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Visual neurons in the superior colliculus (SC) respond to both bright (On) and dark (Off)
stimuli in their receptive fields. This receptive field property is due to proper convergence
of On- and Off-centered retinal ganglion cells to their target cells in the SC. In this study,
we have compared the receptive field structure of individual SC neurons in two lines of
mutant mice that are deficient in retinotopic mapping: the ephrin-A knockouts that lack
important retinocollicular axonal guidance cues and the nAChR-β2 knockouts that have
altered activity-dependent refinement of retinocollicular projections. We find that even
though the receptive fields are much larger in the ephrin-A knockouts, their On–Off overlap
remains unchanged. These neurons also display normal level of selectivity for stimulus
direction and orientation. In contrast, the On–Off overlap is disrupted in the β2 knockouts.
Together with the previous finding of disrupted direction and orientation selectivity in the β2
knockout mice, our results indicate that molecular guidance cues and activity-dependent
processes play different roles in the development of receptive field properties in the SC.
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INTRODUCTION
Neurons in the visual system respond to specific features of
visual stimuli in their receptive fields (Kuffler, 1953; Hubel and
Wiesel, 1962). The receptive field (RF) properties are deter-
mined by precise and selective connections in the brain and
established by elaborative processes during development. For
example, the RFs of neurons in many visual structures are
organized into retinotopic maps, where neighboring neurons
respond to neighboring locations in the visual space (Cang
et al., 2005a,b; Wang and Burkhalter, 2007; Andermann et al.,
2011; Marshel et al., 2011). The topographically precise pro-
jections from the retina to their targets, such as the superior
colliculus (SC), are established by graded expression of molec-
ular guidance cues such as EphAs and ephrin-As, and refined
by activity-dependent processes driven by patterned sponta-
neous retinal activity (Cang and Feldheim, 2013). Disruption
of either process could result in profound deficits in retino-
topic mapping and subcortical visuomotor behaviors (Pfeiffen-
berger et al., 2006; Haustead et al., 2008; Wang et al., 2009). For
the RFs of individual SC neurons, their structure and selec-
tivity are disrupted when the patterns of retinal activity are
altered during development (the nAChR-β2−/− mice, Chan-
drasekaran et al., 2005; Wang et al., 2009). In contrast, the
consequences of deleting ephrin-As or EphAs on collicular RF
properties have not been studied, and as a result, the roles
of molecular guidance cues and activity-dependent processes
in the development of collicular RFs have not been directly
compared.

In addition to spatial location, visual RFs are also character-
ized by their On and Off properties. The parallel On and Off
pathways first diverge in the retina, with On- and Off-centered
ganglion cells (RGCs) responding, respectively, to light incre-
ment and decrement, and a small population of On–Off RGCs
responding to both (Kuffler, 1953). The On and Off pathways
converge in the SC such that the On/Off subregions in the RFs
of individual collicular neurons overlap almost completely (McIl-
wain and Buser, 1968; Cynader and Berman, 1972; Wang et al.,
2010b). This On–Off convergence in the SC is believed to be
important for detecting object salience, irrespective of its contrast
(Knudsen, 2011).

In this study, we have compared the functions of guidance
cues and activity-dependent processes in establishing the On–Off
convergence in the SC. Surprisingly, we find that even though
the RFs of SC neurons are much larger in the ephrin-A knockout
mice, their On–Off overlap remains unchanged. These neurons
also display normal level of direction and orientation selectivity.
In contrast, the On-Off overlap is disrupted in the nAChR-β2−/−
mice. Together with the previous finding of disrupted direction
and orientation selectivity in the β2−/− mice, our results indicate
that these two developmental processes play different roles in the
development of RF properties in the SC.

MATERIALS AND METHODS
ANIMALS
Ephrin-A2/A5 double and A2/A3/A5 triple mutant mice were orig-
inally generated by the Feldheim Lab at University of California
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at Santa Cruz by crossing of each single line (Pfeiffenberger et al.,
2006), and maintained in the animal facility at Northwestern Uni-
versity. Their genotypes were determined using the published
protocols (Frisén et al., 1998; Feldheim et al., 2000; Cutforth
et al., 2003). We previously studied the collicular RF properties
in mice that lack the β2 subunit of nicotinic acetylcholine recep-
tor (Wang et al., 2009) and in this study reanalyzed those data
in the same way as for ephrin-A KOs (details below). Similarly,
data from adult wild type C57BL/6 mice (Wang et al., 2010b) were
reanalyzed for comparison. Both genders were used and all exper-
iments were performed in accordance with protocols approved
by Northwestern University Institutional Animal Care and Use
Committee.

IN VIVO ELECTROPHYSIOLOGY
Following our published procedures (Wang et al., 2010b), adult
mice were anesthetized with urethane (1.2–1.3 g/kg in 10% saline
solution, i.p.) and supplemented with chlorprothixene (10 mg/kg
in 4 mg/ml water solution, i.m.). Atropine (0.3 mg/kg) and
dexamethasone (2.0 mg/kg) were injected subcutaneously. Addi-
tional urethane (0.2–0.3 g/kg) was administered as needed. A
tracheotomy was performed in some experiments and electro-
cardiograph leads were attached across the skin to monitor the
heart rate continuously throughout the experiment. The animal’s
temperature was monitored with a rectal thermal probe and main-
tained at 37◦C through a feedback heater control module (FHC).
Silicone oil was applied on the eyes to prevent from drying. A
craniotomy (4–8 mm2) was performed on the left hemisphere to
expose the brain for recording with 5–10 M� tungsten micro-
electrodes (FHC). The electrode was inserted vertically into the
overlying cortex at a distance of 0.7–1.5 mm lateral of the mid-
line suture and 0.2–0.8 mm anterior to the lambda suture. The
identification of the SC surface followed our published proce-
dure (Wang et al., 2010b). Only neurons within 300 μm below
the SC surface were included in our analysis, corresponding to
the superficial retinal recipient layers of the SC. Electrical signals
were acquired using a System 3 workstation (Tucker Davis Tech-
nologies). Only one unit at a time was recorded in most cases.
OpenSorter was used offline to remove occasional large electri-
cal artifacts, or to sort two very different waveforms in a few
cases. The animals were killed at the end of recordings by an over-
dose of euthanasia solution (150 mg/kg pentobarbital, in Euthasol,
Virbac).

VISUAL STIMULI AND DATA ANALYSIS
Visual stimuli were generated with customized Matlab programs
(Niell and Stryker, 2008) using the Psychophysics Toolbox exten-
sions (Brainard, 1997; Pelli, 1997). The stimuli were displayed on
a flat panel CRT video monitor (40 cm × 30 cm, 60 Hz refresh
rate, ∼35 cd/m2 mean luminance) placed 25 cm from the animal,
and delivered to the eye contralateral to the recorded hemisphere
while the ipsilateral eye was occluded. Stimulus sets included a
blank condition in which the screen was at mean luminance.
Responses to all such blank presentations were averaged to obtain
the spontaneous firing rate.

To determine RF structures of SC neurons, 5◦ light squares
were flashed at different locations on either a 13 × 13 or 11 × 11

grid with 5◦ spacing. The flashes stayed on for 500 ms on a
gray background and off for 500 ms between stimuli, and were
repeated for 4–6 times for each grid location in a pseudorandom
sequence. Spontaneous firing was analyzed in the blank stimulus
condition and the mean + 2 × SD of the spontaneous rate was
calculated as threshold. The responses to flashing spots at each
location were analyzed by counting spikes within a time window
of 200 ms (starting from 50 ms after flash onset or offset) in each
trial. The cell was considered responsive to On or Off at a given
grid location, if there were more spikes than the threshold in at
least 40% of the trials (Sarnaik et al., 2013). An On–Off overlap
ratio was then calculated as the number of grids that showed both
On and Off responses divided by the total number of responsive
locations regardless of On or Off polarity. Additionally, correla-
tion coefficients were calculated between On and Off responses
over the entire grid from raw spike rates without thresholding
(Wang et al., 2010b).

Full field and full contrast of drifting sinusoidal gratings were
presented to probe selectivity for stimulus direction/orientation
(0–360◦, 12 steps at 30◦ spacing) and spatial frequency (0.01–
0.32 cpd at six logarithmic steps; Wang et al., 2010a; Zhao et al.,
2013a). Temporal frequency was fixed at 2 cycle/s. Each stimulus
of given direction and spatial frequency (or a blank condition)
was presented for 1.5 s in a pseudorandom order for 4–6 tri-
als. The interval between stimuli was 0.5 s. The response to a
particular stimulus condition, R, was obtained by averaging the
number of spikes over the 1.5 s stimulus duration, across all
trials and subtracting the spontaneous rate. The preferred direc-
tion was determined as the one that gave maximum response
(Rpref ), averaging across all spatial frequencies. The preferred
spatial frequency was the one that gave peak response at this
direction. Responses across all directions at the preferred spa-
tial frequency, R(θ), were used for further analysis. The depth
of modulation was described using two parameters: (1) Direc-
tion Selectivity Index = Rpref /(Rpref + Ropp), where Rpref was the
response at θpref and Ropp at θpref +π and (2) Orientation Selec-
tivity Index = R′

pref /(R′
pref + Rorth), where R′

pref was the mean
response of Rpref and Ropp, Rorth was the mean response to the
two directions orthogonal to θpref . The tuning curves were fit-
ted with a sum of two Gaussians centered at θpref and θpref +π

using the nlinfit function in Matlab (Mathworks, Natick, MA,
USA), and the tuning width was calculated as the half-width at
half maximum of the fitted curve above the baseline. For mean
tuning curves, each curve was normalized to the peak response
and then aligned to the direction that elicited the maximum
response.

STATISTICAL ANALYSIS
All values were presented as mean ± SEM. Non-parametric tests
that do not require any assumptions about the distribution of the
data were used in all cases. Comparison of distributions was done
using the two-sample Kolmogorov–Smirnov test (K–S test) and
comparisons between means or medians of datasets were done
using two-sample Mann–Whitney test. All statistical tests were
evaluated at α = 5% probability of false positives. Two-sided sta-
tistical tests were performed. Statistical analyses and graphing were
done in MATLAB and Prism (GraphPad Software Inc.).
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RESULTS
DISRUPTED RECEPTIVE FIELDS IN SC NEURONS OF EPHRIN-A KO MICE
Ephrin-A2, A3, and A5 are the three main ephrin-As expressed
in the developing visual system in mice. In this study, we used
single unit recording to characterize the RFs of SC neurons in mice
lacking all three of the ephrins (triple knockouts, TKO), or two of
them (A2 and A5, double knockouts, DKO). To determine RF

FIGURE 1 | Disrupted receptive field structures in the SC of ephrin-A

knockout mice. (A,B) Receptive field of a SC neuron in WT mouse. A

shows peri-stimulus timing histograms (PSTH) in response to spots flashed
at different locations on a 13 × 13 grid in visual space. Scale bars are 50
spikes/s (y-axis, for firing rate in each 50 ms bin) and 1 s (x-axis). Both On
and Off responses were evoked within the receptive field, as indicated by
the two peaks in individual PSTHs. The receptive field structure determined
by the PSTHs is shown in B in a color scale (right, in spikes/s, for mean
firing rate in the 1 s stimulus duration). (C–H) Example receptive fields of
SC neurons in ephrin-A double (DKO) and triple KO (TKO) mice.

structure, we flashed small spots (5◦×5◦) at different positions in
the visual field (Wang et al., 2010b). Compared to wild type (WT)
SC neurons, which only responded to flashes within a small region
in the visual space (Figures 1A,B), the RFs of many SC neurons
in the ephrin-A KOs were much larger. By visual inspection, some
neurons in the mutant mice had multiple patches within their RFs
(e.g., Figures 1C,D; n = 36 out of 85 cells in DKO and 11/33 cells
in TKO), while others had single patches that still appeared larger
than in WT (Figures 1E,F; n = 16/85 in DKO and 8/33 in TKO).
A small number of cells even had very diffuse RFs that expanded
across almost the entire stimulus monitor (Figures 1G,H; n = 8/85
in DKO and 3/33 in TKO).

Because the RFs of many neurons in the ephrin-A KOs
had irregular shapes, they could not be fitted into 2-d
Gaussians as we previous did in WTs to quantify RF size
(Wang et al., 2010b). We thus simply counted the num-
ber of grid positions where visual responses were evoked
by the flashing spots (see Materials and Methods for
details). The RFs of SC neurons in ephrin-A KOs (DKOs:
mean = 894.7 ± 69.8◦degree2, median = 750.0 degree2, n = 85;
TKOs: mean = 819.7 ± 84.5 degree2, median = 700.0 degree2,
n = 33) indeed occupied much larger area compared to those in
the WT (mean = 516.3 ± 35.5 degree2, median = 400.0 degree2,
n = 101; p < 0.0001 Mann–Whitney test; Figure 2A). The
RFs were similarly enlarged in the DKOs and TKOs, consistent
with the notion that ephrin-A2 and A5 are the most impor-
tant cues in retinocollicular mapping (Feldheim et al., 2000;
Pfeiffenberger et al., 2006). We also examined whether the dis-
ruption was restricted to the azimuth axis of the visual space
since ephrin-As mediate the mapping of retinocollicular axons
along the naso-temporal axis (Cang and Feldheim, 2013). We
calculated the azimuth and elevation extent covered by indi-
vidual RFs and found that they were enlarged along both axes
in the ephrin-A KOs, though the disruption appeared more
severe along the azimuth axis (Figures 2D,G. Azimuth: WT,
mean = 32.8 ± 1.4◦, median = 30.0◦, n = 101; DKO,
mean = 46.3 ± 1.8◦, median = 50.0◦, n = 85, p < 0.0001; TKO,
mean = 49.6 ± 2.8◦, median = 60.0◦, n = 33, p < 0.0001; Ele-
vation: WT, mean = 30.0 ± 1.4◦, median = 25.0◦, n = 101;
DKO, mean = 37.7 ± 2.0◦, median = 35.0◦, n = 85,
p < 0.01; TKO, mean = 43.9 ± 2.8◦, median = 45.0◦, n = 33,
p < 0.0001; Mann–Whitney test). These results thus demon-
strate that axonal guidance cues are needed, either directly or
indirectly, for the development of spatially compact RFs of SC
neurons.

NORMAL ON–OFF OVERLAP IN EPHRIN-A KOs DESPITE DISRUPTED
RECEPTIVE FIELDS
Most visual neurons in WT SC respond to both bright (On) and
dark (Off) stimuli and the ON and Off regions overlap spatially
within their RFs (Wang et al., 2010b). Such On–Off overlap is a
conserved feature in the SC of all the species studied so far (McIl-
wain and Buser, 1968; Cynader and Berman, 1972; Rhoades and
Chalupa, 1977; Prevost et al., 2007), and is the basis of SC’s abil-
ity to detect salient visual events irrespective of contrast. We thus
investigated whether such a fine scale feature of RF organization
is disrupted in the ephrin-A KOs.

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 23 | 3

http://www.frontiersin.org/Neural_Circuits/
http://www.frontiersin.org/
http://www.frontiersin.org/Neural_Circuits/archive


Liu et al. On–off development in superior colliculus

FIGURE 2 | Quantification of SC receptive field structures.

(A) Comparison of receptive field size between SC neurons in WT mice
and ephrin-A DKOs, TKOs, and nAChR-β2 KOs. (B) Comparison of the
ON subregion size between groups. (C) Comparison of the OFF
subregion size between groups. (D–F) Comparison of receptive field

extent along the azimuth axis (D) and that of the On (E) and Off
subregions (F) between groups. (G–I) Comparison of receptive field
extent along the elevation axis (G) and that of the On (H) and Off
(I) between groups. All error bars represent SEM, and *p < 0.05,
**p < 0.01, and ***p < 0.001.

We first divided On and Off responses and analyzed their
subregion size separately. In the ephrin-A KOs, both ON
(DKO: mean = 650.0 ± 52.7 degree2, median = 500.0 degree2,
n = 85, p < 0.0001; TKO: mean = 594.7 ± 75.6 degree2,
median = 500.0 degree2, n = 33, p < 0.01; Mann–Whitney
test) and Off subregions (DKO: mean = 678.8 ± 62.2 degree2,
median = 525.0 degree2, n = 85, p < 0.0001; TKO:
mean = 564.4 ± 59.7 degree2, median = 500.0 degree2,
n = 33, p < 0.0001) were bigger than in WTs (ON,
mean = 400.5 ± 32.2 degree2, median = 300.0 degree2, n = 101;
Off, mean = 336.9 ± 26.6 degree2, median = 300.0 degree2,
n = 101). The subfield expansion in ephrin-A KOs was along
both elevation and azimuth axes, consistent with their enlarged
RF in general (Figure 2).

We next quantified On–Off overlap using an overlap ratio
for each neuron, calculated as the ratio of the number of grids
that showed both On and Off responses over the total num-
ber of responsive locations regardless of On or Off polarity.
The overlap ratio ranges from 0 to 1, with a value of 1 indi-
cating complete On–Off overlap, and 0 no overlap (or the cell

only has one subfield). Surprisingly, despite the disruption of
RF size, the On–Off overlap ratios in the ephrin-A KOs (e.g.,
Figure 3B; DKO: mean = 0.50 ± 0.03, median = 0.53, n = 85;
TKO: mean = 0.42 ± 0.05, median = 0.46, n = 33) were
similar to that in WT (e.g., Figure 3A; mean = 0.46 ± 0.03,
median = 0.50, n = 101; p = 0.47 and p = 0.94, respectively,
K–S test; Figure 3D). We also quantified the On–Off overlap by
calculating the correlation coefficient, which takes into account
response magnitude at each stimulus location. Again, the On–Off
correlations did not show a significant difference between ephrin-
A KOs (Figure 3E; DKO: mean = 0.68 ± 0.03, median = 0.74,
n = 85; TKO: mean = 0.61 ± 0.05, median = 0.71, n = 33) and
WT (mean = 0.71 ± 0.03, median = 0.81, n = 100; p = 0.12 and
0.06, respectively, K–S test). In other words, the On–Off overlap
in collicular RFs is largely maintained in the absence of ephrin-A
guidance cues.

DISRUPTED ON–OFF OVERLAP IN nAChR-β2 KOs
The above results prompted us to ask what factors, if not ephrin-
As, might be required for the development of On–Off convergence
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FIGURE 3 | On–Off overlap is disrupted in nAChR-β2 KOs, but not in

ephrin-A KOs. (A) On (red) and Off (green) responses of a WT SC neuron,
showing substantial On–Off overlap. Color scales represent evoked
responses in spikes/s during the 500 ms duration of stimulus presentation.
The calculated values of overlap ratio (O.R.) and correlation coefficient (C.C.)
are listed at the upper right corner of the “Off” plot. (B) On and Off
responses of an example neuron in ephrin-A DKO mice. (C) Responses of
an example neuron in nAChR-β2 subunit knockout. (D) Comparison of
On–Off overlap ratio between genotypes, with only β2 KOs showing a
significant disruption comparing to the WT. (E) Comparison of On–Off
correlation coefficient between genotypes. Panel D and E are box plots
with ends of each plot representing 5th and 95th percentiles. **p < 0.01
and ***p < 0.001.

in the SC. Previous studies showed that spontaneous retinal
waves drive the refinement of retinocollicular map (McLaugh-
lin et al., 2003; Chandrasekaran et al., 2005; Xu et al., 2011). In
mice that lack the β2 subunit nicotinic ACh Receptor (β2 KOs),
the patterns of retinal waves are disrupted (Bansal et al., 2000;

McLaughlin et al., 2003; Sun et al., 2008; Stafford et al., 2009)
and the RF of SC neurons were enlarged (Chandrasekaran et al.,
2005; Wang et al., 2009). We thus analyzed the On–Off overlap in
these mice. The On and Off subregions in β2 KOs were similarly
large as in the ephrin-A KOs (Figure 2). But importantly, unlike
in the ephrin-A KOs, the On–Off overlap in β2 KOs, both by
overlap ratio (mean = 0.36 ± 0.03, median = 0.41, n = 59;
p = 0.01, K–S test) and correlation coefficient (mean = 0.53 ± 0.03,
median = 0.61, n = 59, p < 0.0001), was significantly reduced
(Figures 3C–E).

Together, these results indicate that ephrin-As are not required
for establishing the overlapped On–Off subfields of mouse SC
neurons, but instead the activity-dependent refinement process is
necessary for its development.

NORMAL RESPONSES TO DRIFTING GRATINGS IN EPHRIN-A KOs
In addition to static contrast changes, SC neurons are also sen-
sitive to moving stimuli (Wang et al., 2010b). We thus examined
the tuning properties of SC neurons in the ephrin-A KO mice in
response to drifting gratings. Recordings from the DKOs and TKOs
were combined together since no difference was seen between
them. Remarkably, many SC neurons in the KOs were selective
for stimulus direction or orientation, just like in WT. Across the
population, the preferred directions did not show any bias towards
certain angles (Figure 4A), similar to those in WT SC (Wang
et al., 2010b). This result is clearly different from that of the β2
KOs, in which fewer SC neurons are tuned to horizontal motion
(Wang et al., 2009). The degree of direction/orientation selectiv-
ity was also normal in the ephrin-A KO mice, both by averaged
tuning curves (Figure 4B) and the distribution of direction and
orientation selectivity index (Figures 4C,D). Consistently, the ori-
entation tuning width in the ephrin-A KOs (mean = 39.8 ± 1.9◦,
median = 42.8◦, n = 78) was also similar (Figure 4E, p = 0.41, K–S
test) to that in the WT mice (mean = 40.8 ± 1.2◦, median = 42.5◦,
n = 115). Furthermore, no change of response linearity as deter-
mined by F1/F0 ratio (Wang et al., 2010b) was found between the
ephrin-A KOs (mean = 0.62 ± 0.04, median = 0.51, n = 137) and
WT (mean = 0.64 ± 0.05, median = 0.41, n = 132; p = 0.36, K–S
test). Finally, although the distribution of preferred spatial fre-
quency was statistically different between the ephrin-A KOs and
WTs (p < 0.001, χ2 test), most neurons preferred 0.04, 0.08 and
0.16 cpd in both genotypes (Figure 4F).

These results thus indicate that the removal of ephrin-As has
little effect on the orientation and direction selectivities of individ-
ual SC neurons, despite their altered RF structures. Together with
our previous findings that the SC neurons in the β2 KOs display
axis-specific disruption of direction and orientation selectivity
(Wang et al., 2009), our results demonstrate that axonal guidance
cues and activity-dependent processes play different roles in the
development of visual response properties in SC neurons.

DISCUSSION
In this study, we have examined the RF structure of SC neurons in
two lines of mutant mice that are deficient in retinocollicular map-
ping, the ephrin-A KOs and the nAChR-β2 KOs that have altered
retinal waves. Our results reveal that even though the collicular
RFs are similarly enlarged in the two mutants, the On/Off overlap
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FIGURE 4 | Normal responses to drifting gratings in ephrin-A KOs.

(A) Polar plot of direction selectivity index (DSI, radii from origin) and
preferred directions (angles). Each dot is from one cell. The outer circle
represents DSI value of 1. (B) Normalized direction tuning curve of ephrin-A
KOs and WT SC neurons, plotting the mean and SEM of normalized
responses at each direction. (C) Cumulative distribution of DSI in the two
genotypes (ephrin-A KOs, mean = 0.43 ± 0.03, median = 0.33, n = 137;

WT, mean = 0.38 ± 0.03, median = 0.27, n = 132; p = 0.42, K–S test).
(D) Cumulative distribution of OSI in the two genotypes (ephrinA-KOs,
mean = 0.41 ± 0.03, median = 0.28, n = 137; WT, mean = 0.41 ± 0.03,
median = 0.36, n = 132; p = 0.15, K–S test). (E) Cumulative distribution of
tuning width (p = 0.41, K–S test). (F) Distribution of preferred spatial
frequency. Similar percentage of cells in the two genotypes preferred
0.08 cpd and 0.16 cpd.

within the RF is maintained in the ephrin-A KOs but disrupted
in the β2 KOs. During development, retinal axons are guided to
their target cells in the SC by graded guidance cues such as ephrin-
As and the remaining aberrant projections are then eliminated
through activity-dependent processes driven by spontaneous reti-
nal waves (Eglen et al., 2003; Grimbert and Cang, 2012). As a result,
only ganglion cells from a small patch of the retina, both On and
Off, are left innervating individual collicular neurons, giving rise
to spatially compact RFs with overlapping On and Off subregions.
In the absence of ephrin-As, the nasal-temporal retinotopic infor-
mation is lost and RGCs from distant regions of the retina can
terminate onto the same SC neurons. Our results indicate that
nearby On and Off neurons still co-terminate in the ephrin-A
KOs, presumably driven by largely normal retinal waves in these
mice, which display WT level of correlation within small distances
(Pfeiffenberger et al., 2005). On the other hand, in the β2 KOs, this
process is disrupted, leading to some nearby On and Off RGCs no
longer innervating the same SC neurons, due to either compro-
mised elimination or aberrant expansion of axonal terminals in
these animals (Dhande et al., 2011).

The exact patterns of retinal waves in the β2 KOs have been
controversial. Whereas earlier studies showed that there were no
correlated activities in the RGCs of these mice (Bansal et al., 2000;
McLaughlin et al., 2003), more recent studies revealed that they
did display retinal waves (Sun et al., 2008; Stafford et al., 2009),
which appeared to correlate RGCs over broader distances (about

twice as far as in WT retinas) and with a weaker intensity (about
half the WT peak amplitude; Stafford et al., 2009). Importantly,
whether there are larger waves or no waves, the information for
differentiating RGCs that are immediately next to each other and
those that are further apart is compromised, which could then lead
to disrupted retinotopic mapping and On/Off convergence.

Our explanation of the On/Off phenotypes in ephrin-A KOs
and WT mice assumes that On and Off RGCs are similarly
correlated in retinal waves during the time of retinocollicular
development. At postnatal day 12, when retinocollicular map-
ping has reached the mature level (Dhande et al., 2011) and retinal
waves are already mediated by glutamatergic transmission, On
and Off RGCs fire with a temporal offset during the waves (Ker-
schensteiner and Wong, 2008). Such an asynchronous pattern was
not seen earlier during development when the waves are choliner-
gic (Kerschensteiner and Wong, 2008). It is thus highly likely that
neighboring On and Off RGCs fire synchronously when retinocol-
licular connections are established, which would lead to On/Off
convergence and consequently On–Off overlap in the RF of SC
neurons.

SC neurons’ selectivity for stimulus orientation and direction is
also different between ephrin-A KOs and β2 KOs. The mechanism
of SC selectivity is still unclear. On the one hand, it could be inher-
ited from the retina, given a substantial population of RGCs are
direction/orientation selective in mice (Elstrott et al., 2008; Huber-
man et al., 2009; Zhao et al., 2013b). The direction selective RGCs
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(DSGCs), including On, Off, and On–Off subtypes, are tuned
to motions of unique directions, such as the four cardinal direc-
tions for On–Off DSGCs (Elstrott et al., 2008; Kim et al., 2008;
Huberman et al., 2009). These RGCs could converge onto SC neu-
rons and give rise to a preference for certain directions or axes of
motion. The results that the selectivity is largely normal in ephrin-
A KOs but disrupted along the azimuthal axis in β2 KOs thus
suggest that the activity-dependent refinement could be important
for converging different subtypes of DSGCs, just as in converg-
ing On and Off-centered RGCs in creating overlapped RFs. On
the other hand, SC direction/orientation selectivity could result
from circuits within the colliculus, such as inhibition from local
GABAergic interneurons. These interneurons are known to shape
many aspects of SC responses (Binns and Salt, 1997), although
their roles in SC selectivity have not been investigated. In such a
scenario, our results would indicate that molecular guidance cues
such as ephrin-As are not critical, while the activity-dependent
processes are more important, in establishing these intracollicular
connections.
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