÞ = legt = ðl =VbÞVðtÞ. In this case, the mRNA

displays concentration homeostasis, i.e. constant mean concentration across the cell cycle.
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Another special case occurs when the mRNA is produced in a bursty manner ðs0 [s1Þ and when dosage

compensation is perfect ðs01 = s1 =2Þ. In this case the gene is mostly off and thus pb
offzpr

offz1. This further

implies that l0 = 2bw� 1l and m = m0 = 0. Inserting these equations into Equation 36 shows that the steady-

state mean at birth is still given by Equation 87 and the time-dependent mean under cyclo-stationary con-

ditions is still given by Equation 88. In particular, when b = 1, we have CnDssð0Þ = l and CnDssðtÞ = legt =

ðl =VbÞVðtÞ. Hence when mRNA synthesis is balanced and bursty and when dosage compensation is per-

fect, the mRNA also displays concentration homeostasis.
Estimation of se in naturally occurring systems

To determine the value of se in real systems, we examined the lineage data collected in E. coli and haploid

fission yeast cells using a mother machine.36,84 The E. coli data set contains the lineage measurements of

cell length at three different temperatures (25o C, 27o C, and 37o C). The fission yeast data set contains the

lineage measurements of cell area under seven different growth conditions (Edinburgh minimal medium

(EMM) at 28o C, 30o C, 32o C, and 34o C and yeast extract medium (YE) at 28o C, 30o C, and 34o C).

The inference of se can be divided into the following three steps. First, the mean of the birth volume Vb

across all generations gives an estimate of v. Next, the slope of the regression line of the division volume

Vd on the birth volume Vb gives an estimate of a. Finally, since a and v have been determined, se can be

estimated as the sample standard deviation of e = Vd � aVb � ð2 � aÞv. The estimated values of se in

E. coli and fission yeast under all growth conditions are listed in Table S2.
Analytical distributions for the model with stochastic cell volume dynamics

Given the values of the four variables ab,Nb, Vb, and T , the generating function F at any time t˛ ½0;T �within
a cell cycle is given by Equation 44. To proceed, let PðkÞði;n; x; tÞ = PðkÞðab = i;Nb = n;Vb = x;T = tÞ
denote the joint distribution of the four variables in generation k. Then the generating function F at any

fixed proportion q˛ ½0; 1� of the cell cycle in that generation is given by

X1
i = 0

XN
n = 0

Z N

0

Z N

0

Fðqt; zjab = i;Nb = n;Vb = x;T = tÞPðkÞði; n; x; tÞdxdt: (Equation 89)

We next focus on the mRNA distribution in generation k + 1. Similarly, once the values of the four variables

are fixed, the generating functions Fi, i = 0; 1 at division are given by Equation 14, i.e.

FiðT ; zjab;Nb;Vb; TÞ =
X1
j = 0

~KijðzjVb;TÞFj

�
0;e�dTz

��ab;Nb

�
; (Equation 90)

where the initial conditions Fið0;zÞ, i = 0; 1 are determined by Equation 45. To proceed, let ad denote the

state of daughter copy A at division, letNd denote the mRNA number at division, and let Vd denote the cell

volume at division. From Equation 90, we know the conditional joint distribution of ad and Nd , i.e.

Pðad = j;Nd = mjab = i;Nb = n;Vb = x; T = tÞ:
Hence the joint distribution of ad , Nd , Vb, and T in generation k is given by

PðkÞðad = j;Nd = m;Vb = x;T = tÞ

=
X1
i = 0

XN
n = 0

Pðad = j;Nd = mjab = i;Nb = n;Vb = x;T = tÞPðkÞði; n; x; tÞ

From this it follows that the joint distribution of ad , Nd , and Vd in generation k is given by

PðkÞðad = j;Nd = m;Vd = yÞ =

Z N

0

PðkÞðad = j;Nd = m;Vd = y;T = tÞdt

=

Z N

0

PðkÞðad = j;Nd = m;Vb = e�gty; T = tÞe�gtdt:

Since we have assumed binomial partitioning of molecules at division, the joint distribution of ab, Nb, and

Vb in generation k + 1 is given by
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Pðk +1Þðab = i;Nb = n;Vb = xÞ = 2PðkÞðad = i;Nd = m;Vd = 2xÞ
 
m

n

!	
1

2


m

= PðkÞðad = i;Nd = m;Vd = 2xÞ
 
m

n

!	
1

2


m� 1

:

Hence the joint distribution of the four variables ab, Nb, Vb, and T in generation k + 1 is given by

Pðk + 1Þði;n; x; tÞ = Pðk + 1Þðab = i;Nb = n;Vb = xÞPðT = tjVb = xÞ; (91)

where the conditional distribution of T given Vb can be computed from Equation 43 as

PðT = tjVb = xÞ =
gxegtffiffiffiffiffiffiffiffiffiffiffi
2ps2

e

p exp

"
�
�
xegt � ax � ð2 � aÞv2

�
2s2

e

#
: (Equation 92)

Applying Equations 89 and 91 repeatedly, we can compute the exact mRNA distribution at any time within

a cell cycle in all generations. Finally, the steady-state joint distribution of the four variables ab,Nb, Vb, and

T is given by

Pssði;n; x; tÞ = lim
k/N

PðkÞði; n; x; tÞ:

Inserting this equation into Equation 89 gives the transient mRNA distribution under cyclo-stationary

conditions.

Once the joint distribution of the four variables is known, it follows from Equation 89 that the steady-state

mRNA distribution for lineage measurements is given by

F linðzÞ =
1

CTD

X1
i = 0

XN
n = 0

Z N

0

Z N

0

� Z t

0

Fðt; zjab = i;Nb = n;Vb = x; T = tÞdt
�
Pssði; n; x; tÞdxdt;

(Equation 93)

where CTDzlogð2Þ=g is the mean doubling time. The exact expression for the steady-state population dis-

tribution is difficult to obtain. However, when the variability is cell cycle duration is small ðse � 1Þ, an
approximation of the steady-state population distribution is given by

FpopðzÞ = 2g
X1
i = 0

XN
n = 0

Z N

0

Z N

0

� Z t

0

Fðt; zjab = i;Nb = n;Vb = x;T = tÞe�gtdt

�
Pssði;n; x; tÞdxdt:

Note that when the cell volume dynamics is stochastic, the analytical mRNA distributions involve multiple

integration, which is difficult to compute using the conventional multi-grid method. An alternative strategy

to compute the multiple integration is to use the Monte Carlo method with the joint distribution

Pssði; n; x; tÞ being randomly sampled.
ENM approximations for stochastic cell volume dynamics

Recall that before replication, there is only one gene copy in the cell and the EDM is given by Equation 29.

After replication, there are two gene copies in the cell and the EDM is given by Equation 30. At cell birth,

there is only one gene copy and thus the ENM approximation of the mRNA distribution is given by

pENM
birth ðnÞ =

Z N

0

pEDMðnjxÞPðVb = xÞdx;

where pEDMðnjVÞ is the steady-state distribution of the EDM given in Equation 29 and

PðVb = xÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � a

2ps2
e

s
e
� 4�a

2s2e
ðx� vÞ2

(Equation 94)

is the cell volume distribution at birth which is Gaussian.83 Similarly, we can construct the ENM approxima-

tions for the mRNA distributions at replication and division.

We next construct the ENM approximation for the mRNA distribution of lineage measurements. This is

much more complicated because for a given cell of volume V , it is unclear whether it has one or two
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gene copies. To determine the number of gene copies in the cell, we also need the information of the

birth volume Vb and the cell cycle duration T . Once the values of V , Vb, and T are known, the age of

the cell is t = ð1 =gÞlogðV =VbÞ. It has only one gene copy when t <wT and has two gene copies when

RwT . Hence the ENM approximation for the lineage distribution is given by

pENM
lin ðnÞ =

1

CTD

Z N

0

Z N

0

� Z t

0

pEDMðnjt; x; tÞdt
�
PðVb = x;T = tÞdxdt:

Here pEDMðnjt; x; tÞ is steady-state distribution of the EDM for a cell of age t given that the birth volume is x

and the cell cycle duration is t, and

PðVb = x;T = tÞ = PðVb = xÞPðT = tjVb = xÞ

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � a

p

2ps2
e

gxegt exp

"
� ðxegt � ax � ð2 � aÞv Þ2 + ð4 � aÞðx � vÞ2

2s2
e

#

is the joint distribution of Vb and T . Note that the reaction scheme given in Equation 29 should be used for

the EDM when t <wt and the reaction scheme given in Equation 30 should be used when tR wt.
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