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ABSTRACT: Drug metabolite identification is a bottleneck of drug
metabolism studies due to the need for time-consuming chromatographic
separation and structural confirmation. Ion mobility-mass spectrometry (IM-
MS), on the other hand, separates analytes on a rapid (millisecond) time scale
and enables the measurement of collision cross section (CCS), a unique
physical property related to an ion’s gas-phase size and shape, which can be
used as an additional parameter for identification of unknowns. A current
limitation to the application of IM-MS to the identification of drug metabolites
is the lack of reference CCS values. In this work, we assembled a large-scale
database of drug and drug metabolite CCS values using high-throughput in
vitro drug metabolite generation and a rapid IM-MS analysis with automated data processing. Subsequently, we used this database to
train a machine learning-based CCS prediction model, employing a combination of conventional 2D molecular descriptors and novel
3D descriptors, achieving high prediction accuracies (0.8−2.2% median relative error on test set data). The inclusion of 3D
information in the prediction model enables the prediction of different CCS values for different protomers, conformers, and
positional isomers, which is not possible using conventional 2D descriptors. The prediction models, dmCCS, are available at https://
CCSbase.net/dmccs_predictions.

■ INTRODUCTION

Drug metabolism studies are a critical component of the drug
development process. Metabolites can inform metabolic soft
spots and may be pharmacologically active and/or elicit
unexpected toxicity or other off-target effects, making knowl-
edge of their structures essential.1,2 Current and conventional
approaches to drug metabolite structural determination have
typically involved a combination of liquid chromatography
(LC), coupled with UV−vis spectroscopy and/or mass
spectrometry (MS), and nuclear magnetic resonance spectros-
copy (NMR).3−5 LC−MS and LC−UV benefit from low
sample requirements and fast analysis time, but identification
of unknowns can be limited when relying upon UV spectra or
MS fragmentation data alone. In contrast, NMR allows for
definitive assignment of chemical structures, but it requires
large amounts of materials and is relatively low throughput.
Ion mobility spectrometry (IMS) is an analytical technique

that rapidly separates ions based on differences in their gas-
phase size and shape, which is orthogonal to polarity-based LC
separation and partially orthogonal to mass.6−10 In time-
dispersive ion mobility (IM) separations, ions are driven
through a neutral buffer gas under the influence of an electric
field. Ions are differentially impeded as they interact with the
buffer gas molecules, and as a result, they traverse the mobility
cell in different amounts of time (i.e., drift time). An ion’s drift
time can be converted into collision cross section (CCS), a

unique physical property reflecting its gas-phase size and shape,
using appropriate experimental measurements and/or calibra-
tion. Excellent reproducibility has been demonstrated for CCS
measured across different instrumentation and laborato-
ries,11−14 making it a robust parameter for compound
identification. CCS also provides useful information related
to shape, conformation, and polarity. When IM is coupled with
MS (IM-MS), an additional dimension of separation is
achieved without adversely affecting analytical throughput.
The use of IM-MS for the determination of drugs and their

metabolites has gained significant traction in recent years,15

but inadequate reference CCS databases remains a significant
limitation to the application of CCS to identifying unknown
metabolites. Large CCS databases covering drug and drug-like
compounds have been presented in the literature,16−19 but due
to the vastness and complexity of small molecule chemical
space, many unknowns may not be represented. This issue of
chemical representation is even more pronounced for drug
metabolites, for which no such large-scale CCS database exists.
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Theory-based computation methods are generally very time-
consuming and resource-demanding.15,20−22 ISiCLE is a higher
throughput computational workflow, but this method still
requires large amounts of computational resources and
multiple steps of computational setup, and thus, the
throughput is still not ideal.23 This problem can be addressed
by leveraging structural trends in existing CCS databases to
predict CCS for unknowns that are not in experimental
databases, and this approach has been demonstrated by
multiple groups, including us.12,18,19,24−29 An important
consideration in this approach, however, is the dependence
of CCS prediction performance on the quality and coverage of
chemical space in the data used to train the model.27

Therefore, a drug metabolite-specific CCS database is needed
for accurate prediction of CCS for drug metabolites. Another
limitation in current machine learning (ML)-based CCS
prediction models is that the 2D features used in previous
work (e.g., molecular quantum numbers, MQNs) do not
adequately capture more complex IM behavior arising from the
presence of different protomers, conformers, or positional
isomers that are common among drugs and drug metabolites.15

Previous work by Soper-Hopper et al. compared the
performance of 2D vs 3D molecular descriptors using partial
least-squares linear multivariate regression, but this previous
work generated 3D molecular descriptors using the structures
of the neutral parent molecules and did not demonstrate the
capability to predict CCS values for different conformers and
isomers.30

Here, we present (1) the generation of a high-quality drug
and drug metabolite CCS database through the use of high-
throughput in vitro drug metabolite generation and rapid IM-
MS analysis with automated data processing and (2) the
training of drug- and drug metabolite-specific CCS prediction
models using ML with novel 3D molecular descriptors, which
enables the prediction of CCS values for protomers, con-
formers, and positional isomers with high accuracy and
throughput.

■ EXPERIMENTAL SECTION
High-Throughput In vitro Drug Metabolite Gener-

ation. Drug metabolites were generated in vitro using pooled
subcellular fractions (S9 and microsomes) derived from human
liver following a protocol from our previous work,31 adapted to
a high-throughput 384-well plate format with all sample
preparation performed using automated sample handling
systems at the Quellos High-Throughput Screening Core at
the University of Washington. Briefly, HLM/S9 stock (5 mM
GSH, 5 mM MgCl, 0.01 mg/mL alamethicin, 0.2 mg of
protein/mL pooled HLM, 0.2 mg of protein/mL S9, 100 mM
potassium phosphate buffer at pH 7.4) was prepared and
allowed to stand on ice for 15 min (alamethicin pretreatment
to enhance UGT activity). A 90 μL sample of the HLM/S9
stock was dispensed into each well of 14 384-well plates, and
then 0.5 μL of each drug stock (50 mM in DMSO) from the
MicroSource Spectrum Discovery Collection (seven plates)
was dispensed into the plates in duplicate. Ten microliters of a
cofactor-containing activation mixture (10 mM NADPH, 50
mM UDPGA, 100 mM potassium phosphate buffer at pH 7.4)
or potassium phosphate buffer without cofactors (as control)
were then added to the duplicate plates, initiating the drug
metabolism reactions for plates containing activation mixture.
All plates were incubated at room temperature for 90 min
before being quenched with 100 μL of ice-cold acetonitrile

(with 10 μM lysophosphatidylethanolamine 13:0 as an internal
standard). After quenching, all plates were stored at 4 °C for at
least 15 min to promote precipitation of proteins. Each plate
was centrifuged at 3500G for 15 min at 4 °C to sediment the
precipitated proteins, and then 150 μL of the supernatant was
transferred to fresh plates. All plates were stored at −80 °C
until IM-MS analysis.

High-Throughput Ion Mobility-Mass Spectrometry.
Samples (5 μL) were injected and separated using a Waters
Acquity FTN UPLC coupled to a reversed-phase column
(Phenomenex Kinetex, 2.6 μm, polar C18, 100 Å, 30 × 21
mm), eluting with a gradient of water with 0.1% formic acid
(A) and methanol with 0.1% formic acid (B) at 0.5 mL/min:
0.00−0.20 min, 100% A; 0.20−0.30 min, 100 → 25% A; 0.30−
0.75 min, 25→ 0% A; 0.75−1.05 min, 0% A; 1.05−1.10 min, 0
→ 100% A. The total analysis time for each sample, factoring
in acquisition and autosampler operations, was just under 2
min. For each injection, the first 0.20 min of eluent was
diverted to waste in order to avoid buildup of salt on the ESI
source, and after that, the flow was automatically diverted back
to the instrument via an electronically controlled switching
valve. TWIM-MS analysis was performed on a Waters Synapt
G2-Si mass spectrometer (Waters Corp., Milford, MA)
equipped with an ESI source and using nitrogen as the drift
gas. ESI conditions were as follows: capillary, +2.3 kV;
sampling cone, 40 V; source temperature, 130 °C; desolvation
temperature, 350 °C; cone gas, 90 L/h; and desolvation gas,
600 L/h.
Mass calibration was performed using sodium formate for

the range of m/z 50−1200. IM separations were performed at
a traveling wave velocity of 650 m/s and a height of 24.9 V.
For post-IM fragmentation analyses, collision energy was
added to the transfer region using a ramp from 30 to 50 eV.
Data was acquired from 0.20 to 1.15 min with a 1 s scan time
over m/z 50−1200, which resulted in approximately 57 scans
across the acquired elution region (individual peaks typically
spanned ∼0.05 min for roughly three scans per peak). The
384-well plates were analyzed on three separate occasions over
two months.

TWIM CCS Calibration. A series of singly charged
polyalanines (n = 2−14) and a mixture of druglike compounds
were used for calibration of TWIM drift times into CCS
(TWIMCCSN2) using their drift tube CCS values in nitrogen
(DTCCSN2), as described previously.16,31 Briefly, arrival time
distributions (ATDs) for CCS calibrants were extracted from
the raw data (acquired multiple times throughout acquisition
of each plate) using accurate mass with a window of ±0.01 Da,
and a CCS calibration curve was constructed from reference
CCS values in an automated fashion using a Python script
developed in-house.31 Drift times for each calibrant were
obtained as the mean from a least-squares fit of a Gaussian
function on the ATD and were corrected for mass-dependent
flight time outside the mobility region to give the corrected
drift times (td′), and reference CCS values were corrected for
the ion charge state (Z) and reduced mass with the drift gas to
give the corrected CCS (CCS′).32 A calibration curve was
generated by fitting these corrected values with the function
CCS′ = A(td′ + t0)B, where A, t0, and B were the fitted
parameters.11,33 A calibration curve displaying randomly
distributed fit residuals with a maximal absolute error of less
than 3% was considered acceptable. CCS calibrant data was
acquired 3−5 times over the course of analysis of each plate,
and all of this calibrant data was used to construct a combined
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CCS calibration curve to account for any variation that
occurred over the course of data acquisition. The measurement
and report of the CCS values are consistent with the
recommendations in the field.34

Ion Mobility-Mass Spectrometry Data Processing.
The raw IM-MS data was processed in a number of steps to
extract, annotate, and validate CCS values for drugs and
putative metabolites (Figure 1B) and was performed separately
for each batch of data acquired on the same day (two plates
were analyzed each day). The first set of data processing steps
was completely automated using Python scripts developed in-
house and were applied only to the first technical replicates.
First, a target list was assembled for the parent drugs based on
the known plate contents. For each parent compound, m/z-
selected arrival time distributions (ATDs) were extracted for
common ionized species with a tolerance of 0.05 Da. ATDs
were fit with a Gaussian function to obtain drift time, and the
fitted drift time was used to calculate calibrated CCS. If an
ATD was not able to be fit or the fitted peak did not meet
empirically determined rough quality cutoffs (intensity >1000,
peak width between 0.06 and 1.77 ms), the corresponding
ionized species was not processed any further. Upon successful
ATD peak fitting, a drift time-selected LC chromatogram was
also extracted, and an attempt was made to fit for retention
time. All data and metadata were stored in custom Python data
structures for subsequent processing. Putative metabolites were
generated using BioTransformer,35 with the “allHuman”
setting and up to two metabolism steps. Putative metabolites
were filtered to exclude isobaric metabolites, metabolites with
the same neutral mass as the parent compound, and
metabolites resulting from the breakdown of secondary

metabolites (i.e., free glucuronic acid or glutathione), then
their corresponding ATDs were extracted from the raw data
and fitted as described above. Successfully fitted ATDs were
stored along with metadata (including putative metabolite
annotation) in custom Python data structures for subsequent
processing. Plots containing compound/putative metabolite
structures, m/z, metabolism reaction information, CCS, and
ATDs with fits were generated and stored (see Figure 1A) for
subsequent manual review.
The resulting initial data set (>11k analytes) was next

subjected to a manual review process. Each of the generated
plots described above was manually inspected for general
quality of ATD peak fitting (clean ATD fit without secondary
peaks) and cofactor dependence for oxidative and glucuronide
metabolites and then accepted or rejected accordingly. The
results of this manual review process were used to curate an
analyte m/z target list for automated data extraction from the
second and third replicates. Data extraction from the second
and third replicates followed the same automated workflow
described above, except that the curated target list was used to
search for putative metabolites rather than through in silico
metabolite prediction. All extracted data and metadata from
the second and third replicates were stored in custom Python
data structures for subsequent processing.
The final step in data processing was validating compound

annotations, which was performed using a semiautomated
process. The identities of the parent compounds were known
from the plate contents, so further validation was not required.
To validate the annotations of the putative metabolites, known
metabolites of the parent compounds were manually searched
for in the DrugBank database.36 A list of potential metabolites

Figure 1. (A) Workflow for high-throughput in vitro drug metabolite generation and IM-MS analysis. Drug metabolites were generated from the
MicroSource Spectrum Discovery Collection, containing ∼2000 drug and drug-like compounds, in a high-throughput 384-well plate format using
subcellular fractions (microsomes and S9) pooled from 200 human livers. Samples were analyzed using a rapid IM-MS protocol, including
semiautomated data processing, including extraction and fitting of drift times from ATDs, calibration of CCS, prediction of metabolites, and
establishment of cofactor dependence for oxidative metabolites. (B) Semiautomated data processing with multiple steps of automated and manual
quality controls, including automated quality controls on peak fitting, manual review of extracted data quality and metabolite annotations, and
validation of metabolite annotations with MS/MS data. The processed data was finally compiled into a SQLite3 database for use in CCS prediction
by ML.
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and associated metadata were compiled from these searches
and later matched to metabolites (superseding the original
putative metabolite annotation from BioTransformer) on the
basis of their neutral mass (within 50 ppm was considered a
match). Finally, all metabolite annotations were subjected to
filtering based on postmobility MS/MS data that were
acquired for the first replicate. Drift time-selected MS/MS
spectra were extracted and scored against in silico
fragmentation spectra using MetFrag,37 and all annotations
with a fragmenter score above the empirical cutoff of 100 were
accepted. This empirical MetFrag scoring cutoff was
determined by a rank test using the known identities of the
parent compounds as follows. The drift time-selected MS/MS
spectrum for each parent compound was compared to the in
silico fragmentation spectra of all parent compounds, resulting
in ranked identifications with corresponding fragmenter scores.
The rank and score of the known identity were recorded for
each compound, and the empirical scoring cutoff was
determined by looking at the distribution of scores for parent
compounds with true identities ranking in the top 500 (Figure
S5A). Ultimately, this cutoff represents a rough way of ruling
out unlikely annotations given their corresponding MS/MS
spectrum, and in total 861 putative metabolite annotations
were removed based on this criterion (587 annotations without
scores +274 with scores <100).
Assembly of a Drug and Metabolite CCS Database. A

SQLite3 database was used to store experimental data,
associated metadata, annotations, 3D structures, and computed
molecular descriptors for all of the drugs and metabolites
observed in this study. The overall database architecture is
summarized in Figure S6. The database has separate tables for
CCS measurement data and metadata (plate_N), MS2 spectra
(plate_N_ms2), compound annotations (plate_N_id), 2D
molecular descriptors (plate_N_mqn), 3D structures (pla-
te_N_3d), and 3D molecular descriptors (plate_N_md3d). All
of the experimental plates (seven in total) have their own set of
corresponding tables for consistency with the organization of
the experimental source data. The database was constructed in
a stepwise, automated fashion using a series of Python build
scripts developed in-house. Briefly, the database was first
initialized with all of the empty tables, and then the measured
data were added to the plate_N tables according to plate
number. Next, compound annotations (names and SMILES
structures) were added to the plate_N_id tables. Parent drug
annotations were already known from the plate contents, but
metabolite annotations were assigned via a combination of
automated and manual processes as discussed above. Drift
time-selected MS2 spectra were added to the plate_N_ms2
tables, with each entry in the measured data tables having a
corresponding MS2 spectrum. Next, MQNs were computed
using SMILES structures (see below for detail) from the
annotation tables and added to the plate_N_mqn tables. 3D
structures (in plain text format) were generated (see below for
detail) and added to the plate_N_3d tables, and corresponding
3D molecular descriptors were computed for each structure
(vide infra) and added to the plate_N_md3d tables. The
plate_N, plate_N_ms2, and plate_N_id tables are all related by
a unique (across all seven sets of plates) text identifier,
dmim_id. All of the annotations in the plate_N_id tables have
an additional unique integer identifier, ann_id, relating them to
entries in the plate_N_mqn and plate_N_3d tables. The
plate_N_3d tables have an additional unique integer identifier,
str_id, relating their entries to the plate_N_md3d tables.

Generation of 3-Dimensional Structures for Ionized
Drugs and Metabolites. 3-Dimensional structures were
computed from SMILES structures for experimentally
observed ionized (protonated and Na+/K+ adducts) drug and
metabolite species using a series of scripts developed in-house
employing a combination of molecular mechanics and
semiempirical methods. Briefly, initial 3D structures were
generated by a Monte Carlo conformer search followed by
steepest descent energy minimization using the MMFF94 force
field in the OpenBabel38 software package. The initial 3D
structures were then further optimized at the PM7 semi-
empirical theory level in Gaussian16.39 Finally, the optimized
atom positions, masses, and partial charges were stored along
with relevant metadata for the measured species. This process
was repeated 3 times for each individual ion species to increase
the chances that a minimum energy structure would be
sampled in this nonextensive modeling protocol.
Generation of 3D structures for protonated species followed

the same protocol, but with the inclusion of additional steps to
account for multiple potential sites of protonation within a
molecule. First, potential protomers were determined by
presence of ionizable groups, and the SMILES structures
were modified to reflect each protomer. 3D structure
generation was performed using each of the protomer SMILES
structures as described above, but with additional thermody-
namic calculations specified in the semiempirical optimization
step. After the 3D structures had been produced for all
potential protomers, the structures having the lowest energy
and highest partial charge located on the protonation site (if
different from lowest energy structure) were selected and
stored. The above protocol was repeated three times for each
species, resulting in three to six structures for each protonated
species.
The 3D structure generation protocol resulted in the

production of three to six structures for each ionized species
in an attempt to capture multiple energetically similar
conformers; however, for most compounds, many or all of
the produced structures were virtually the same. To avoid
undue influence in predictive model training from such
duplications, all structures for a given compound were
subjected to RMSD filtering. Briefly, for each compound, a
mass-weighted RMSD matrix was computed between all
predicted structures, and only those differing by more than
0.01 Å were retained. The RMSD cutoff of 0.01 Å was
determined empirically by computing the distribution of
RMSD values for all structures in the database (Figure S7A),
in addition to manual inspection of a handful of compound
structures. All of the filtered 3D structures were added as a
separate table to the drug and metabolite CCS database.

Multivariate Analysis of Drug and Metabolite CCS
Database. PCA and PLS-RA are implemented in Scikit-Learn,
a free and open-source machine learning library for Python
(sklearn.decomposition.PCA and sklearn.cross_decomposi-
tion.PLSRegression, respectively).40 PCA and PLS-RA are
dimensionality reduction techniques that work by determining
successive orthogonal axes within a high-dimensional data set
that contain maximal variance. PLS-RA differs from PCA in
that the first axis is chosen such that it corresponds to the
direction of maximal variance in an external target variable (in
this case CCS), making it a targeted analysis.

Prediction of CCS Using Machine Learning. Prior to
model training, the data were processed in a stepwise fashion.
First, the data set was randomly (seeded for deterministic
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results) split into training and test sets in proportions of 80%
and 20%, respectively, and the test set was held aside during
model training. Rough stratification based on distribution of
CCS was used during data set splitting to ensure comparability
between the training and test sets. The training data were
centered and scaled such that each feature would have a mean
of 0 and unit variance in order to avoid undue emphasis of
features on the basis of their magnitudes. A support vector

regression (SVR) model with radial basis function kernel was
used for CCS prediction (sklearn.svm.SVR). The model
hyperparameters (C and gamma) were optimized using a
grid search with 5-fold cross validation (sklearn.optimize.Grid-
SearchCV) on the training data. The model trained using the
optimal hyperparameters was then used to compute perform-
ance metrics (vide inf ra) from predictions made on the training
and test data sets.

Figure 2. (A) Composition of the assembled CCS database for drugs and drug metabolites (dmCCS). Metabolic modification abbreviations: GSH,
glutathione conjugated metabolites; Glc, glucuronide metabolites; Ox, oxidative metabolites (e.g., −2H, +O, −Me). (B) PCA projections of the
dmCCS database (color) from a PCA computed using the CCSbase database (gray), colored by CCS. (C) PCA projections of parent compounds
(blue) and metabolites (red) from the dmCCS database from a PCA computed using the CCSbase database (gray). (D) CCS vs m/z of parent
compounds (blue) and metabolites (red) from the dmCCS database overlaid on the CCSbase database (gray). Dotted lines represent individual
power fits for parent (chartreuse) and metabolite (orange) data, and residual CCS from these fits are included below the main plot. (E) PCA
projections of dmCCS database computed using MQNs as molecular descriptors, colored by CCS. (F) PCA projections of dmCCS database
computed using MD3Ds as molecular descriptors, colored by CCS. (G) PCA projections of dmCCS database computed using the combination of
MQNs and MD3Ds as molecular descriptors, colored by CCS. (H) Individual feature loadings for principal component 1 from PCA computed on
dmCCS using MQNs as molecular descriptors. (I) Individual feature loadings for principal component 1 from PCA computed on dmCCS using
MD3Ds as molecular descriptors. (J) Individual feature loadings for principal component 1 from PCA computed on dmCCS using the combination
of MQNs and MD3Ds as molecular descriptors.
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CCS Prediction Performance Metrics. A standard set of
metrics was used to determine the bulk performance of CCS
prediction using ML and other methods as described
previously.27 Briefly, these include R2, mean and median
absolute error (MAE and MDAE, respectively, Å2), mean and
median relative error (MRE and MDRE, respectively,%), root
mean squared error (RMSE, Å2), and cumulative error
distribution at 1, 3, 5 and 10% levels (CE135A,%).
Calculation of PA/EHS CCS. Theoretical CCS values were

calculated for all 3D structures in the drug and metabolite CCS
database by the projection approximation (PA) and exact hard-
sphere scattering (EHS) methods using MobCal.21,22

Calculation of Metabolite Compaction Factors. Gas-
phase compaction factors of metabolites relative to parents
were computed using the equation

=
i
k
jjjjj

y
{
zzzzzC

CCS

CCS

mass

mass
parent

metabolite

parent

metabolite

2/3

as described previously.31 Briefly, since the CCS at a given
mass is analogous to a gas-phase density, a change in mass (i.e.,
due to metabolic modification) is expected to produce a
monotonic change in CCS, and that change is isotropic if the
density does not change (C = 1). If C > 1, then the metabolite
is denser than expected under isotropic growth, while C < 1
indicates the metabolite is less dense.
LC-IM-MS Analysis of Pooled Drug Metabolism

Incubations. Four pooled samples were prepared from drug
metabolism incubations containing different parent com-
pounds (five parent compounds per pooled sample) taken
from the first plate of the MicroSource Spectrum Discovery
Collection. Pooled incubations (5 μL) were injected and
separated using a Waters Acquity FTN UPLC coupled to a
reversed-phase column (Thermo Hypersil GOLD, 1.9 μm,
C18, 100 × 2.1 mm), eluting with a gradient of water with
0.1% formic acid and 2 mM ammonium formate (A) and
acetonitrile (B) at 0.4 mL/min: 0.0−15.0 min, 85 → 10% A;
15.0−16.0 min, 10% A; 16.0−16.1 min, 10 → 85% A; 16.1−
20.0 min, 85% A. TWIM-MS analysis was performed on a
Waters Synapt G2-XS mass spectrometer (Waters Corp.,
Milford, MA) equipped with an ESI source and using nitrogen
as the drift gas. ESI conditions were as follows: capillary, + 2.5
kV; sampling cone, 30 V; source temperature, 150 °C;
desolvation temperature, 500 °C; cone gas, 50 L/h; and
desolvation gas, 1000 L/h. Mass calibration was performed
using sodium formate for the range of m/z 50−1200. IM
separations were performed at a traveling wave velocity of 500
m/s and a height of 40 V. CCS was calibrated using a mixture
of polyalanines and drug standards as described above.
Automated peak picking was performed in DriftScope (Waters
Corp., Milford, MA).
Code and Data Availability. All code for generating the

database and prediction models and for data processing are
available on GitHub (https://github.com/dylanhross/dmccs).
Raw mass spectrometry data is available at MassIVE under
MSV000088549 (doi:10.25345/C5CZ90).

■ RESULTS AND DISCUSSION
High-Throughput Measurement of Drug and Drug

Metabolite CCS. To obtain a large collection of drug
metabolites, we first carried out high-throughput drug
metabolism reactions in 384-well plates using human liver
microsomes and S9 fraction on 2000 drug and drug-like

compounds in the MicroSource Discovery Systems’ Spectrum
Collection, containing 50% approved drugs, 30% natural
products, and 20% bioactive compounds (Figure 1A). This
compound collection has broad coverage of small molecule
chemical space and contains drugs spanning a range of
bioactivities (e.g., antibacterial, anti-inflammatory, antineo-
plastic, antihypertensive, analgesic, etc.), which was described
in detail previously.16 Reactions catalyzed by the Phase-I
enzymes, such as cytochromes P450 (CYPs), flavin-containing
monooxygenases, and reductases, and Phase-II enzymes, such
as glutathione S-transferases (GSTs) and UDP-glucuronosyl-
transferases (UGTs), were probed. The drug metabolism
reactions were carried out with or without enzyme cofactors,
such as NADPH (cofactor of CYPs), glutathione (GSH,
cosubstrate of GSTs), UDP-glucuronic acid (UDPGA,
cosubstrate of UGTs), and alamethicin41 (enabling access of
substrates to UGTs). Plates incubated with HLM + S9, but in
the absence of enzyme cofactors, served as controls. After the
reactions and sample processing, we carried out rapid IM-MS
analysis using a 30 mm reversed-phase column, resulting in just
under 2 min per run (Figure 1A). Measuring the roughly 2000
compound collection in triplicate with or without enzyme
cofactors/cosubstrates resulted in >8900 samples analyzed.
This large and complex set of raw data was analyzed using a
stepwise approach with a high degree of automation (Figure
1B), including extraction of arrival time distributions (ATDs),
Gaussian fitting, CCS calibration, and calculation of CCS of
observed ATD peaks. The CCS values of parent compounds
were obtained by extracting the ATDs of the exact masses of
various adducts. For metabolites, we first generated a
theoretical list of potential metabolites using Biotransformer35

and then extracted the ATDs of these potential metabolites
(see the Experimental Section for details). Only ATD peaks
meeting the criteria of intensity >1000 and peak width between
0.06 and 1.77 ms (roughly 1−30 drift time bins) were retained.
This approach ultimately led to the assembly of a large CCS
database specific to drugs and drug metabolites with high
reproducibility in replicate CCS values (0.39 and 0.15% mean
and median RSD, respectively). Figure 2A summarizes the
composition of the drug and metabolite CCS database. The
database contained 6245 measured CCS values from 3286
different compounds, of which 1333 were from parent drugs
(3675 CCS values) and 1953 were from metabolites (2570
CCS values). The measured CCS values corresponded to a
number of ionization states commonly observed in positive
mode ESI including [M + H]+ (1936), [M + Na]+ (1656), [M
+ K]+ (1235), [M + H − H2O]

+ (1299), and [M]+ (119).
To validate the identity of the potential metabolites, we first

carried out a thorough search of DrugBank36 for reported
metabolites of known drugs in our collection and matched our
observed metabolites with those previously reported. For those
without reported metabolites, we matched the experimental
MS/MS spectra obtained from post-IM fragmentation against
an in-silico generated MS/MS spectra of potential metabolite
structures using MetFrag,37 and ruled out low-scoring
metabolite annotations. The validation process is discussed
in greater detail in the Experimental Section. We evaluated the
potential for multiple isobaric metabolites to be predicted for
different metabolic modifications (see Figure S11) and found
that this potential was much higher for oxygenation reactions
than for dealkylated and conjugated metabolites. This analysis
indicates that, in general, the dealkylated and conjugated
metabolite identifications have a higher likelihood of being
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accurate (or at least being inconsequential with respect to CCS
predictions) than the oxygenated metabolites. However,
oxygenated metabolites undergo smaller MQN feature changes
relative to the parent compounds when compared with more
significant metabolic modifications, and thus, the impact of a
potential mis-assignment on CCS prediction would be small.
After this process, 4408 of the measured CCS values were
retained with an annotation, corresponding to all parent drugs
with a CCS value (1333 compounds and 3675 values) and
29.3% of metabolite CCS values (572 compounds and 744
values). Among these CCS values, roughly 2876 of the parent
values and all of the metabolite values are new.16 Overall, the
3675 parent CCS values (83.4% of the database) are
confidently assigned, and 396 CCS values (9.0%) correspond
to only one possible isomer for the metabolites, which together
represents 92.4% of the entire database. The entries with
multiple potential isomers were further narrowed down using
MetFrag as described above. The 799 parent CCS values
observed previously displayed excellent agreement with the
prior measurements, having mean and median errors of only
1.16 and 0.71%, respectively. The annotated metabolite CCS
values represent a range of metabolic modifications, including
glutathione adducts (22), glucuronide conjugates (200), and
oxidative metabolites (166). The coverage of glutathione and
glucuronide conjugates is particularly important for this work
because such Phase-II metabolism introduces a large mass and
structural modification to a parent drug.15,31 2D molecular
descriptors, i.e., molecular quantum numbers (MQNs, 42
features, see Table S1),27,42 were generated for all annotated
species as described previously and in the Supporting
Information. Furthermore, novel 3D molecular descriptors
(Table S2), including principal moments of inertia (PMI) and
radial mass distributions (RMD) (eight features, see the
Supporting Information), were generated to better capture the
relationship between conformation and CCS during machine
learning as discussed below. Briefly, we attempted to generate
3D structures for all annotated [M + H]+, [M + Na]+, and [M
+ K]+ species at a low level of theory (MMFF94 and PM7, see
the Experimental Section), resulting in a total of 9813 modeled
structures (4074, 3172, and 2567 for each ionized species,
respectively). 3D molecular descriptors were generated from
3D structures using in-house developed Python scripts as
described in the Supporting Information (Figure S6 and
related text). In total, 7652 and 2161 3D structures with 3D
molecular descriptors were generated for parent drugs and
metabolites, respectively.
Characteristics of the Drug and Metabolite CCS

Database. Principal components analysis (PCA) was used
to probe the chemical characteristics (as captured by 2D or 3D
molecular descriptors) that contribute to variance in the drug
and metabolite CCS database. We had previously characterized
a comprehensive collection of compounds from a diverse set of
chemical classes using MQNs as features (which capture
compositional and topological information about chemical
structures),42 so we first computed a PCA using this
comprehensive database (CCSbase) to serve as the chemical
space background. We then projected the new drug and
metabolite CCS database (dmCCS) into this PCA to examine
the chemical space that dmCCS spans within the context of
CCSbase. Parts B and C of Figure 2 show the PCA projections
of compounds from dmCCS (color) overlaid over compounds
from CCSbase (gray). In Figure 2B, it can be seen that CCS
values of the compounds from dmCCS generally increase

along the direction of PC2, indicating that the strongest
sources of variance in CCSbase do not correspond with
sources of variance in dmCCS that relate to CCS. Figure 2C
shows where the parent compounds and metabolites from
dmCCS group fall within the chemical space defined by
CCSbase, which indicates that the dmCCS occupies a broad
region corresponding roughly to “small molecules”. The
metabolites occupy a subspace within the chemical space
occupied by the parent compounds. Figure 2D shows where
the parent compounds and metabolites from dmCCS (color)
map into the IM-MS conformational space (i.e., CCS vs m/z),
compared to the compounds from CCSbase (gray), with
individual power fits for parent compounds and metabolites
(dashed lines). Generally, the compounds from dmCCS
occupy the low m/z region of this space and span a wide
range of CCS values. Interestingly, the metabolites seem to
occupy a slightly narrower CCS envelope with mostly similar
average CCS values to those of the parent compounds. Even in
the context of the large chemical space of CCSbase, the
compounds from dmCCS represent considerable structural
diversity. We also looked into the structural changes that were
induced by groups of metabolic modifications (see Figure S9)
and found that some modifications, such as Phase-II
metabolites, led to similar shifts in CCS regardless of the
parent compound, while other modifications, such as oxygen-
ation and dealkylation, led to CCS changes that were highly
dependent upon the structure of the parent compound.
Separate PCAs were computed on dmCCS using the 2D

(MQN) and 3D (MD3D) molecular descriptors to determine
how each set of descriptors reflected the chemical space
covered by this database. Parts E and F of Figure 2 show the
PCA projections from the 2D and 3D features, respectively.
For both feature sets, PC1 correlates well with variation in
CCS, indicating that among these compounds the primary
sources of variance are related to CCS. PC1 and PC2 of the
PCA computed on the 2D feature set captured 19.3% and
13.4% of the overall variance, respectively, compared to 58.8%
and 18.0% for the 3D feature set, indicating that a high degree
of variance orthogonal to CCS in the 2D feature set is not
present in the 3D feature set. Indeed, the PCA computed on
the 2D features required 24 components to capture 95% of the
variance in the data set, in contrast to only 5 components
needed for the 3D feature set. Figure 2H,I show the 2D and
3D feature loadings, respectively, for PC1 in each PCA, both of
which correlate well with CCS. The strongest contributors to
separation along the first principal component (Figure 2H) for
the 2D features were counts of atoms (hac: heavy atoms, ao:
acyclic oxygens, c: carbons), bonds (adb: acyclic double bonds,
atb: acyclic triple bonds), and topological features (asv: acyclic
monovalent nodes, ctv: cyclic trivalent nodes). All of the 3D
features contributed similarly to the separation along the PC1
(Figure 2I), and interestingly, the second and third PMI had
slightly larger contributions than the first. Together, these
results demonstrate that both the 2D and 3D features capture
the important characteristics of this set of compounds that
relate to CCS, but the 3D features contain somewhat less
extraneous information.
We next examined the degree to which the 2D and 3D

feature sets (MQN and MD3D, respectively) offered
complementary information by computing a PCA on
dmCCS using a combination of both feature sets (COMB)
(Figure 2G). The PCA projections overall appear quite similar
to those from the 2D feature set alone. PC1 captured 23.6% of
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the total variance, while 27 total components were required to
capture 95% of the variance in the data set. The top features
contributing to separation along PC1 (Figure 2J) consist of a
combination of those identified from the 2D and 3D feature
sets.
We also performed a set of analogous analyses using partial

least-squares regression analysis computed on the 2D, 3D, and
combined feature sets with CCS as the target variable (Figure
S1). The results from these analyses largely mirrored those
discussed above, which is expected given the alignment of CCS
with PC1 in all three PCAs.
Training Drug and Drug Metabolite-Specific CCS

Prediction Models. The 2D and 3D feature sets were used to
train individual ML models for CCS prediction on dmCCS.
Despite the different sizes (42 features vs 8) and characteristics
of the 2D and 3D feature sets, the MQN and MD3D predictive
models achieved very similar performance in CCS prediction
by multiple metrics, with robust performance between training
and test set data (Figure 3). We next sought to test the degree

to which the two feature sets provided orthogonal information
by training a ML model on the combined 2D and 3D feature
sets (COMB). Although the COMB model achieved
significantly improved predictive performance relative to
models trained on either feature set (Figure 3), there was a
significant lapse in performance between the training and test
set data, indicating model overfitting likely attributable to the
presence of redundant and/or superfluous features.
To address potential overfitting in the COMB model, a set

of feature ranking and successive feature removal trials
including PLS-RA, gradient boosting regression (GBR), and
a permutation feature importance function in Scikit-Learn
(PER) were run in order to select a minimal feature set
combining the most influential features from the 2D and 3D
feature sets while avoiding overfitting by removing extraneous
features (see the Supporting Information and Figure S2 for
details). Molecular descriptors retained by at least two of the
feature removal methods were kept as the minimal feature set
(MIN), which consisted of only 11 descriptors from both the
2D and 3D feature sets: hac, c, asv, adb, ctv, hbam (H-bond
acceptor sites), hbd (H-bond donor atoms), pmi1, pmi2, pmi3,
and rmd02. A new ML model was trained using this feature set.
Although there was still an appreciable degree of correlation
between the features (Figure S3), the MIN model achieved an
intermediate increase in performance relative to the models
trained on the 2D or 3D features alone (Figure 3), and

importantly, this performance was better maintained between
the training and test set data.
The MIN model was also used to compare with fast theory-

based CCS prediction methods (e.g., projection approxima-
tion, PA, and exact hard-sphere scattering, EHS),21 which
again showed superior performance in terms of accuracy and
precision (see Figure S4 and related text).
Metabolite annotations were based on predictions from

BioTransformer35 and validated by scoring in MetFrag37 and
as such are subject to the limitations of both tools. For
example, BioTransformer may not cover all possible metabolic
transformers, and the empirical score cutoff based on the
parent compounds may not be equally applicable to the
metabolites. As a result, there is a potential for misidentified
metabolite species, which could reduce the accuracy of the
CCS predictions if the structural characteristics of the
misidentified species differ greatly from the true identities. As
described above, we characterized the degree to which various
metabolic modifications produce multiple possible annotations
for single metabolites in our workflow and found that the
oxidative metabolites displayed the greatest propensity for such
uncertainty. In order to examine whether these metabolite
annotations were increasing the uncertainty of our model’s
CCS predictions, we retrained the MIN model using a data set
with all oxidative metabolites removed and characterized the
CCS prediction accuracy (Figure S13). We found that
exclusion of the oxidative metabolites from the training data
did not significantly change the accuracy of the model’s
predictions; in fact, the accuracy decreased very slightly. This
result indicates that to the extent that there are misidentified
metabolites within this data set, their presence does not seem
to significantly detract from the accuracy of this CCS
prediction model. To increase transparency and allow
researchers in the field to better utilize the experimental
data, we have added a column for the metabolite data to
specify whether potential multiple isomers are present based
on BioTransformer.

Application of CCS Prediction to Compounds with
Multimodal ATDs. Multimodal ATDs can arise from a
number of circumstances, such as constitutional isomers (e.g.,
positional isomers of metabolites or protomers formed in the
ESI process) and conformers.15,16,31 However, previous CCS
prediction models based on 2D molecular descriptors generally
do not allow the differentiation of such isomers or conformers.
Inclusion of 3D features in CCS prediction could in theory
capture such multimodal differences for given 3D structures, so
we sought to evaluate some known examples of multimodal
distributions using CCS prediction models trained with
different feature sets.
The oxygenated (+O) metabolite of terfenadine displays a

more compact conformation relative to the parent, likely
attributable to the introduction of an intramolecular polar−
polar interaction (Figure 4B).31 Figure 4A compares the
experimentally measured CCS values of terfenadine and its +O
metabolites to values predicted using the different models
discussed above. The CCS values predicted using the MQN
and MD3D models are lower than the experimental values, and
the + O metabolite has a larger CCS than the parent,
indicating that these feature sets do not adequately capture the
structural differences between these compounds. The MIN
model produced the closest predictions and, importantly,
reproduced the decreased CCS of the metabolite relative to the
parent with a compaction factor (see the Experimental

Figure 3. CCS prediction performance comparison for ML models
trained on dmCCS using MQN, MD3D, a combination of MQN and
MD3D (COMB), or a minimal feature set (MIN) as molecular
descriptors.

Journal of the American Society for Mass Spectrometry pubs.acs.org/jasms Research Article

https://doi.org/10.1021/jasms.2c00111
J. Am. Soc. Mass Spectrom. 2022, 33, 1061−1072

1068

https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jasms.2c00111/suppl_file/js2c00111_si_001.pdf
https://pubs.acs.org/doi/10.1021/jasms.2c00111?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.2c00111?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.2c00111?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.2c00111?fig=fig3&ref=pdf
pubs.acs.org/jasms?ref=pdf
https://doi.org/10.1021/jasms.2c00111?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Section) of 1.030 (compared to 1.042 in the experimental
values).
Cefpodoxime proxetil is a β-lactam antibiotic that has

previously been shown to form two protomers in ESI with
distinct CCS values (Figure 4D).16 As seen in Figure 4C, the
MQN model was unable to distinguish between the different
protomers (likely due to them being constitutional isomers),
and the predicted CCS values were significantly smaller than
the experimental values. The MD3D model produced
predictions that differed between the two protomers, but
their rank order was reversed relative to the experimental
values. The MIN model produced CCS predictions close to
the experimental values while preserving the experimentally
observed rank-order.
Quercetin is a flavonoid compound with multiple hydroxyl

(−OH) groups available for glucuronidation (Figure 4F).43

Glucuronidation of quercetin has previously been observed to
produce a bimodal CCS distribution, likely attributable to
glucuronidation at different positions.31 Again, the MQN
model failed to capture any CCS differences between the
positional isomers, while both MD3D and MIN models were
able to distinguish between the different positional isomers and
the assignment of isomers to the two experimental values was
largely in agreement with previous results (Figure 4E).31

Prediction results from both MD3D and MIN models suggest
that the larger CCS values likely have contributions from the
isomers at the 3-, 5-, and/or 7-positions, while the smaller CCS
value likely arises from 3′- and/or 4′-isomers, which is mostly
consistent with previous results using high-level computation
methods.31

We also examined CCS prediction performance using
existing CCS prediction models trained using 2D descriptors
(AllCCS, CCSbase),27,29 and neither were able to replicate the
multimodal CCS associated with the protomers of cefpodox-
ime proxetil or the positional isomers of quercetin glucuronide
(see Figure S8).
The 2D MQN model and the 2D/3D MIN model are now

available at CCSbase.net. Predictions can be made easily with
an input of a SMILES structure of an ion and a 3D structure in
.mol2 format.

Demonstration of Metabolite Identification Using
Predicted CCS. In order to demonstrate the benefit of CCS
prediction for identification of metabolites from complex
samples, we analyzed pooled drug metabolism incubations
from a total of 20 parent compounds using LC-IM-MS (see
the Experimental Section). Putative candidate metabolites
were generated using BioTransformer as described above, and
CCS values were predicted using the MQN CCS prediction
model, yielding a metabolite target list of 2114 species. The
peak-picked LC-IM-MS data was annotated from this target
list, with matching based on either m/z or m/z and predicted
CCS (m/z tolerance: 0.05 Da, CCS tolerance: 3%). Out of a
total of 24358 cofactor-dependent LC-IM-MS peaks, 9949
peaks were annotated using only m/z, while 4815 were
annotated using m/z and predicted CCS, a reduction of 5134
peaks. Because of the untargeted nature of the experiment and
the complexity of the samples, there were many cases in which
multiple annotations were assigned to a single peak or the
same annotation was assigned to multiple peaks (see Figure
S10). The mean number of annotations assigned to a single

Figure 4. (A) Comparison of measured (hatched) and predicted (solid) CCS for terfenadine and its +O metabolite. Each plot presents CCS values
predicted using ML models trained on dmCCS using different feature sets. (B) Representative structures of terfenadine and its +O metabolite
demonstrating the gas-phase compaction of metabolite relative to the parent. (C) Comparison of measured (hatched) and predicted (solid) CCS
for two protomers of cefpodoxime proxetil. Each plot presents CCS values predicted using ML models trained on dmCCS using different feature
sets. (D) Representative structures of the two protomers of cefpodoxime proxetil. (E) Comparison of measured (dashed lines) and predicted (solid
bars) CCS for the positional isomers of quercetin glucuronide. Each plot presents CCS values predicted using ML models trained on dmCCS using
different feature sets. (F) Representative structures of the positional isomers of quercetin glucuronide.
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peak was reduced from 5.8 to 4.9 with the inclusion of
predicted CCS, and the mean number of peaks with the same
annotation was reduced from 3.2 to 2.4 with the inclusion of
predicted CCS. Taken together, these results demonstrate that
inclusion of predicted CCS decreases the total number of
annotated peaks and increases the confidence of putative
annotations by reducing both the number of annotations per
peak and peaks per annotation. The reduction in number and
increase in confidence of putative annotations saves time in
downstream analysis and interpretation of complex drug
metabolism studies.

■ CONCLUSION
This work addresses several major gaps in applying IM-MS to
drug metabolite identification and building ML-based CCS
prediction models. First, there is a lack of large-scale
experimental CCS database for drug metabolites, which was
accomplished here with a high-throughput in vitro drug
metabolite generation system, followed by high-throughput
IM-MS analysis and automated data processing. This large
database provided the basis for building ML-based CCS
prediction models for drug metabolites. Second, previous ML
approaches for the prediction of CCS values rely on 2D
molecular descriptors,12,18,19,24−27 which cannot differentiate
protomers, positional isomers, and conformers. By incorporat-
ing novel 3D molecular descriptors, such as PMIs and RMDs,
our ML model using minimum combined 2D and 3D features
successfully overcame these limitations. Third, our approach
represents a hybridization of data- and theory-driven CCS
prediction, which showed superior performance than fast
theory-based computation approaches in terms of accuracy and
precision. Although our ML-based model cannot replace high-
level theoretical CCS calculation as small differences captured
by the high-level computation methods may not be readily
captured by the low-level methods used to generate the
training 3D structures in this work, the time-efficiency and
accuracy of our approach (a few seconds vs hours using high-
level computation) makes it easily integrated into drug
development processes. To summarize, the ML approach
reported in this work enables high-accuracy and high-
throughput generation of CCS values for drugs and drug
metabolites with sufficient precision to differentiate isomers
and conformers. The dmCCS prediction models are available
to the public at CCSbase.
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