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Abstract

Despite being widely applied in drug development, existing in vitro 2D cell-based models are 

not suitable to assess chronic mitochondrial toxicity. A novel in vitro assay system mimicking in 

vivo microenvironment for this purpose is urgently needed. The goal of this study is to establish 

a 3D cell platform as a reliable, sensitive, cost-efficient, and high-throughput assay to predict 
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drug-induced mitochondrial toxicity. We evaluated a long-term culture of human primary urine-

derived stem cells (USC) seeded in 3D silk fiber matrix (3D USC-SFM) and further tested chronic 

mitochondrial toxicity induced by Zalcitabine (ddC, a nucleoside reverse transcriptase inhibitor) 

as a test drug, compared to USC grown in spheroids. The numbers of USC remain steady in 

3D spheroids for 4 weeks and 3D SFM for 6 weeks. However, the majority (95%) of USC 

survived in 3D SFM, while cell numbers significantly declined in 3D spheroids at 6 weeks. Highly 

porous SFM provides large-scale numbers of cells by increasing the yield of USC 125-fold/well, 

which enables the carrying of sufficient cells for multiple experiments with less labor and lower 

cost, compared to 3D spheroids. The levels of mtDNA content and mitochondrial superoxide 

dismutase2 [SOD2] as an oxidative stress biomarker and cell senescence genes (RB and P16, 

p21) of USC were all stably retained in 3D USC-SFM, while those were significantly increased 

in spheroids. mtDNA content and mitochondrial mass in both 3D culture models significantly 

decreased six weeks after treatment of ddC (0.2, 2, and 10 μM), compared to 0.1% DMSO 

control. Levels of complexes I, II, and III significantly decreased in 3D SFM-USC treated with 

ddC, compared to only complex I level which declined in spheroids. A dose- and time-dependent 

chronic MtT displayed in the 3D USC-SFM model, but not in spheroids. Thus, a long-term 3D 

culture model of human primary USC provides a cost-effective and sensitive approach potential 

for the assessment of drug-induced chronic mitochondrial toxicity.
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1. Introduction

Considerable progress in drug therapy has been paralleled by increasing awareness of 

potential adverse drug outcomes. As a result of the universal presence of mitochondria and 

their critical roles in cellular metabolism [1], the adverse drug-mitochondrial interactions 

often exhibit clinical toxicity in multiple organs such as liver [2–4], kidneys [5–7], heart 

[8,9], brain [10], skeletal muscle [11,12] and fat [13] tissues. Understanding these adverse 

effects could help predict potential mitochondrial toxicity (MtT) of new drugs and adjust 

drug regimens to improve individual patient safety. Despite often being used in drug-induced 

toxicity testing, two-dimensional (2D) cultures cannot accurately mimic the 3D tissues in 

vivo with cell-cell and cell-extracellular matrix interactions [14]. Cells proliferate and their 

mitochondria replicate rapidly in 2D models, which is not appropriate for MtT assessment 

[1]. In addition, in vitro 2D cultures with immortalized cell lines resulted in 95% drug 

response failure rate in human subjects [15]. In vitro three-dimensional (3D) models of 

human primary cells promise to bridge the gap between traditional 2D cell culture and in 

vivo animal models, allowing a direct assessment of mitochondrial metabolism in human 

cells.

In most in vitro toxicity assessment, the timeline for determining the drug impact is from 

24 h to one week. However, for individuals with human immunodeficiency virus (HIV) 

infection, antiretroviral therapy (ART) has been administered for their lifetime. Some 
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ART might cause delayed MtT. Thus, chronic MtT testing is critical to assess cumulative 

toxicities of anti-HIV drugs. The longer the 3D culture, the more MtT information can be 

gained. Based on our recent studies, most cells (90%) in 3D spheroids are viable after 4 

weeks culture [1]. As a human cell culture in vitro will only divide 50 times, on average 

[16], the lifespan of human cells is limited. In addition, optimal times for cell culture 

for MtT testing depends on the culture conditions in which most cells remain alive and 

healthy. Thus, 6–10 week culture would be the favorable time for most human cells to 

predict the earliest stages of chronic MtT. However, using cells from healthy individuals 

for drug-toxicity testing might not replicate late toxicities after years of ART. Autologous 

cells from patients with HIV or individuals at high risk for HIV on pre-exposure prophylaxis 

(Pr-EP) therapy in a 3D culture could better reflect chronic MtT after years of ART.

Standard MtT testing requires reliable large-scale numbers of cells for serial assessments. 

As one of the 3D cell culture models, spheroids have been commonly used in new drug 

development to closely mimic the main structural and functional features of human solid 

tissues [17]. Human primary hepatocytes remain in 3D spheroids for long-term cultures (3–5 

weeks) [18,19], however, 3D spheroid systems cannot provide sufficient largescale cells 

(such as half million cells/well). Because optimal sizes of spheroids require less than 350 μm 

with cell concentration ranging from 2000 to 8000 cells/spheroid to prevent necrosis at the 

center of 3D spheroids [20]. Creating large numbers of human primary cells in 3D spheroid 

cultures is time-consuming, labor-intensive, and expensive [21]. In addition, the maximal 

time frame for testing drugs are 4 weeks in most 3D spheroids with human primary cells [1]. 

Therefore, an improved cost-effective long-term 3D culture method with high cell numbers 

and good biological stability of primary human cells is needed for testing chronic ART-MtT.

Biomaterials with porous microstructures can hold large amounts of cells for long-term 

culture (>4 weeks) for tissue engineering and repair [22–31], which might provide a solution 

for in vitro 3D models for drug testing. These biomaterials include natural bio-matrixes, 

such as spider silk [32], chitosan [33], and microspheres made from collagen [34,35], 

gelatin [36,37], fibrinogen [38], hyaluronic acid [35], alginate [39]) and synthetic materials 

(PGA [37], PLGA [40], PLLA [41–43]). As a natural biopolymer. silk fibroin possesses 

outstanding characteristics with biocompatibility, biodegradability, durability, and flexibility 

[44] for regenerative medicine uses [45–49]. Fiber bio-matrixes with high porosity have 

interconnected pore networks, which provide anchoring sites to hold the cells together and 

facilitate nutrients, oxygen diffusion and waste removal for efficient cell growth during 

long-term 3D culture [50]. Thus, we anticipate that 3D porous silk fiber matrix (SFM) can 

provide an optimal long-term carrier for chronic MtT assessment.

Several types of drugs such as antiretroviral therapy (ART), anticancer drugs, antibiotics, 

and other classes of drugs can induce chronic MtT [51–53]. Zalcitabine (ddC), one of the 

first-generation nucleoside reverse transcriptase inhibitors (NRTIs) as a well-known ART 

agent, effectively inhabits HIV replication but induces severe MtT as patients need lifelong 

administration of ART. Although ddC has been removed from the market and listed by the 

U.S. Department of Health and Human Services (HHS) panel as a drug that should not be 

used due to its MtT [54], we use ddC as a test drug for a positive control to text chronic 
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MtT in this in vitro 3D cellular assay study, 0.1% DMSO (known for non-inducing MtT) as 

a control.

Human cell lines or animal primary cells are mostly used in existing in vitro cell assays. 

Although these cell lines are preferably used for convenience as they are easy to handle, they 

have an absence of human tissue-specific cytoarchitecture. Here, we demonstrate, for the 

first time, that stem cells exist in urine called urine-derived stem cells (USC) [55–57]. These 

cells, obtained via a non-invasive and low-cost approach, possess robust renewal capacity for 

tissue regeneration [22,24,55–87]. The rationale in using USC to assess MtT is that USC 

contain rich intracellular mitochondria and mitochondrial DNA remains stable in 3D culture 

system (in press). In addition, USC are easily accessible (urine) via non-invasive approaches 

[88], which is an optimal cell source to evaluate personalized mitochondrial toxicology. 

Furthermore, USC can be specifically used to test MtT in renal cells or for nephrotoxicity 

screening [20], since USC originate from the kidneys and efficiently differentiate into 

renal tubule epithelial and other renal cells, expressing renal proximal tubule cell (AQP1) 

and podocyte (synaptopodin and nephrin) biomarkers [20]. Thus, use of human primary 

cells, instead of cell lines or animal cells, is key to successfully establishing a reliable 3D 

culture system for new drug discovery and for monitoring patient- or disease-related cellular 

toxicology.

The goal of this study is to develop in vitro 3D long-term culture systems and determine 

the beneficial role of highly porous silk fiber matrix (SFM) on long-term human primary 

USC cultures used for assessment of ART-induced chronic mitochondrial dysfunction. Our 

data demonstrated that the silk fiber network provides a suitable microenvironment for 3D 

long-term culture with a sufficient amount of human primary USC without the induction of 

cell senescence and oxidative stress. Further, the anti-HIV drug ddC significantly decreased 

mitochondrial DNA (mtDNA) content, mitochondrial respiration, and ATP production in 3D 

long-term culture models, compared to 2D culture.

2. Material and methods

2.1. Materials

2.1.1. Silk fibroin and drugs—Silk fibroin was extracted from silk cocoons (TTSAM, 

China), according to the methods as previously reported [49]. Zalcitabine (ddC) is a well-

known anti-HIV drug inducing MtT as a test drug in this study, which was provided from 

the NIH HIV reagent program (https://www.hivreagentprogram.org), dimethyl sulfoxide 

(DMSO) is a known negative control for MtT, was purchased from Sigma (St. Louis, Mo.).

2.2.2. Culture medium and supplements—Human USC were cultured in combined 

media: Keratinocyte serum-free medium (KSFM) and progenitor cell medium (1:1) as 

previously reported [55]. Briefly, KSFM was supplemented with 5 ng/ml epidermal growth 

factor, 50 ng/ml bovine pituitary extract, 30 ng/ml cholera toxin, 100 U/ml penicillin and 

1 mg/ml streptomycin. Progenitor cell medium contained ¾ Dulbecco’s modified Eagle’s 

medium, ¼ Hamm’s F12, 10% fetal bovine serum (FBS), 0.4 μg/ml hydrocortisone, 10−10 

M cholera toxin, 5 ng/ml insulin, 1.8 × 10−4 M adenine, 5 μg/ml transferrin plus 2 × 10−9 

M 3,39,5-triiodo-L-thyronine, 10 ng/ml epidermal growth factor (EGF), 10% penicillin and 
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streptomycin, were all purchased from Gibco (Thermo Fisher Scientific, Waltham, MA, 

USA). Acetone, ethanol, methanol, isopropanol, phosphate buffered saline (PBS) and all 

other reagents were used in this study. Demineralized water was used in all cases.

2.2. Methods

2.2.1. Preparation of silk fiber matrix—Silk fibroin (10%) electrospinning solution 

and random-structured matrix were collected using a wet process. Briefly, the sponge-like 

silk fiber matrixes (SFM) were assembled in a100% ethanol (Warner Graham Company, 

USA) bath up to 45 min. After fully cross-linked with ethanol and washed, the SFM samples 

were frozen with deionized water in a culture dish at dimeter 6 cm (Corning, NY). All SFM 

samples were lyophilized for 3 days.

Two sizes of SFM were made by Biopsy Dermal Punches (Painful Pleasures, USA) for 

different applications (Table 1 and Supplement Fig. 1): i) Small size SFM (s-SFM, 4 mm 

at diameter and 0.2 mm in thickness) fitted into a 96-well plate with ultralow attachment 

(ULA) U bottom (Corning, NY), which is used for measuring cell growth curves, live/dead 

assays and immunofluorescence for SOD2; ii) large size SFM (l-SFM, 8 mm at diamante 

and 1 mm) fitted to 12-well or 6-well ULA plate (Corning, NY) is used for the evaluation 

of mitochondrial function (complex I–V) by Western blot and mitochondrial DNA copy 

number by q-PCR that requires large numbers of cells.

2.2.2. Collection, isolation, and culture of human primary urinary stem cells
—Human urine samples were collected from 12 healthy male donors aged from 17 to 65 

years. Cell pellets were washed with PBS following urine samples being centrifuged. The 

cells were plated in culture plates with USC medium. USC were cultured at 37 °C in a 

humidified atmosphere of 5% CO2. Cells at passage (p) 3 were used for all the groups 

and tests. To assess cell morphology, proliferation and live/dead, USC were seeded into 

96-well plates in three culture conditions: i) 2D culture (4 × 10 [3] cells/well); ii) 3D sphere 

in 96-well plates with ULA (4 × 10 [3] cells/well); iii) 3D s-SFM in 96-well plates with 

ULA (4 × 10 [3] cells/s-SFM/well), respectively. To generate larger numbers of cells for 

Western-blot analysis, USC were cultured either in l-SFM for 3D USC-SFM in 12-well or 

6-well ULA plates (5 × 10 [5] cells/l-SFM/well) or in Micro-molds (Microtissues 3D Petri 

Dish (Sigma, USA)) for 3D spheres with 88 wells. Culture media were changed every other 

day.

2.2.3. Live/dead assay—Cell viability of USC within spheroids and SFM was 

examined using a live/dead assay (Thermo Fisher) at week 1, 2, 4, 6 and 8. These time 

points are based on slow cell growth rates as the population doubling times are ranged 

from 1 to 4 weeks in 3D spheroids depending on cell types [1]. Calcein AM and EthD-1 

were diluted by PBS into 2 mM and 4 mM working solutions, Cell construct samples were 

washed with PBS, and incubated in the working solution for 30 min in room temperature 

(RT). After washed with PBS following staining, USC within 3D culture samples were 

observed under confocal microscope (Leica TCS-LSI, Leica Biosystems Inc. Buffalo Grove, 

IL) or an Olympus IX-70 fluorescence microscope.
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2.2.4. Cell proliferation assays—Cell proliferation or viability was measured at 

different time points after USC were seeded on 2D, spheroids and 3D-SFM in 96-well 

plates, respectively, assessed by Cell Counting Kit-8 (CCK-8 assay, Dojindo, Japan), 

according to manufacturer’s instructions (Fig.1D). The absorbance at 450 nm was measured 

using microplate reader (MultiSkan FC, Thermo, USA).

To evaluate the maximum amount cell numbers capable of being cultured on 3D USC-SFM, 

different cell numbers (10 [6],105,104, and 4 × 10 [3] cells/well) in 220 μl culture medium 

were seeded on s-SFM in ULA 12-well plates for 6 weeks and assessed by CCK-8 as 

above (Fig. 2). To allow cells efficiently attach the SFM scaffolds, USC seeded on s-SFM 

were incubated for 2 h and then extra 200 μl culture medium was added. USC-SFM were 

transferred from 96-well to 12-well plate 12 h after initial seeding with enough medium the 

next day.

2.2.5. Ultrastructure of 3D cultures—A scanning electron microscope (SEM) was 

used to evaluate the surface morphology of spheroids and USC-SFM. Both types of 

3D culture samples were fixed in 2.5% glutaraldehyde and dehydrated using a Leica 

EM CPD300 Critical Point Dryer (Leica Microsystems GmbH, Wetzlar, Germany), then 

mounted and sputter-coated with gold sputtering. The cell samples were examined under 

FlexSEM 1000 Scanning Electron Microscopy (Hitachi Medical Systems America Inc., 

Twinsburg, OH, USA) at an accelerating voltage of 10 kV and working distance of 6 mm.

2.2.6. USC treated with ddC at different doses at 2- and 6-week—To determine 

the dose effect of ddC on cell viability, mitochondrial function and oxidative stress of USC 

in both 3D cultures: spheroids and USC-SFM, we added ddC at different doses: 0.2, 2 and 

10 μM1 in the culture medium every 2 days, 3 replicates per concentration. To evaluate the 

time-dependent effect of ddC on USC in 3D cultures, spheroids and USC-SFM samples 

were assayed 2–6 weeks after administering ddC, 3 replicates per time point. DMSO (0.1%) 

was used as a control.

2.2.7. Immunohistochemical assessment of mitochondrial superoxide 
dismutase—To assess mitochondrial superoxide dismutase 2 (SOD2) levels, both 

spheroids and USC-SFM samples were fixed with 4% PFA for 30min, permeabilized by 

0.2% Triton-X 100, and blocked by DAKO protein block. The cell samples were incubated 

in primary antibodies anti-human SOD2 (Cell Signaling Technology, USA, diluted 1:50, 

Danvers, MA) overnight at 4 °C. Secondary antibody (Goat anti-Mouse, Alexa Fluor−™ 

647, Thermo Fisher Scientific, USA, diluted 1:200) was then applied for 2 h at RT. Cell 

nuclei were stained by DAPI and then observed by an Olympus FV10i® confocal laser 

scanning microscope.

2.2.8. Real time-PCR—To measure the levels of cell senescence genes (p13, 21 and 

Rb) [92] and mitochondrial DNA (mtDNA) content, we assessed mRNA expression of 

spheroid (n = 3) and 3D USC-SFM (n = 3) samples using BioRad CFX connect Real-time 

PCR Detection System [93]. Genomic DNA was extracted from the cells using a DNeasy 

Blood & Tissue Kit (Qiagen, Valencia, Cat. No 69504) according to the manufacturer’s 

protocol. Q-PCR recipe was a mix with SYBR Green SuperMix (ThermoFisher, USA, Cat. 
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No 4367659) using both the mitochondrial and the nuclear primers [93] (Table 2) and the 

temperature cycling was used: initial denaturing at 50 °C for 2 min, 95 °C for 15 min, 

followed by 40 cycles of denaturing at 95 °C for 30 s, annealing at 60 °C for 1 s and 

extension at 95 °C for 15 s, 60 °C for 1 min, annealing at 95 °C for 15 s, 60 °C for 1 min and 

dissociating at 95 °C for 15 s.

To determine mRNA expression of ddC-treated USC in 3D cultures, the mRNA was 

extracted by RNeasy Mini Kit (Qiagen, Valencia, Cat. No 74104) and reversed to cDNA by 

High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher, USA, Cat. No 4368814). 

The other reagents and the primers were the same as Real time-PCR for mtDNA (Table 

2). The PCR temperature cycling used: initial denaturing at 50 °C for 2 min, 95 °C for 10 

min. The rest of the process is the same as the Real time-PCR for mtDNA. The reference is 

normalized by the geometric mean of GAPDH, POLR2A and PGK1.

2.2.9. Western blot analysis for complexes I–V and SOD2—To generate 

sufficient cell numbers for immunoblot analysis, USC (5 × 10 [5] cells) within spheroids and 

l-SFM were loaded in 81-well molds made by Micro-Tissues 3D Petri Dish (Sigma, USA). 

USC in 2D culture were seeded into a 6-well plate at a density of 5 × 10 [5] cells/well as 

control. After a wash of the cell samples with PBS, the USC were harvested and incubated 

for 30 min in the presence of 500 μl of lysis buffer (Pierce, Rockford, IL) with 1% protease/

phosphatase inhibitor cocktail (Cell Signaling Technology, Danvers, MA), vortexing every 5 

min during incubating. The lysate was clarified by centrifugation, and protein concentrations 

were tested by Pierce™ BCA Protein Assay Kit. Following separation in 15% SDS-PAGE 

gels, the proteins were transferred onto a PVDF membrane (ThermoFisher) by a Bio-Rad 

Trans-Blot SD Semi-Dry Transfer Cell under 12 V for 1 h.

Individual activity of oxidative phosphorylation complexes I, II, II IV, V94 and 

mitochondrial SOD2 in USC before or after treatment with ddC at three doses were 

assessed. The membrane was blocked for 30 min in PBS–0.1% Tween 20 (PBST) containing 

5% bovine serum albumin (BSA), washed with PBST, and incubated with the primary 

antibodies (Table 3) for 2 h or 4 °C overnight, diluted by PBST containing 5% BSA. After 

extensive washing with PBST, the membrane was incubated in the secondary antibodies 

correspondingly for 1 h at room temperature. The washed membrane was treated with 

an Immobilon ECL Ultra Western HRP Substrate (Millipore Sigma) and analyzed with a 

Fujifilm LAS-3000 Luminescent Image Analyzer system.

2.2.10. Statistical analysis—Descriptive statistics are presented as mean ± standard 

deviation (SD), GraphPad Prism software version 9.0. All data shown are derived from 

experiments that were independently repeated at least three times. For any experiment with 

multiple treatments, such as different doses, one-way ANOVA with Dunnett’s multiple 

comparisons to control group (DMSO) or multiple unpaired t tests were used. For any 

experiment with two groups, such as different time points, student’s t-test was used to make 

comparisons. Bonferroni’s multiple comparisons were applied whenever appropriate. For all 

analyses, overall statistical significance was set at α = 0.05.
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3. Results

3.1. Fabrication of 3D silk fiber matrix

The diameter of silk fibers, porosity, and pore size of the SFM were optimized and 

characterized as we previously reported [49], leading to direct implications for cellular 

functionality and cell behavior in vitro. Both s-SFM and l-SFM were fabricated for different 

proposes (Table 1 and Supplement Fig. 1). The 3D SFMs at different sizes retained the entire 

porous structure without degradation in culture medium for more than 10 weeks. SFM was 

not affected by lysis buffer during protein or DNA/RNA extraction processes. In addition, 

SFM alone did not affect protein and gene expression assayed by Western blot and q-PCR.

3.2. Cell growth and viability of USC

In 2D culture, USC constantly proliferated and displayed over-confluence with the number 

of cells reaching the peak at weeks 4 and starting to decline at weeks 6 and 8 (Fig. 1 A&B). 

Cells formed “hills” with multiple layers on some areas (while arrows) and “valleys” with a 

single layer of cells on other areas for 6 weeks. This was due to aging USC that detached 

while the remaining USC with self-renewing properties started to proliferate and covered 

a“valley” region. Finally, some USC in 2D culture detached; some cells at large size still left 

on the culture dishes 8 weeks after initial plantation.

The sizes of spheroids were retained similar during 8-week culture, however cells at outer 

layers became larger in size; the bodies of spheroids appeared semi-transparent at 2 weeks 

but became darker at week 6 and 8, indicating that unhealthy cells existed in the center of 

spheroids with time. In addition, these solid cell spheroids lacked channels or spaces from 

the outer layers to the center of 3D spheroid.

In 3D SFM, USC attached, grew along silk fibers, and aggregated at the connecting points of 

silk fibers in 3D constructive matrix, more spaces among cells opened during 8-week culture 

to allow the culture medium flow passing through (Fig. 1A). To improve the potential of 

SFM to hold more living cells in long-term culture, we optimized the cell density of USC in 

different sizes of SFM. When cell growth curves and live/dead analysis were performed in 

3D s-SFM, the number of USC was stable in s-SFM for 6 weeks, then declined at week 8; 

whereas the number of cells remained constant in 3D spheroids at week 4 but significantly 

decreased at week 6 (p < 0.01, Fig. 2). In addition, live/dead analysis showed an intense 

green fluorescence signal for live cells and a faint red fluorescence signal for death cells, 

indicating the majority cells remained viable in the 3D silk fiber network (Fig. 1B) after 2, 

4, 6 and 8 weeks of incubation. Although the number of cells decreased in Fig. 1B, higher 

viability was observed in 3D SFM at week 8 in Fig. 1C. In contrast, 3D USC spheroids 

displayed an intense red fluorescence at the center at week 6 (Fig. 1C), indicating substantial 

cell death and matching the number of cells in spheroids decreasing at week 6 (Fig. 1B). 

Thus, the ultimate timing to test late mitochondrial function in 3D USC-SFM was found to 

be week 6 while the proper timing for testing drug induced MtT in 3D spheroids was at 

week 4.
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3.3. Mitochondrial DNA content and ultrastructure of USC

Importantly, USC did not proliferate in 3D SFM and spheroids (Fig. 1B), and mitochondrial 

DNA (mtDNA) copy numbers were similar in 3D USC-SFM between 2 and 6 weeks after 

culture (Fig. 2A), which is preferred for mitochondrial function testing because the copy 

number of mitochondrial retained stable without replicating. In contrast, levels of mtDNA 

content significantly increased from Week 2–4. In addition, mitochondrial biogenesis is 

the cellular process that produces new mitochondria, which effectively causes an increase 

in mitochondrial mass [94]. Thus, mitochondrial biogenesis of 3D USC-SFM remained 

stable as compared to spheroids in 6-week culture (Fig. 2 B). These data indicate that 

mitochondrial DNA copy number retains more consistency in 3D USC-FSM than that in 

spheroids, which makes USC-FSM more suitable for MtT testing.

Ultrastructurally, the apical membrane facing the tubular lumen of normal renal proximal 

tubule epithelial cells (RPTEC) is folded and covered by brush border (microvilli) that 

increases transport area as an absorptive function characteristic [95]. Microvilli appeared on 

the surface of USC in 3D SFM and spheroids during 4-week culture (Fig. 3), indicating that 

3D cultures of USC possess certain reabsorption properties of RPTEC.

3.4. Ample numbers of USC aggregated within SFM

To determine the maximal cell numbers of USC loaded in 3D SFM, we used different 

cell numbers (10 [6], 105, 104, and 4 × 10 [3] cells/s-SFM sample/well) in 220 μl culture 

medium in 12-well ULA plates for 8 weeks, assessed by CCK-8 (Fig. 4). When USC at 106 

cells/well are loaded into s-SFM, only 1/2 of USC (i.e., 5 × 10 [5] cells) were retained 24 h 

after seeding and the half of cells were washed away following medium changes, indicating 

that the maximal number of cells carried in s-SFM are 5 × 10 [5] cells/s-FSM (Ø at 4 × 0.2 

mm3). The number of USC in s-SFM at 4 × 10 [3],1 × 10 [4] 1 × 10 [5] and 5 × 10 [5] 

cells/well were stably retained without significant cell proliferation during 6-week culture, 

but significantly decreased at week 8 (p < 0.05).

Although s-SFM can carry a maximum number of cells at 5 × 10 [5] cells with high cell 

viability for 8 weeks, the medium must be changed two times a day to maintain cell viability 

when cultured in 96-well plates. To perform a better comparison of the cell growth curve 

and viability, we seeded the same cell density at 4 × 10 [3] USC in 2D culture, spheroids and 

3D SFM, respectively. The CCK-8 test provided a reliable assay to test cell viability for 2D 

cultures or for small size 3D cultures or spheroids.

In addition, USC aggregated and attached at the silk fiber and the network connecting points 

to form 3D cell constructs with a large scale of cells (5 × 10 [5] cells/well) in l-SFM, 

which is about 125-fold higher than USC grown as 3D spheroids in 96-well plates (4 × 10 

[3]cell/well). Serial MtT assessments often require up to 5 × 10 [6]cells/sample [96], 3D 

l-SFM in a 12-well plate provides enough cells (6 × 10 [6]/plate) to meet these large cell 

requirements.
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3.5. Mitochondrial SOD2 expression in USC

Western blot analysis showed that protein levels of mitochondrial SOD2 (mt-SOD2) 

in 3D USC-SFM and 2D culture remained low 2 and 6 weeks after culture, while 

protein levels of SOD2 significantly increased in 3D USC spheroids (Fig. 5 A&B). Dual 

immunofluorescence staining also demonstrated that the expression levels of SOD2 in 3D 

USC-SFM and 2D culture were significantly lower than those in spheroids (Fig. 5C&D). 

Because of a mitochondrial antioxidant role of SOD2, the increased expression of SOD2 

indicates that USC in spheroids were under more oxidative stress, than in 2D culture or 3D 

USC-SFM.

3.6. Senescence gene expression in USC

The expression of senescence-related genes (p13, 21 and Rb) [92] of USC in 3D USC-SFM 

was significantly lower than those in 3D spheroids (p < 0.05) (Fig. 6). This indicates that 

silk-fiber networks provide the appropriate microenvironment for USC growth by preventing 

the expression of senescence-related genes in 3D structures during long-term culture. In 

addition, lower expression of senescence-related genes was found in 2D culture. This might 

be due to the occurrence that only USC with self-renewal potential remain on the 2D cell 

dish and continue to overgrow or that aging cells were detached and washed away during 

6-week culture. In addition, cells in the 2D culture have easily access to the medium for 

metabolites and nutrient exchange, potentially leading to increased proliferation.

3.7. ddC-induced chronic cytotoxicity assessment

The antiretroviral drug ddC significantly affected cell viability and growth of USC in 2D 

culture. Cells readily detached with few cells remaining on the dishes 2 weeks after ddC 

treatment. In contrast, ddC did not significantly affect cell survival and growth 3 days, 1, 2, 

4, and 6 weeks after culture in 3D USC-SFM (Fig. 7A).

3.8. Levels of oxidative phosphorylation complexes I–V decreased after ddC treatment

MtT assessments showed that ddC induced significant impairment of mitochondrial function 

by inhibiting oxidative phosphorylation complex I-IV in 3D culture models, which featured 

as: i) in Fig. 7B&C, the levels of complex I, and IV significant decreased 2 weeks after 

being treated with ddC at middle and high doses (2 and 20 μM), compared to ddC at the low 

dose (0.2 μM); the levels of complex I, II, III and IV significantly declined 6 weeks after 

treated with middle and high dose ddC (2 and 20 μM), compared to those in ddC at low 

dose (0.2 μM). This data indicates that the dose-dependent MtT of ddC can be detected in 

3D USC-SFM during 6 weeks culture; ii) complex I-IV levels in 3D USC-SFM significantly 

decreased in response to ddC at 2 and 20 μM at 6 weeks compared to 2 weeks, indicating 

that a time-dependent MtT of ddC developed in 3D USC-SFM model in Fig. 7 B&C; iii) in 

Fig. 7B&E, the levels of complexes II, III and IV in 3D USC-SFM significantly decreased 

by ddC at (2 and 20 μM), compared to complex levels in spheroids. In addition, levels 

of complexes I, II and IV significantly increased after being treated with low dose ddC 

(0.2 μM) in 3D spheroids, which did not occur in 3D USC-SFM. The data indicated that 

the 3D USC-SFM model was more sensitive and reliable to detect drug-induced MtT, as 

compared to 3D spheroids. Thus, the data indicated that ddC induced mild cytotoxicity but 
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a significant dose- and time-dependent mitochondrial toxicity as represented by decreasing 

levels of complexes I-IV in USC in both spheroids and 3D SFM, but that 3D USC-SFM is 

more sensitive in detecting oxidative phosphorylation complex proteins than 3D spheroids.

3.8. Expression of mtDNA declined after ddC treatment

To determine the adverse effect of ddC on mtDNA in 3D cultures, we quantified the copy 

numbers of mtDNA by competitive PCR in the specimens of 3D cultures after treatment 

with ddC. ddC significantly decreased the levels of mitochondrial DNA content (Fig. 8A) 

and mitochondrial mass (Fig. 8B) in 3D USC-SFM (p < 0.01) in a time-dependent manner. 

However, this time-dependent effect was not displayed in 3D spheroids, which might be 

related to the low cell survival rate of USC in spheroids 6 weeks post treatment. In addition, 

ddC at 2 and 20 μM inhibited mtDNA content compared to those in both 3D cultures treated 

with 0.2 μM ddC at 2- and 6-weeks post treatment. There was no significant difference in 

mtDNA content in cultures treated with ddC between at 2 and 20 μM. Thus, like complex 

I-IV levels, ddC induced a time- and dose-dependent decrease in mitochondrial DNA copy 

number in USC in both 3D culture models while 3D USC-SFM model was more sensitive 

and reliable to detect drug-induced MtT than 3D spheroids.

4. Discussion

Mitochondrial dysfunction has been increasingly been identified as a potential etiology of 

drug-induced toxicity, in particular for chronic MtT in the individuals with HIV taking 

long-term or life-long ART. Based on our recently established in vitro 3D spheroid model 

for MtT [1] and nephrotoxicity assays [20], we explored a novel technology to provide 

3D long-term (6-week) culture systems of human USC-SFM for chronic MtT assessment. 

Our data demonstrated that 3D in vitro models offered an increased microenvironmental 

control that can yield more predictive drug responses than 2D models. 3D SFM with 

porous structure supported large numbers of human primary stem cells in long-term culture, 

which provides a cost-effective approach suitable for assessing chronic ART-MtT. Innovative 

features of the 3D USC-SFM culture system for the assessment of chronic ART-MtT and 

novel traits of USC using in toxicity test are summarized in Table 4.

In vitro cell-based assays are often positioned within the drug-development process outline 

toxic screens to prevent adverse effects of new ART drugs. Traditional 2D cell cultures 

have made important contributions to drug discovery to offer the initial selection for 

drug compound screening. However, their limitations have been increasingly recognized, 

especially in MtT testing. Despite being most used in acute metabolic assays (<2 weeks), 

existing in vitro 2D assays of human cell lines or animal primary cells are not capable 

of detecting chronic MtT [45–48]. This is because most 2D cultured cells cannot survive 

or are detached from culture dishes for more than 2 weeks after administration of ART, 

although some cell lines, such as the HepaRG cell line, are capable of surviving in no toxic 

environment for 4 weeks [97]. In addition, cell lines that are commonly used in 2D cultures 

divide indefinitely, and sometimes express unique gene expression patterns not found in 

any cell type in the human body. These 2D monolayer cultures do not mimic 3D tissue or 

organ architecture having multiple cell types and tissue specific extracellular matrix (ECM). 
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Furthermore, cell lines proliferate rapidly in 2D conditions, such that mitochondrial numbers 

in cells increase with time, making it difficult to accurately measure the adverse effects of 

ART on mitochondrial DNA (mtDNA) content and mitochondrial function. Finally, drug 

availability to cells varies between in vitro 2D and body tissues. Drug molecules are readily 

accessible to each cell in 2D culture with a high ratio of drug molecule-to-cell number, 

leading to an underestimation of drug toxicity in clinical settings [98].

Increasing evidence has demonstrated that 3D cell culture systems are in many ways 

superior to those in 2D culture and are set to dominate in vitro studies in tissue regeneration, 

disease modeling, new drug discovery and toxicology testing [1,14,20]. Several types of 

3D cultures have been used in drug testing: organoids, spheroids, 3D gel with cells, 

3D culture of cell-matrix and chips [99]. The optimal assays for chronic MtT need to 

meet several criteria: i) long-term 3D culture assays (≥6 weeks), installed with porous 

microstructures supporting cell retention and enhancing gas, nutrition, molecular and drug 

distribution, and suitable for chronic MtT analysis; ii) selecting human primary cells, 

rather than cell lines or animal cells, that can be easily accessed and are desirable for 

engineering human tissue equivalents in vitro; iii) using stem cells that possess vigorous 

expansion capacity with rich mitochondria and mitochondrial DNA (mtDNA) [93] and 

are highly sensitive for the recognition of effects on mtDNA and mitochondrial function; 

iv) possess stable numbers of cells and mitochondrial copy numbers over time, which is 

suitable for determining the effect of ART on mtDNA content [1]; v) generating large-scale 

numbers of cells (i.e., 5 × 10 [6] cells/sample [96]) in 3D cultures that can be used 

for a series of MtT assessments, including reactive oxygen species (ROS), mitochondrial 

permeability transition, mitochondrial respiration, mitochondrial DNA content, apoptosis, 

and inhibition of beta-oxidation of fatty acids [51] using several assays, such as ELISA, 

immunofluorescence staining, colorimetric assays and Western blot analysis. Thus, the data 

generated from such a substantial number of cells from a single sample for multiple assays 

would be more accurate, sensitive and have little inter-laboratory variability, particularly for 

long-term exposures; and vi) providing a cost-effective platform with less labor and less 

time consumption by offering feasible cell-scaffold constructs for in vivo studies.

Despite being adopted in the drug discovery field, 3D spheroids with small number of cells 

limit their application for metabolic experiments [1,20]. Spheroids display an imperfection 

of an inherent gradient of molecules (i.e., O2, nutrients, metabolites, or drugs), leading 

to a central necrotic core zone enclosed by quiescent cells and an outer layer of actively 

proliferating cells [52]. The maximum size of spheroids is limited between 300 and 400 

μm and a small number of cells (4–8 × 10 [3] cells/sample/well) because of the diffusion 

limitation of ranging between 150 and 200 μm to O2
53. In addition, drug molecules cannot 

evenly distribute into the large size spheroids (>400 μm) due to the lack of channels 

or openings. In vivo solid tissues are provided with rich vessel systems, allowing even 

distribution of the drug molecules. However, it is a challenge for some drugs with high 

molecular weights to equally penetrate in 3D spheroids.

We proposed that 3D SFM with porous microstructures provide large-scale generation 

of human primary stem cells (5 × 10 [5] cells/well) (Table 1) with stable mitochondrial 
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qualities for long-term culture. Our previous studies demonstrated that despite no 

vasculature installed in vitro, porous biomaterial matrices significantly promoted vasculature 

and engraftment formation 4 weeks after in vivo implantation [22–31], compared to non-

porous collagen-based matrix, indicating that a matrix with porous structure allowing 

vascular formation is critical to carry more cells for long-term culture. Thus, in vitro 
3D models with porous constructs appear to mimic in vivo tissues with vessel channels, 

enhancing drug molecules to uniformly distribute into in vitro 3D cellular structures. The 

present study is the first to test this idea using a silk fiber network to support human primary 

cells to form 3D constructs (Fig. 1A) to assess drug-induced chronic MtT, although silk 

fibers have been used previously to produce scaffolds for tissue regeneration.

We demonstrated that 3D SFM with abundant porous microstructures favors cell survival 

and retains USC growth for 6-week culture. Silk fibers formed in a bundle with integrated 

human USC are both compacted and flexible, with favorable mechanical properties. In 

addition, the interconnected SFM porous matrix networks are essential to enable the 

transport of nutrients and drug molecules, removal of waste, and facilitate migration of 

cells, which are like the in vivo condition. The expression of senescence-related genes 

[44] of USC in 3D SFM is significantly lower than that in 3D spheroids. This indicates 

that silk-fiber networks provide the appropriate microenvironment for 3D long-term USC 

culture by down regulating of senescence-related gene expression. Although lower levels of 

senescence-related gene expression were found in 2D culture, this might be due to the fact 

that some USC with self-renewal potential remained on the dish and continued to grow after 

the over-matured cells were detached and washed away for up to 6 weeks.

Human primary USC as an optimal universal cell source were selected to use in this 

3D model system because of their biological advantages for MtT assessment, including: 

i) As stem cells, USC are superior to existing other human somatic cell types in drug 

testing because of their regeneration capacity, providing cells in large numbers (>1 × 10 [8] 

USC at p3 three weeks after collection of 24-h’ urine sample [85]); ii) these cells do not 

require tissue dissociation steps with digestive enzymes, thus better preserving cell viability; 

iii) USC contain abundant mitochondria in renal progenitor cells [1], and mitochondrial 

DNA remains stable with no replication in 3D culture system for 6 weeks, allowing us 

to assess ART-MtT; iv) autologous USC more accurately represent individual patient- or 

disease-related characteristics [65], which is different from immortalized cell lines and 

animal cells; v) USC, are easily accessible via a non-invasive approach, which offers clear 

advantages over stem cells from other sources; and vi). USC can be specifically used in 

testing MtT in the renal cells, or nephrotoxicity screening [20], since USC originate from 

the kidneys and efficiently differentiate into renal tubule epithelial and other renal cells, 

expressing a renal proximal tubule cell (AQP1) and podocyte biomarkers (synaptopodin and 

nephrin) [20].

Several drug classes (such as antiviral drugs, chemotherapeutic agents, antibiotics, and 

anti-tuberculosis drugs, drugs of abuse, and toxicants (i.e., radiocontrast agents, chemicals, 

industrial, or environmental toxic agents) [100] are recognized to induce MtT. Among 

antiretroviral agents, nucleoside reverse transcriptase inhibitors [NRTIs] and integrase strand 

transfer inhibitors [INSTIs] are most commonly used for fighting HIV/AIDS, HBV or co-
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infection of HIV/HBV. Although HIV infection has no cure, ART can control viral growth 

and keep the patient healthy, extending life. However, long-term use of these ART drugs 

could increase morbidity and mortality among those with the viral infection. In addition, 

these drugs make up the majority of delayed clinical phase and post-market withdrawals, 

which causes the loss of immense revenue. Thus, it is critical to identify chronic MtT for 

the optimization of ART regimens. Drug-induced chronic MtT (≥4 weeks) affects people 

living with HIV over time during long-term ART. Multiple studies indicate that either 

HIV infection [4] or antiretroviral drugs [100] causes mitochondrial dysfunction, leading 

to cellular exhaustion, senescence, and apoptosis [101]. This highlights the urgent need 

for further investigation into AVT-induced mitochondrial compromise. As a classic NRTI, 

ddC was selected as a test drug in this study because it is a well-known anti-HIV agent 

causing MtT. ddC specifically inhibits mitochondrial toxicity in several cell types such 

as T-lymphoblastoid cells [102,103], HeLa epithelial cells [10], HepG2 [52,53,104] and 
HepaRG [52,105], peripheral neuronal cells [106], skeletal myocytes, and renal proximal 

tubular epithelial cells. As USC are renal cells and stem cells with rich mitochondria, they 

are ideal cell sources to test the cellular toxicity of ddC in human primary cells.

An In vitro assay panel was performed to detect mitotoxicity [107] in 3D cultures of 

USC in this study, including cytotoxicity, oxidative phosphorylation complexes I–V, mtDNA 

copy number, mitochondrial mass, mitochondrial SOD2. ddC at 7–90 μM usually causes 

severe cytotoxicity of HepG2 cells and human primary skeletal muscle cells in 2D culture 

with 50% cell death [108]. We demonstrated that ddC induced mild cytotoxicity with cell 

death ratio at 5–10% in 3D USC-SFM at week 6, which is significantly different from 2D 

culture. Compared to 2D culture, cells often have more resistance to drugs in 3D culture 

as do in vivo conditions and provide more accurate data regarding cell–cell and cell-matrix 

interactions, drug distribution, and metabolic profiling. Porous scaffolds such as SFM with 

cells provides advantages of better drug metabolism and more accurate evaluation of drug 

effects [109].

Mitochondrial bioenergetic analysis (i.e., mitochondrial stress tests) can be performed using 

Seahorse technology that simultaneously analyzes the two main metabolic energy pathways: 

mitochondrial respiration and glycolysis or Western blot [110]. The assays provide insight 

into the cause of mitochondrial dysfunction and a more in-depth understanding of metabolic 

pathways, signals, and phenotypes in the cells. However, Seahorse technology often 

requires monolayer cells on 2D cultures, thus we used Western-blot to measure oxidative 

phosphorylation complexes I–V protein levels in this study. Despite mild cytotoxicity, ddC 

induced significant chronic MtT with the inhibition of complex I–V in a time- and dose-

dependent manner, which is more sensitive than 3D spheroids. Thus, due to the capacity 

of mass production of primary human cells in long-term 3D culture with favorable cell 

viability, the 3D USC-SFM method is promising for the assessment of chronic ART-MtT. 

Similarly, a prolonged time-course reveals that ddC induced MtT via inhabiting mtDNA 

copy number and mitochondrial mass. Recent studies showed that Seahorse technology has 

been used in 3D spheroids to measure cellular respiration and to evaluate lactate release 

[111] although this technology has not been wildly used in 3D culture systems due to the 

technological limitations, particularly in the size of spheroids.
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The levels of oxidative stress in 3D USC-SFM and 2D culture were significantly lower 

than those in 3D spheroids of USC. As a group of enzymes, SOD catalyzes the dismutation 

of superoxide radicals (O2
− * ) to molecular oxygen (O2) and hydrogen peroxide (H2O2), 

providing a cellular defense against reactive oxygen species. SOD1 is in the cytoplasm, 

SOD2 is in the mitochondria while SOD3 is extracellular. SOD1 and SOD2 contain copper 

and zinc, whereas SOD2, the mitochondrial enzyme, has manganese in its reactive center. 

Increased mitochondrial SOD2 activity might decrease cell oxidant levels observed in 3D 

spheroids, suggesting a reaction to greater oxidative stress in the spheroid cultures than that 

in 3D USC-SFM and 2D culture.

Aside from key MtT assays used in this study, other assessments have been often used 

in the evaluation of mitochondrial dysfunction, including glycolytic flux for cell metabolic 

status and drug MtT, ATP production for energy metabolism disruption, reactive oxygen and 

nitrogen production and total glutathione expression for amplified free radical production, 

and caspase 3 activation for altered apoptosis [1]. Following establishing this long-term 3D 

culture assays, we will further test more ART and other drugs at different doses with a wide 

scope of mitochondrial function assays. A panel of drug lists at both positive and negative 

control is provided for MtT assessment in Table 5.

In summary, the present study demonstrated that the long-term in vitro 3D culture systems 

of human primary USC can predict MtT that 2D culture cannot achieve. In vitro 3D 

culture systems are superior to 2D culture in long-term culture and more accurate in testing 

chronic mitochondrial toxicity with neither cell proliferation nor mitochondrial replication 

occurring in the 3D USC cultures. 3D spheroid assays can be used in the measurement 

of the parameters requiring immune-fluorescence staining, and the evaluation of cellular 

respiration and lactate release with Seahorse technology. In addition, 3D USC-SFM can 

carry an ample number of cells for 6 weeks, are more sensitive and reliable in testing MtT, 

and are more physiologically relevant than 3D spheroids. Thus, 3D USC culture systems 

provide cost-effective and sensitive assays with less labor and reduced cost to test toxicant or 

drug induced chronic MtT via a series of experiments, compared to traditional 2D cultures.

5. Conclusions

We have developed novel in vitro 3D models with unique cell sources and natural silk fiber 

biomaterials which yield large scale production of long-term cultured human primary USC 

for a series of mitochondrial function analysis. In vitro 3D long-term culture platforms of 

USC potentially provide new opportunities in testing chronic MtT for new drug development 

and personalized toxicology. In vitro long-term 3D cultures developed in this study yield 

reproducible dose- and time-dependent chronic MtT, which is not possible in existing 

2D cultures. Particularly, these in vitro 3D USC assays can also be used for testing 

nephrotoxicity as USC are renal progenitor cells. Because of the complexity of the in vivo 

system where multiple tissues are affected by drug toxicity, in ongoing studies, we are 

modifying 3D models by loading multiple cell types and ECM supporting specific tissue 

function to test various drugs. In the future, such 3D culture assays designed with USC 

from the patients with HIV or healthy individuals with pre-exposure prophylaxis could 

help determine whether chronic MtT is induced after long-term of ART. In addition, HIV 
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itself could contribute to mitochondrial dysfunction. HIV infection-induced mitochondrial 

dysfunction and premature T cell aging will also be studied. Thus, we can better understand 

and assess the ART-mediated MtT in the setting of HIV infection for the individual taking 

ART for life-long treatment. Not only can 3D assays of human primary stem cells limit the 

number of unsafe drugs, but they also promise to allow a whole generation of new drugs 

to prosper. It will facilitate establishing a personalized in vitro system to predict individual 

susceptibility and assess chronic MtT of new drugs, particular for life-long anti-HIV drugs.
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Statement of significance

Despite being commonly used to produce scaffolds for tissue regeneration, the silk 

fiber matrix (SFM) with human primary cells developed in this study is the first 

use in a long-term culture (>6 weeks) predicting drug-induced chronic mitochondrial 

toxicity. Therefore, it has great promise for both new drug assessment and personalized 

toxicology. Key innovations of this study include human primary urinary stem cells 

seeded 3D SFM (3D USC-SFM):

• offers stable cell growth, mitochondrial copy numbers in 3D culture for 6 

weeks, which is suitable for determining drug-induced chronic MtT;

• provides a cost-effective and sensitive assay to test MtT by increasing the 

yield of USC in 3D silk fiber network 125-fold, compared to spheroids;

• performs multiple assays from one large cell sample that makes the results 

more reliable and accurate with less variability;

• could be used in prediction of chronic MtT using patient’s own cells for 

personalized toxicology;

• could be used in testing drug-induced nephrotoxicity as USC are renal 

progenitor cells.
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Fig. 1. 
Morphology and viability of 3D USC-SFM during long-term culture. A) Morphology of 

USC in three culture conditions with time. USC at p4 grew on silk fibers of s-SFM, 

3D spheroids remained stable size in ultra-low attachment 96-well plate. USC reached 

over-confluent status with time in 2D culture, when USC were initially seeded at 4 × 10 [3] 

at culture conditions (3D sSFM at Ø4mm × 0.2 mm, spheroid and 2D culture in 96-well) 

plate at different time points, under phase contrast microscope. B) Cell proliferation of USC 

in 3D SFM. USC culture (initial seeding cell number 4 × 10 [3]) at day 1, 3, 7 and week 2, 
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4, 6, and 8, assessed by CCK-8 test. *p < 0.05. C) Cell viability of USC in 3D cultures at 

different time points. In 3D SFM, most USC (95%) survived up to 8 weeks although there 

was about 20% of cells density decrease at 8 weeks, compared to cultures at 6 weeks. In 

3D spheroids, most cells appeared healthy at week 4 but the number of died cells increased 

at week 6. The size of USC spheroids presented slightly larger in the first week, remained 

stable at week 2 and 4, and decreased with time starting at week 6. It formed necrosis at the 

center of spheres at week 8 (assessed by live/dead kit).
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Fig. 2. 
Mitochondrial mass and DNA content (mtDNA content) in 3D cultures. A) No statistical 

difference in mtDNA content/cell between 3D spheroids and 3D USC-SFM at weeks 6 (p > 

0.05). The levels of mtDNA content in 3D of USC-SFM are similar between week 2 and 6, 

assessed by q-PCR. (4 × 10 [3] cells/well in ULA 96-well plate, n = 3/sample, *p < 0.05). B) 

Mito-Tracker Green staining of mitochondria in 3D spheroids and 3D USC-SFM at 6 weeks.
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Fig. 3. 
Ultrastructure of USC in 3D cultures. Rich microvilli on the apical side of the USC grew 

along the silk fibers and intracellular spaces are found among the cell-silk fiber networks, 

compared to USC with similar microvilli on surface of 3D spheroids at 4 weeks after 

culture, as assessed by scanning electron microscopy.

Ding et al. Page 27

Mater Today Adv. Author manuscript; available in PMC 2022 October 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Optimization of cell concentrations in 3D USC-SFM during long-term culture. Number of 

USC at different cell concentrations at p4 seeded on SFM (Ø at 4 mm × 0.2mm/well in 

96-well plates, n = 3) for 8 weeks was assessed by CCK-8, indicating that the maximal 

number of cells that can be loaded in SFM in a 96-well plate is 1 × 10 [5] cells/1.3 mm3 

SFM/well. When more cells (e.g., 106 cells/25.2 mm3 SFM/well) were loaded into large size 

SFM retained only 1 × 10 [5] cells up to 8 weeks.
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Fig. 5. 
Significant increases in superoxide dismutase 2 (SOD2) expression in spheroids, but not 

in 3D USC-SFM. A) Protein levels of mitochondrial SOD2 significantly increased in 3D 

USC spheroids, compared to that in 3D USC-SFM and 2D culture at weeks 2 and 6. This 

was assessed by Western blot. B). The semi-quantification analysis for SOD2 in cell lysates 

shown for (A) The intensity of the bands in each cell culture model was calculated relative 

to β-Actin housekeeping protein. Data (n = 3 samples) were expressed as means ± SD. C) 

Expression level of SOD2 in mitochondria significantly increased in 3D organoids of USC 

at week 4, compared to that of USC-SFM (n = 5, p < 0.05). The initial seeding cell number 

was 4 × 10 [3] cells in SFM at Ø 4 mm × 0.2 mm) in a 96-well-plate, assessed by double 

immune-fluorescent staining (SOD2/DAPI). D) semi-quantification analysis for (C).
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Fig. 6. 
Senescence-related gene expression of USC in 3D cultures. Quantitative PCR analysis 

showed the mRNA levels (RB and P16, p21) of USC in 2D culture, 3D spheroids and 3D 

SFM from three individuals at day 3, week 2 and week 6, respectively. The results were 

expressed as mean ± SD of three independent experiments. Asterisks indicate significant 

differences (*p < 0.05, **p < 0.01). Senescence-related genes in 3D USC-SFM were 

significantly lower compared to those in 3D USC spheroids at week 6.
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Fig. 7. 
Dysfunctional electron transport chain (ETC) complexes I–V in 3D USC cultures 6 weeks 

after ddC treatment. A) Cell viability of 3D culture of USC-SFM treated with ddC over 

time. USC at p4 seeded on 3D SFM at weeks 2 and 6, assessed by CCK-8. B) Western blot 

protein expression of ETC complex I (NDUFB8), complex II (SDHB), III (UQCRC2), IV 

(COXII) and V (V-ATP5A) in 3D culture of USC-SFM (n = 3 samples/treatment) treated 

with ddC at different doses at weeks 2 and 6). C) Protein expression levels of ETC complex 

I-IV between 3D USC-SFM and spheroids treated with ddC at the same time point (week 

6) were compared to those in DMSO control. D) The semi-quantification analysis of the 

bands in B to compare the protein levels of complexes I–V in 3D USC-SFM 2 and 6 weeks 

after being treated with ddC. Complex I-IV significantly decreased in USC-SFM treated 

with ddC at 2 and 20 μM compared to low dose (0.1 μM) ddC and DMSO control at week 

6. In addition, levels of complex IV, II and I were significantly lower at week 6 (#p < 

0.05), compared to those at week 2. E) The semi-quantification analysis for C compares the 

protein levels of complex I–V in 3D USC-SFM and spheroids at week 6. Expression levels 

of complex I-IV significantly decrease in USC treated with ddC (2 and 20 μM) in both 3D 

USC-SFM and spheroid models, compared to those treated with ddC at 0.1 μM and DMSO. 

In addition, levels of complex II and IV in 3D USC-SFM were significantly lower than those 

in 3D spheroids. USC at 5 × 10 [5] cells/SFM Ø at 1 mm/well in ULA 12-well (n = 3) for 6 

weeks after treated with ddC (0.1, 2, 10 μM). All the data from complex I–V bands treated 

USC were normalized to β-actin as a loading control. The intensity of the bands in each cell 

culture model was calculated relative to this value. Data (n = 3 samples) are expressed as 

means ± SD. Student’s T-test was used. *p < 0.05; **p < 0.01; #p < 0.05.
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Fig. 8. 
Mitochondrial DNA content and mass significantly decrease with increased ddC doses 

in 3D culture of USC over time. A) Changes in mtDNA content of USC treated with 

ddC. Levels of mtDNA content significantly decreased in 3D spheroid of USC and 3D 

USC-SFM 2 and 6 weeks after being treated with ddC at three different doses (0.2, 2, or 

20 μM), compared to cells treated with DMSO standardized as 100%. ddC at 2 or 20 μM 

significantly inhibited mtDNA content compared to those treated 0.1 μM ddC. Decreased 

mtDNA content displayed a dose-dependent manner in 3D spheroids of USC; decreased 

mtDNA content showed in a time-depended manner in 3D USC-SFM, which was assessed 

by q-PCR. Fold change of relative mtDNA content was compared to control (0.1% DMSO) 

n = 3 samples) after the values were normalized to nuclear DNA. B) Mitochondrial mass of 

USC decreased with increasing ddC doses in both 3D USC-SFM and spheroids. This was 

determined by Mito-tracker staining after treatment with ddC (0.1, 2, 10 μM) for 6 weeks 

where 0.1% DMSO served as control. USC at 4 × 10 [3] cells/well were cultured in ULA 

96-well plates. Significance was set at p < 0.05 and all data were represented as mean ± SD. 

*p < 0.05 and **p < 0.01.
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Table 4

Innovative characteristics of 3D USC-SFM for potential use in chronic MtT assessment.

Five Key innovations

 - Establish long-term 3D cultures of human primary stem cells from healthy donors or patients

 - Supports a longer-term (6-weeks) culture of USC via inhibition of senescence genes

 - Provide a cost-effective assay to test chronic MtT by increasing the yield of USC in 3D SFM 125-fold, compared to USC spheroids

 - Perform multiple assays from one large cell sample that makes the results more reliable and accurate with less variability

 - Test ART-induced nephrotoxicity as USC are renal progenitor cells

Novel traits of USC assays

 - Obtained noninvasively in low-cost setting

 - Don’t require enzyme for tissue dissociation, preserving cell viability

 - USC expressing telomerase activity display robust regeneration potential, large-scale cell expansion, with less inter-donor variability

 - Contain rich mitochondria for assessing MtT

 - Hypoxia resistance leads to suitable growth in 3D culture
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