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ABSTRACT: Traditional drug production is a long and complex process
that leads to new drug production. The virtual screening technique is a
computational method that allows chemical compounds to be screened at an
acceptable time and cost. Several databases contain information on various
aspects of biologically active substances. Simple statistical tools are difficult
to use because of the enormous amount of information and complex data
samples of molecules that are structurally heterogeneous recorded in these
databases. Many techniques for capturing the biological similarity between a
test compound and a known target ligand in LBVS have been established.
However, despite the good performances of the above methods compared to
their prior, especially when dealing with molecules that have homogeneous
active structural elements, they are not satisfied when dealing with molecules
that are structurally heterogeneous. Deep learning models have recently
achieved considerable success in a variety of disciplines due to their powerful generalization and feature extraction capabilities. Also,
the Siamese network has been used in similarity models for more complicated data samples, especially with heterogeneous data
samples. The main aim of this study is to enhance the performance of similarity searching, especially with molecules that are
structurally heterogeneous. The Siamese architecture will be enhanced using two similarity distance layers with one fusion layer to
further improve the similarity measurements between molecules and then adding many layers after the fusion layer for some models
to improve the retrieval recall. In this architecture, several methods of deep learning have been used, which are long short-term
memory (LSTM), gated recurrent unit (GRU), convolutional neural network-one dimension (CNN1D), and convolutional neural
network-two dimensions (CNN2D). A series of experiments have been carried out on real-world data sets, and the results have
shown that the proposed methods outperformed the existing methods.

1. INTRODUCTION
Drug development is a lengthy and complicated procedure that
ends in the creation of new drug production. In the course of
conventional drug research and development, a biomolecular
target is identified and the experiments for high-performance
screening are performed to identify bioactive compounds for
specified goals. The development of high-performing research
testing is expensive and time-consuming. This process includes
specialized laboratories with chemical and biological libraries.1

In fact, the probability of success is low, and the acceptance and
widespread use of approximately 1 out of 5000 identified drug
applicants are estimated.2 The increased computer capabilities,
on the other hand, allowed several million chemical compounds
to be screened at an acceptable pace and cost. The virtual
screening technique is a computational method for searching
small molecules in huge libraries and choosing the most likely
binding structures with a drug objective.3−6 Virtual screening
(VS) is conducted in the early discovery phases in which broad
chemical libraries comprise the most promising lead com-
pounds. In the last few years, the development of drugs has been
accelerated by virtual screening (VS). Two main virtual
screening techniques exist, namely, structure-based virtual

screening (SBVS) and ligand-based virtual screening (LBVS).7

The SBVS techniques seek indirect compounds that are
appropriate for the biological objective binding site. The central
technology of SBVS methods is molecular docking.8 On the
other hand, the LBVS approach is used constantly for the
prediction of molecular properties and for measuring molecular
similarity because the method to represent the molecules is easy
and accurate. The significance of applications of similarity
searching stems from the importance of lead optimization in
drug discovery programs, in which close neighbors are looking
into an initial lead compound to find decent compounds.9−12

Recently, modern deep learning (DL) techniques were
introduced in many fields, and they developed in the last
years, opening a new door for researchers. The success of DL
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techniques benefits from the rapid growth of the DL algorithms
and the advancement of high-performance computing techni-
ques. Moreover, DL techniques have fewer generalization errors,
which allow them to achieve reasonable results on certain
benchmarks or competitive tests and make more precise
predictions regarding molecular properties.13−18 Also, features
can be automatically discovered from input data using deep
learning techniques.3,19,20 In addition, the Siamese network is
commonly used for solving image similarity and text similarity
issues. It has been used for more complicated data samples,
especially with heterogeneous data samples, with various
dimensionalities and type characteristics.21,22

Information about different aspects of biologically active
compounds is held in a variety of databases. Some databases
contain classes of molecules that have structurally homogeneous
active elements like the MDL Drug Data Report
(MDDR_DR2) data set, and other databases contain classes
of molecules that are structurally heterogeneous like
MDDR_DR3 and Maximum Unbiased Validation (MUV);
however, the vast volume of information stored and complex
data samples of molecules that are structurally heterogeneous
make it difficult to carry out simple statistical tools. In this study,
the Siamese deep learning model will be enhanced by using two
distance layers and then a fusion layer that combines the results
from two distances layers, it is appropriate to combine them to
further improve the similarity measurements between mole-
cules, particularly when dealing with different types of
descriptors. In some models, multiple layers have been added
after the fusion layer to improve the retrieval recall. In this
architecture, several methods of deep learning have been used
here which are long short-term memory (LSTM-RNN), gated
recurrent unit (GRU-RNN), both are in the recurrent neural
network, convolutional neural network-one dimension
(CNN1D), and convolutional neural network-two dimensions
(CNN2D). The following are the paper’s main contributions:

• The Siamese deep learning model will be enhanced using
two distance layers and then a fusion layer that combines
the results from two distance layers to add further
improvements for the similarity measurements between
molecules, particularly when dealing with different types
of descriptors, and then adding many layers after the
fusion layer for some models to improve the retrieval
recall.

• In comparison to benchmark approaches, the suggested
method demonstrated encouraging results in terms of
overall performance, especially when dealing with
heterogeneous classes of molecules.

2. RELATED WORK
Similarity-based virtual screening is widely considered to be one
of the essential aspects of drug discovery. Several approaches
were used to increase the retrieval effectiveness of the similarity
searching methods. The 2D similarity methods have become
widely used and very common. The fundamental theory behind
the calculation of molecular similarity is that structurally similar
molecules seem to be more likely to possess similar properties
than structurally dissimilar molecules. The purpose of similarity
searching, therefore, is to retrieve molecules that are structurally
very similar to the reference structures of the consumer. Various
coefficientmethods allow for the quantification of the similarity/
difference between molecule pairs. Many other studies have
tested the output of several similarity coefficients, showing that

the Tanimoto coefficient surpassed other similarities.23−26 The
Tanimoto coefficient has thus become the most common
indicator of the similarity of chemical compounds used in
chemoinformatics. Different approaches have been used over
the years to enhance the performance of search methods for
similarities. Some experiments attempted to incorporate
methods from various disciplines. Many parallels between the
retrieval of text information and cheminformatics have already
indicated that techniques developed for the retrieval of text
documents may be employed to improve the similitude of
molecular searching.27 Therefore, some approaches to molec-
ular similarities, such as the Bayesian inference network, used by
virtual ligand screening were originally based on text retrieval
domains. In virtual screening, for example, Abdo et al.28,29 have
used the Bayesian network, which outpaced Tanimoto. In
addition, the reweighting techniques were used in the text field
to model retrieval of documents and adapted in the
cheminformatic field in the retrieval model.28,30 The fragment
reweighting techniques were also used by Ahmed et al. to
strengthen the Bayesian network.28 Al-Dabagh used the
concepts of quantum mechanics theory to enhance molecular
similarity searching and molecular ranking of chemical
compounds in LBVS.31 Himmat M. created a new similarity
measure by reweighting various bit strings and derived it from
existing similarity measures. In addition, the author proposed
ranking strategies for developing a substitute ranking
technique.32 Nasser and colleagues employed deep belief
networks (DBNs) to reweight molecular features where many
descriptors were utilized, each representing distinct relevant
aspects, and integrated all new features from all descriptors to
provide a new descriptor for similarity searches.33

In recent years, new technologies of deep learning (DL) have
been adopted and applied in drug discovery and bioinformatics
and cheminformatics studies, opening a new door to computa-
tional decision making and to assist in the understanding of
molecular mechanisms and the development of new therapeutic
options for a variety of diseases.20,34 Goḿez-Bombarelli et al.
proposed an autoencoder model that produces new molecules
by converting discrete molecular representations to multidimen-
sional continuous representations.35,36 Skalic et al. proposed a
new model to produce new molecules by converting the seed
compound into a three-dimensional (3D) representation using a
variational autoencoder and then sequencing SMILES tokens
using convolutional and recurrent neural network systems to
explore uncharted areas of the chemical space that still have lead
compound-like characteristics.37 Gao et al. proposed a
generative network complex (GNC) model to create new drug
like molecules using gradient descent in the latent space of an
autoencoder for multiproperty optimization.38 Hamza et al. used
CNN to determine its precision during the prediction of orphan
compound activities.39 Also, Mendolia et al. used convolutional
neural networks (CNNs), which are intended to identify a set of
candidate compounds for a specific target protein in terms of
their biological activity, and both 1D and 2DCNNswere trained
separately to test the performance of every single descriptor.40

Moreover, several researchers have proposed to exploit RNN-
based methods for chemoinformatics. The majority of the
researchers have utilized the model as a prediction or classifier
model. Wan and Zeng proposed a model for compound−
protein interaction prediction using DL methods, in which they
adopted a commonly used NLP approach called feature
incorporation.41 Their model was built into multidimensional
vectors, both ligand details (molecular fingerprints) and protein
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sequences. Also, SMILES representation of molecules is used in
the RNN model. The RNN model was used to learn SMILES’
coding grammar, which can be converted into a molecular
graph.42 In addition, Goh et al. used SMILES as an input feature
to the RNN model for predicting the molecular properties.43

Furthermore, other studies reported that deep learning
methods in the Siamese architecture as a similarity model
produce the best performance that can be used with more
complicated data samples, especially with heterogeneous data
samples, with various dimensionalities and type character-
istics.21,22 For example, Yu et al. employed CNN Siamese
architectures to assess whether two people are from the same
family, allowing missing people to be reunited with their
relatives.44 Jonas et al. used the LSTM Siamese neural network
to calculate the similarity between sentences.45 In this method,
an exponential Manhattan distance was used to measure the
similarity between two sentences. In the drug discovery domain,
Dhami et al. was using images as an input to predict drug
interactions in a Siamese convolution network architecture.46

Jeon et al. proposed a method to use MLP Siamese neural
networks (ReSimNet) in structure-based virtual screening
(SBVS) to calculate the distance by cosine similarity.22

Despite the good performances of the above methods
compared to their prior, especially when dealing with molecules
that have homogeneous active structural elements like classes of
molecules in theMDLDrug Data Report data set MDDR_DR2,
however, the performances are not satisfied when dealing with
molecules of structurally heterogeneous nature like classes of
molecules in the MDL Drug Data Report data set MDDR_DR3
and Maximum Unbiased Validation (MUV) data set. The main
goal of this research is to improve the retrieval effectiveness of
the similarity model, especially with molecules that are
structurally heterogeneous, and because of the power of deep
learning for dealing with big data and the power of the Siamese
architecture for dealing with complicated data samples,
especially with heterogeneous data samples; therefore, they
have been used in this study.Manymethods of deep learning will
be examined as a similarity model through the enhanced

Siamese architecture. These methods of deep learning include
long short-term memory (LSTM-RNN), gated recurrent unit
(GRU-RNN), convolutional neural network-one dimension
(CNN1D), and convolutional neural network-two dimensions
(CNN2D).

3. METHODS
A Siamese neural network contains two artificial neural networks
that are the same, each able to handle the hidden input data
representation, which have to be linked to a final layer using a
distance layer to predict whether or not two vectors fall under
the same category. Since all of the weights and biases are related,
the networks that make up the Siamese architecture are called
twins, which means that both networks are symmetric. Both
error backpropagation and feed-forward perceptron are used by
the two neural networks during training. Therefore, it has been
used for more complicated data samples, especially with
heterogeneous data samples, with various dimensionalities and
type characteristics. In this paper, the Siamese deep learning
model will be enhanced. Figure 1 shows the flowchart of steps
for enhancing the Siamese architecture.
The steps for enhancing the Siamese architecture of deep

learning methods include the following:

1 Studying and analyzing many models of Siamese
architectures in different fields, like Dhami et al. and
Jeon et al. in the field of structure-based virtual screening
and Jonas et al. in the text field.

2 All previous studies used one distance layer. In this study,
two distance layers are used, and then, one fusion layer
combines the results from distance layers. The reason for
using more than one distance layer is to further improve
the similarity measurements between molecules, partic-
ularly when dealing with different types of descriptors.

3 In general, there are two inputs and one output in this
architecture; the output value represents the degree of
similarity between the inputs. In this study, many layers
have been added after the fusion layer for some models to
improve the retrieval recall.

Figure 1. Flowchart of steps for enhancing the Siamese architecture.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c04587
ACS Omega 2022, 7, 4769−4786

4771

https://pubs.acs.org/doi/10.1021/acsomega.1c04587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04587?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c04587?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c04587?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


4 The hyperparameters of the Siamese deep learning
similarity model such as the number of epochs and
batch size, optimization, and the activation function are
tuned to achieve a good retrieval recall result.

Here, four methods of deep learning have been used in this
architecture; these methods include these methods include long
short-termmemory (LSTM-RNN), gated recurrent unit (GRU-
RNN), convolutional neural network-one dimension
(CNN1D), and convolutional neural network-two dimensions
(CNN2D). The following subsections explain each of the
methods individually.
3.1. Enhanced Siamese RNN Similarity Model.

Recurrent neural networks are artificial neural networks that
form the link between nodes by means of a directed diagram
along a time stream. The recurrent neural networks use internal
state memory for sequence processing compared to neural feed-
forward networks. The recurrent neural networks’ dynamic
behavior enables them to be very helpful and applicable to audio
processing, handwriting recognition, and many such applica-
tions. However, recurring neural networks face the problems of
vanishing gradients during backpropagation. If the gradient
value is extremely small, it cannot lead to effective learning. As a
short-term memory solution, LSTM and GRU have been
developed. LSTM and GRU have been developed as a solution
for short-term memory. They have internal mechanisms, which
can monitor the flow of information, called gates.47

3.1.1. Enhanced Siamese LSTM Similarity Model. Long
short-term memory (LSTM), is an RNN structure with
feedback links that allow everything that a Turing machine
can do or compute. A single LSTM unit is made up of a cell, an
input gate, an output gate, and a forgotten door, allowing the cell
to arbitrarily record the value. The data flow in and out of the
LSTM cell is monitored by gates.48 An enhanced Siamese
LSTM structure was used to determine how similar two

molecules are, so the architecture has two inputs, one from the
query and the other from the fingerprint data set, representing
the fingerprint of molecules. The one-output architecture
represents the degree of similarity, which means that the output
has two classes: if the value is 1, it means high similarity, and if
the value is 0, it means high dissimilarity; the weights have also
been linked in this architecture so that LSTMa = LSTMb.
In this model, each input layer has two cell dimensions

(32,32), each of this matrix is linked to onemolecular fingerprint
feature, and then each input layer is linked to distance layers; two
distances have been used: the first one is the Manhattan
distance,49 which can be represented as

d f fAB A B= | − | (1)

where dAB is the Manhatten distance, fA is the feature of
molecule’s query, and f B is the feature of molecule’s data set, and
the second distance is the exponential Manhattan distance,45

which can be given as

E f fexp( )AB A B= −| − | (2)

where EAB is the exponential Manhatten distance, fA is the
feature of molecule’s query, and f B is the feature of molecule’s
data set.
Next, a fusion layer is added to fuse between two distance

layers (Manhattan, exponential Manhattan). Then, three layers
are added after the fusion layer; the cells in these layers are 512,
256, and 1, respectively. The output is one of the two cases: 1,
meaning the two input molecules are similar, and 0, meaning the
two input molecules are dissimilar. The ReLU activation
function has been used for all dense layers except the last one,
in which the sigmoid activation function has been used.
Moreover, the RMSprop optimizer has been used, the loss
function is binary_crossentropy, and the batch size is 64. The

Figure 2. Architecture of the enhanced Siamese RNN-LSTM similarity model.
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architecture of the Siamese RNN-LSTM similarity model is
illustrated in Figure 2.
3.1.2. Enhanced Siamese GRU Similarity Model. The GRU,

recognized as the gated recurrent unit, is an RNN architecture
that is similar to LSTM units. Instead of the LSTM input,
output, and forget gate, the GRU consists of a reset gate and an
update gate. The update gate lets the model decide howmuch of
the previous knowledge (from previous time steps) needs to be
followed on to the future.50 An enhanced Siamese GRU
framework has been used to determine how similar two
molecules are; therefore, the architecture has two inputs,
representing the fingerprint of molecules, one from the query
and the other from a data set of the fingerprint. Also, the
architecture has one output that represents the degree of
similarity; 1 means high similarity or 0 means high dissimilarity.
Also, the weights have been tied such that GRUa =GRUb in this
architecture; each input layer has two dimensions (32,32) of
cells, each one connected to one feature of the molecular
fingerprint, and then each input layer is connected to distance
layers.
Two distances are used (as mentioned in the previous

subsection): the first one is the Manhattan distance, and the
second distance is the exponential Manhattan distance. Next, a
fusion layer is added to fuse between two distance layers
(Manhattan, exponential Manhattan). Then, three layers are
added after the fusion layer; the cells in these layers are 512, 256,
and 1, respectively. The output is one of the two cases: 1,
meaning the two input molecules are similar, and 0, meaning the
two input molecules are dissimilar. The ReLU activation
function has been used for all layers except the last one, in
which the sigmoid activation function has been used. Moreover,
the RMSprop has been used, binary_crossentropy is the loss
function, and 64 is the batch size. Figure 3 demonstrates the
architecture of the Siamese RNN-GRU similarity model.

3.2. Enhanced Siamese CNN Similarity Model. The
CNN is a type of high feed-forward network that can be easily
trained and generalized compared to other networks with
connectivity between the adjacent layers.51,52 In this work, the
Siamese CNN framework has been used to determine how
similar two molecules are. CNN1D (one dimension) and
CNN2D (two dimensions) have been used in this architecture
as follows.

3.2.1. Enhanced Siamese CNN1D Similarity Model. CNNs,
whether they have one, two, or three dimensions, function the
same way. The difference is the input data structure and how the
filtration, often referred to as a convolution kernel or detector of
features, travels over the data. In this work, the Siamese CNN1D
framework is used to calculate the similarity between a reference
structure of molecular and a database structure of molecular
based on fingerprints. Thus, the architecture has two inputs,
representing the fingerprint of molecules, one from the reference
structure (query) and the other from the database structure.
Also, the architecture has one output, representing the degree of
similarity. If the value is 1, it means high similarity, and if the
value is 0, it means high dissimilarity. Also, weights have been
tied such that CNN1Da = CNN1Db in this architecture; there
are two inputs, each input layer of convolution neural network
(1D-CNN) received the molecular fingerprint, followed by
another layer of the 1D convolution neural network (1D-CNN),
followed by amax pooling size equal 2. The layer is formed by 64
filters with a kernel size equal to 3; the activation function is a
rectified linear unit (ReLU), followed by a flatten layer and then
a dense layer with a sigmoid activation function. There are two
distances used: Manhattan distance and exponential Manhattan
distance accordingly. Next, a fusion layer has been added to fuse
between two distance layers (Manhattan, exponential Manhat-
tan). Then, one layer has been added after the fusion layer,
which represented the output layer. The ReLU activation

Figure 3. Architecture of the enhanced Siamese RNN-GRU similarity model.
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function is used for all dense layers except the layer before the

distance layers and the output layer in which the sigmoid

activation function has been used. Moreover, the RMSprop

optimizer has been used, binary_crossentropy is the loss

function, and 64 is the batch size. Figure 4 demonstrates the

architecture of the Siamese CNN1D similarity model.
3.2.2. Enhanced Siamese CNN2D Similarity Model. An

enhanced Siamese CNN2D framework has been used to

Figure 4. Architecture of the enhanced Siamese CNN1D similarity model.

Figure 5. Architecture of the enhanced Siamese CNN2D similarity model.
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calculate the similarity between a reference structure and a
database structure based on 2D fingerprints; therefore, the
architecture has two inputs, representing the fingerprint of
molecules, one from the reference structure (query) and the
other from the database structure. Also, the architecture has one
output, which represents the degree of similarity; this means that
the output has two classes: if the value is 1, it means high
similarity, and if the value is 0, it means high dissimilarity. Also,
weights have been tied such that CNN2Da = CNN2Db in this
architecture. As mentioned above, there are two inputs: each
input layer of the convolution neural network (2D-CNN)
received the molecular fingerprint. The layer is formed of 64
filters with a kernel size equal to (3,3); the activation function is
a rectified linear unit (ReLU), followed by another layer of a 2D
convolution neural network (2D-CNN) formed of 64 filters
with a kernel size equal to (3,3), a max pooling size equal to
(2,2), a flatten layer, and then a dense layer with a sigmoid
activation function.
Two distances are used: the first one is the Manhattan

distance, and the second distance is the exponential Manhattan
distance. Next, a fusion layer is added to fuse between two
distance layers (Manhattan, exponential Manhattan). Then,
three layers are added after the fusion layer; the number of cells
in these layers are 512, 256, and 1, respectively. The ReLU
activation function is used for all dense layers except the layer
before the distance layers and the output layer in which the
sigmoid activation function has been used. Moreover, the
RMSprop optimizer has been used, the loss function is
binary_crossentropy, and the batch size is 64. Figure 5
demonstrates the architecture of the Siamese CNN2D similarity
model.

4. EXPERIMENTAL DESIGN
4.1. Data Sets. Experiments were conducted using MDL

Drug Data Report data sets (MDDR-DS1, MDDR-DS2, and
MDDR-DS3)53 and theMaximumUnbiased Validation (MUV)
data set,54 themost common cheminformatics database. In these
databases, all molecules have been translated to the Pipeline
Pilot, ECFC-4, and these databases have recently been used by
our study community. With ten reference structures chosen
randomly from each activity class, the screening experiments
were carried out. MDDR-DS1 has 102 516 molecules (active
and inactive). The active molecules (about 8300 molecules)
comprise 11 activity groups, some with structurally homoge-
neous active elements and others with structurally heteroge-
neous (i.e., structurally diverse) active elements. Database
MDDR-DS2 also has 102 516 molecules (active and inactive).
The active molecules (about 5100 molecules) consist of 10
homogeneous activity classes. Database MDDR-DS3 has
102 516 molecules (active and inactive). The active molecules
(about 8600 molecules) consist of 10 heterogeneous activity
classes. Tables 1−3 provide descriptions of all three data sets.
Each row of the table includes the activity class, the number of
molecules belonging to the class, as well as a diversity of groups,
which were measured as the average similarity of Tanimoto,
computed by ECFC-4 for all pairs of molecules. Rohrer and
Baumann recorded the second data collection (MUV), as seen
in Table 4. There are 17 interaction groups in this data set, with
each class containing up to 30 active and 15 000 inactive
molecules. The class composition for this data set indicates that
it involves classes with high diversity or more heterogeneous
operations. In the previous articles, our research group has used
these data collections.

4.2. Performance EvaluationMeasures.The efficiency of
the proposed methods is evaluated as follows:

1. The first way to evaluate the performance of the retrieval
model is to use the Recall metric, which is the portion of
active chemical compounds within the top 1 and 5% of the
ranking test set that can be found. This measure has been
used in previous studies.28,31−33,55−66

The whole data is divided into K sets of equal size: one of
them as a test set, and the remaining sets as training sets.
Selection of a test set will change in each iteration, and the mean
of recall values from all iterations is calculated as the final result.
This method is called k-fold cross validation, as shown in Figure
6. In each iteration, ten queries are tested, which are randomly
selected from the activity class, and then the mean value of these
ten queries is calculated.

Table 1. MDDR-DS1 Structure Activity Classes

activity
index

active
molecules activity class

pairwise
similarity

31420 1130 renin inhibitors 0.290
31432 943 angiotensin II AT1

antagonists
0.229

37110 803 thrombin inhibitors 0.180
71 523 750 HIV protease inhibitors 0.198
42731 1246 substance P antagonists 0.149
07701 395 D2 antagonists 0.138
06245 359 5HT reuptake inhibitors 0.122
78374 453 protein kinase C inhibitors 0.120
06235 827 5HT1A agonists 0.133
06233 752 5HT3 antagonist 0.140
78331 636 cyclooxygenase inhibitors 0.108

Table 2. MDDR-DS2 Structure Activity Classes

activity
index

active
molecules activity class

pairwise
similarity

07707 207 adenosine (A1) agonists 0.229
42710 111 CCK agonists 0.361
31420 1130 renin inhibitors 0.290
64200 113 cephalosporins 0.322
64100 1346 monocyclic-lactams 0.336
64500 126 carbapenems 0.260
64220 1051 carbacephems 0.269
75755 455 vitamin D analogues 0.386
75755 455 vitamin D analogues 0.386
07708 156 adenosine (A2) agonists 0.305

Table 3. MDDR-DS3 Structure Activity Classes

activity
index

active
molecules activity class

pairwise
similarity

09249 900 muscarinic (M1) agonists 0.111
31281 106 dopamine-hydroxylase

inhibitors
0.125

12464 505 nitric oxide synthase
inhibitors

0.102

71522 700 reverse transcriptase
inhibitors

0.103

43210 957 aldose reductase inhibitors 0.119
12455 1400 NMDA receptor antagonists 0.098
75721 636 aromatase inhibitors 0.110
78351 2111 lipoxygenase inhibitors 0.113
78348 617 phospholipase A2 inhibitors 0.123
78331 636 cyclooxygenase inhibitors 0.108
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2. Comparison methods: The second way is current
approaches that can be used in assessing the results of
the proposed model. These approaches include the
following.

A. TAN: Over the years, the Tanimoto similarity coefficient
has been the search benchmark method in LBVS. The
Tanimoto-based model for similarities employs the
Tanimoto coefficient in its continuous form, which is
suitable to nonbinary fingerprint data.23

B. The second method is Bayesian inference in the MDDR
data set (DS1, DS2, DS3, and MUV) for the ECFC-4
descriptor. This is an alternative method for calculating
the similarity of molecular fingerprints.29,62

C. The third method is quantum similarity search SQB-
(Complex) in the MDDR data set (DS1, DS2, DS3, and
MUV) for the ECFC-4 descriptor. This method utilizes a
quantum mechanics approach.31

D. SDBN: The latest study is a multidescriptor-based on
Stack of deep belief networks method in the MDDR data
set (DS1, DS2, and DS3) for ECFC-4, ECFP-4, and
EPFP-4 descriptors. The molecular features are re-
weighted using deep belief networks.33

3. The third significant measure that can be used to evaluate
the proposed methods, known as the significance test, is
the Kendall W concordance test. This significance test has
been used in previous studies.28,33,55,61,62,64,65 This test

can be interpreted as the concordance coefficient, which is
a measure of agreement among the raters. Each case is a
judge or rater in the Kendall W test, whereas each variable
is an object or person being judged. For each variable,
thus, the number of ranks is computed. The Kendall W
test range is between 0, indicating no agreement, and 1,
indicating full agreement. For example, the rank rij by
judge number j, which represents an activity class, where
there are n objects andm judges in total, is given to object
I as the similarity search tool. It is then possible to
calculate the total rank given to object I as67

ri
j

m

ij
1

∑ℜ =
= (3)

whereas the complete ranks’ mean meaning is

m n
1
2

( 1)ℜ̅ = +
(4)

The squared deviation sum δ is defined as

( )
i

n

i
1

2∑δ = ℜ − ℜ̅
= (5)

Then, the Kendall W test is defined as

W
m n n

12
( )2 3

δ=
− (6)

The Kendall’s W statistical values can be between zero
and one since the variance of the number of ranks
separated by the maximum possible value has been
calculated, which happens when all judges are in absolute
agreement. This test shows whether a group of judges can
make equivalent decisions about the rating of a set of
items or not. The definitions used in this analysis suggest
that judges were considered to be the behavior groups of
each of the data sets, whereas the recall rates of the
different search models were considered to be the items.
The outcomes of the Kendall coefficient that are related to
significance levels are a significant part of this experiment.
This implies verifying whether the value of the coefficient
may have happened by chance or not. If the value was
important (for which both 0.01 and 0.05 cutoff values
were used), it was then possible to assign the item an
overall ranking.

4. For a more evident comparison between the recall values
of the proposed methods and previous studies, the

Table 4. MUV Structure Activity Classes

activity index activity class pairwise similarity

466 S1P1 rec. (agonists) 0.117
644 Rho-Kinase2 (inhibitors) 0.122
600 SF1 (inhibitors) 0.123
689 Eph rec. A4 (inhibitors) 0.113
652 HIV RT-RNase (inhibitors) 0.099
712 HSP 90 (inhibitors) 30 0.106
692 SF1 (agonists) 0.114
733 ER-b-Coact. Bind. (inhibitors) 0.114
713 ER-a-Coact. Bind. (inhibitors) 0.113
810 FAK (inhibitors) 0.107
737 ER-a-Coact. Bind. (potentiators) 0.129
846 FXIa (inhibitors) 0.161
832 cathepsin G (inhibitors) 0.151
858 D1 rec. (allosteric modulators) 0.111
852 FXIIa (inhibitors) 0.150
548 PKA (inhibitors) 0.128
859 M1 rec. (allosteric inhibitors) 0.126

Figure 6. Idea of cross validation for training and testing data.
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improvement percentage for each proposed method was
calculated using eq 7.68

improvement
recall recall

recall
100%

method1

method1 method2

method1
=

−
×

(7)

For instance, the improvement percentage of GRU was
calculated using the improvement equation with Tan, BIN,
SQB, and SDBN. Next, the mean value was calculated; if the
result value was positive, there was an improvement in retrieval
recall of GRU compared with previous studies, and if the result
value was negative, the retrieval recall of GRU was worse. Next,
the mean value of improvement overall classes was calculated.
Here, this will apply to all proposed methods. However, the
improvement percentage for each previous method was also
calculated compared with the proposed methods, for example,
the improvement percentage of TAN, compared with GRU,
LSTM, CNN1D, and CNN2D, then, the mean value was
calculated for each class, and then the mean value of all classes in
the data set was calculated.

5. RESULTS AND DISCUSSION
The ECFC-4 descriptor’s experimental findings on the MDDR-
DS1, MDDR-DS2, MDDR-DS3, and MUV data sets are
provided in Tables 5−12, respectively, using 1 and 5% cutoffs.
The results of the proposed methods of deep learning compared
to the benchmark TAN and previous studies BIN, SQB, and
SDBN are recorded in these tables. For the top 1% and 5%of the
activity class, each row in the tables lists the recall values, and in
each row, the best recall rate is shaded. In the tables, the mean
rows relate to the average of all activity classes when combined,
and the rows of shaded cells are the total number of shaded cells
have the top values for each technique over the full range of
classes of activity. The distribution of results in tables is provided
in boxplots in Figures 7−14.
The MDDR-DS1 recall values for the 1 and 5% cutoffs

recorded in Tables 5 and 6, respectively, showed that the

proposed Siamese deep learning approaches were obviously
superior to the benchmark TAN method and other studies. In
addition, among other Siamese deep learning strategies, the
CNN1D approach gives the best retrieval recall results in Table
5 in each of mean and the number of shaded cells, when
compared, followed by the CNN2Dmethod, GRU, SDNB, BIN,
LSTM, SQB, and TAN. The boxplot in Figure 7 shows the
comparison among methods for distribution of results in
MDDR-DS1 at the top 1%, in view of maximum values, upper
quartile values, mean values, median values, and lower quartile
values. So, the top four methods in view of maximum values are
CNNID, CNN2D, GRU, and LSTM; in upper quartile values
are CNNID, CNN2D, GRU, and LSTM; in mean values are
CNNID, CNN2D, GRU, and SDBN; in median values are
CNNID, CNN2D, SDBN, and GRU; and in lower quartile
values are CNNID, CNN2D, SDBN, and GRU. Also, by
comparison, the CNN1D approach offered the best retrieval
recall results in Table 6, in each of mean and the number of
shaded cells, followed by the CNN2D method, GRU, LSTM,
SDNB, BIN, SQB, and TAN. The boxplot in Figure 8 shows the
comparison among methods for distribution of results in
MDDR-DS1 at the top 5%, in view of maximum values, upper

Table 5. Top 1% Retrieval Results for MDDR-DS1 Data Set for Descriptor ECFC-4

Figure 7. Boxplot for recall result distribution for each method in
MDDR-DS1 at the top 1%.
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quartile values, mean values, median values, and lower quartile
values. So, the top four methods in view of maximum values are
CNNID, SDBN, CNN2D, and BIN; in upper quartile values are
CNNID, CNN2D, GRU, and SDBN; in mean values are
CNNID, CNN2D, GRU, and LSTM; in median values are
CNNID, CNN2D, LSTM, and GRU; and in lower quartile
values are CNNID, CNN2D, LSTM, and GRU.
Furthermore, the MDDR-DS2 recall values recorded for the

top 1% in Table 7 show that the proposed Siamese deep learning
method (CNN1D) is clearly superior to the benchmark TAN
method and previous studies. The CNN1D method gives the
best retrieval recall results in each mean and the number of
shaded cells. The second best are SDBN, BIN, and then SQB
methods in view of the mean value, followed by Siamese
CNN2D, LSTM, GRU, and finally Siamese TAN. The boxplot
in Figure 9 shows the comparison among methods for
distribution of results in MDDR-DS2 at the top 1%, in view of
maximum values, upper quartile values, mean values, median
values, and lower quartile values. So, the top four methods in
view of maximum values are BIN, SQB, CNN1D, and SDBN; in
upper quartile values are SDBN, CNN1D, CNN2D, and BIN; in
mean values are CNNID, BIN, SQB, and CNN2D; in median

values are CNNID, CNN2D, SDBN, and BIN; and in lower
quartile values are CNNID, SDBN, BIN, and SDBN. However,
by comparison, the MDDR-DS2 recall values recorded for 5%
cutoffs in Table 8 show that the BIN method gave the best
retrieval recall results in view of the mean and the number of
shaded cells. The second best are SQB, SDBN, CNN1D,
CNN2D, LSTM, and finally TAN in view of themean value. The
boxplot in Figure 10 shows the comparison among methods for
distribution of results in MDDR-DS2 at the top 5%, in view of
maximum values, upper quartile values, mean values, median
values, and lower quartile values. So, the top four methods in
view of maximum values are BIN, SQB, SDBN, and CNN1D; in
upper quartile values are BIN, SQB, SDBN, and CNN1D; in
mean values are BIN, SQB, SDBN, and CNN1D; in median
values are BIN, SQB, SDBN, and CNN1D; and in lower quartile
values are BIN, SQB, SDBN, and CNN1D.
In addition, theMDDR-DS3 recall values recorded for the top

1% and 5% in Tables 9 and 10, respectively, show that the
proposed Siamese deep learning methods are clearly superior to
the benchmark TAN method and other studies. Likewise, in
Table 9, the CNN1D method gives the best retrieval recall
results in view of mean and the number of shaded cells,
compared to previous studies and other methods of Siamese
deep learning. Next, the second one is Siamese CNN2D,
followed by SDBN, GRU, BIN, SQB, TAN, and LSTM. The
boxplot in Figure 11 shows the comparison among methods for
distribution of results in MDDR-DS3 at the top 1%, in view of
maximum values, upper quartile values, mean values, median
values, and lower quartile values. So, the top four methods in
view of maximum values are CNN1D, CNN2D, GRU, and
SDBN; in upper quartile values are CNN1D, CNN2D, GRU,
and SDBN; in mean values are CNN1D, CNN2D, SDBN, and
GRU; in median values are CNN1D, CNN2D, SDBN, and
GRU; and in lower quartile values are CNN1D, CNN2D,
SDBN, and GRU. However, by comparison, in Table 10, the
CNN1D method gives the best retrieval recall results in view of
the mean and the number of shaded cells, compared to previous
studies and other methods of Siamese deep learning, followed by

Table 6. Top 5% Retrieval Results for MDDR-DS1 Data Set for Descriptor ECFC-4

Figure 8. Boxplot for recall result distribution for each method in
MDDR-DS1 at the top 5%.
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Table 7. Top 1% Retrieval Results for MDDR-DS2 Data Set for Descriptor ECFC-4

Figure 9. Boxplot for recall result distribution for each method in
MDDR-DS2 at the top 1%.

Table 8. Top 5% Retrieval Results for MDDR-DS2 Data Set for Descriptor ECFC-4

Figure 10. Boxplot for recall result distribution for each method in
MDDR-DS2 at the top 5%.
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Siamese CNN2D, GRU, SDBN, TAN, BIN, SQB, and finally
LSTM. The boxplot in Figure 12 shows the comparison among
methods for distribution of results inMDDR-DS3 at the top 5%,
in view of maximum values, upper quartile values, mean values,
median values, and lower quartile values. So, the top four
methods in view of maximum values are CNN1D, CNN2D,
GRU, and LSTM; in upper quartile values are CNN1D,
CNN2D, GRU, and LSTM; in mean values are CNN1D,
CNN2D, GRU, and SDBN; in median values are CNN1D,
CNN2D, GRU, and SDBN; and in lower quartile values are
CNN1D, CNN2D, SDBN, and GRU.
Moreover, the MUV data set recall values recorded for 1 and

5% cutoffs in Tables 11 and 12, respectively, show that the
proposed Siamese deep learning CNN methods are clearly
superior to the benchmark TAN method and previous studies.
Likewise, in Table 11, the CNN1D Method gives the best

Table 9. Top 1% Retrieval Results for MDDR-DS3 Data Set for Descriptor ECFC-4

Table 10. Top 5% Retrieval Results for MDDR-DS3 Data Set for Descriptor ECFC-4

Figure 11. Boxplot for recall result distribution for each method in
MDDR-DS3 at the top 1%.
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retrieval recall results in view of the mean. Next, the second best
are BIN and Siamese CNN2D, followed by GRU, LSTM, SQB,
and finally TAN. The boxplot in Figure 13 shows the
comparison among methods for distribution of results in
MUV at the top 1%, in view of maximum values, upper quartile
values, mean values, median values, and lower quartile values.
So, the top four methods in view of maximum values are
CNN1D, CNN2D, BIN, and SQB; in upper quartile values are
CNN1D, CNN2D, BIN, and SQB; in mean values are CNN1D,
BIN, CNN2D, and GRU; in median values are BIN, CNN2D,
CNN1D, and SQB; and in lower quartile values are BIN,
CNN2D, CNN1D, and GRU. By comparison, in Table 12, the
CNN1D method gives the best retrieval recall results in view of

the mean and the number of shaded cells, followed by CNN2D,
BIN, SQB, TAN, GRU, and LSTM. The boxplot in Figure 14
shows the comparison amongmethods for distribution of results
in MUV at the top 5%, in view of maximum values, upper
quartile values, mean values, median values, and lower quartile
values. So, the top four methods in view of maximum values are
CNN1D, CNN2D, BIN, and SQB; in upper quartile values are
CNN1D, CNN2D, BIN, and SQB; in mean values are CNN1D,
CNN2D, BIN, and SQB; in median values are BIN, CNN2D,
SQB, and CNN1D; and in lower quartile values are BIN,
CNN2D, GRU, and SQB.
Moreover, the Kendall W concordance test has been used.

Table 13 shows the ranking of enhanced Siamese deep learning
(RNN-GRU, RNN-LSTM, CNN1D, CNN2D) methods based
on previous studies TAN, BIN, SQB, and SDBN using Kendall
W test results for MDDR-DS1, MDDR-DS2, MDDR-DS3, and
MUV at the top 1% and top 5%. The first method is Tanimoto
coefficient TAN, the second method is Bayesian inference
(ABDO),29 the third method is quantum similarity search SQB-
Complex (Al-dabagh),31 and the last method is multidescriptor-
based on Stack of deep belief networks (Nasser).33 For all of the
data sets used, the Kendall W test of the top 1% shows that the
significance test (P) values are less than 0.05. This means that
the enhanced Siamese deep learning methods are significant in
all cases with a cutoff of 1%. Therefore, the general ranking of all
methods of deep learning indicates that the enhanced Siamese
CNN methods are superior to previous studies and benchmark
TAN; the overall ranking for methods shows that CNN1D has

Figure 12. Boxplot for recall result distribution for each method in
MDDR-DS3 at the top 5%.

Table 11. Top 1% Retrieval Results for MUV Data Set for Descriptor ECFC-4
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the top rank among other methods in DS1, DS2, DS3 data sets,
while BIN method has top rank in the MUV data set.
Same as with the results of the Kendall W test of the top 5%.

The results indicate that the probability values (p) related are
below 0.05. This denotes that deep learning methods for
enhanced Siamese are important in all cases at a cutoff of 5%. As
a result, the overall ranking of all methods of deep learning
indicates that enhanced Siamese CNN1D is superior to previous
studies for DS1 and DS3. In DS2 and MUV, BIN has the top
rank at the top 5%. Figures 15 and 16 show the ranking of
enhanced Siamese deep learning (RNN-GRU, RNN-LSTM,
CNN1D, CNN2D) methods based on TAN, BIN, SQB, and
SDBN using Kendall W test results for DS1, DS2, DS3, and
MUV at the top 1% and 5%.

For another comparison between the recall values of the
proposed methods and prior studies, the improvement
percentage is calculated for proposed methods and prior
methods for each data set, as shown in Table 14. In the DS1
data set, the proposed CNNmethods have positive values at the
top 1%, meaning that there is improvement in retrieval recall
compared with prior methods; besides that, CNN1D has the top
value of improvement percentage, followed by CNN2D, while
all previous methods have negative values, meaning that the
retrieval recall is worse compared with the proposed methods.
For the top 5%, all proposed methods have positive values,
meaning that there is improvement in retrieval recall compared
with prior methods, and CNN1D has the top value of
improvement, followed by CNN2D, GRU, and LSTM, while

Table 12. Top 5% Retrieval Results for MUV Data Set for Descriptor ECFC-4

Figure 13. Boxplot for recall result distribution for each method in
MUV at the top 1%.

Figure 14. Boxplot for recall result distribution for each method in
MUV at the top 5%.
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all prior methods have negative values at the top 5%, meaning
that the retrieval recall is worse compared with the proposed
methods.
Also, in the DS3 data set, the proposed methods have positive

values at the top 1%, except GRU and LSTM,meaning that there
is an improvement in retrieval recall compared with prior
methods, and CNN1D has the top value of improvement,
followed by CNN2D. The same as with the top 5%, all proposed
methods have positive values, except LSTM, meaning that there
is improvement in retrieval recall compared with prior methods,
and CNN1D has the top value of improvement, followed by
CNN2D and GRU, while all prior methods have negative values

at the top 1% and 5%, meaning that the retrieval recall is worse
compared with the proposed methods.
Moreover, in the MUV data set at the top 1%, the proposed

CNN methods have positive values, which means there is
improvement in retrieval recall compared with prior methods;
also, the previous study on the BIN method has positive values.
CNN1D has the top value of improvement, followed by
CNN2D and BIN methods. The same as with the top 5%, the
proposed methods, except RGU and LSTM, have positive
values, meaning that there is improvement in retrieval recall
compared with prior methods; also, the previous study on the
BIN method has positive values. CNN2D has the top value of

Table 13. Ranking of Enhanced Siamese Deep Learning (RNN-GRU, RNN-LSTM, CNN1D, CNN2D) Methods based on TAN,
BIN, SQB, and SDBN Using Kendall W Test Results for DS1, DS2, DS3, and MUV at the Top 1% and 5%

data set retrieval percentage (%) W P rank methods

DS1 1 0.64 2.24 × 10−8 1- 2- 3- 4- 5- 6- 7- 8-
CNN1D CNN2D SDBN GRU BIN LSTM SQB TAN
7.91 6.45 5.36 4.27 4.00 3.00 2.55 2.45

5 0.66 1.1601 × 10−8 1- 2- 3- 4- 5- 6- 7- 8-
CNN1D CNN2D GRU SDBN LSTM BIN TAN SQB
7.73 6.73 4.91 4.64 4.27 4.00 2.64 1.91

DS2 1 0.49 1.471 × 10−5 1- 2- 3- 4- 5- 6- 7- 8-
CNN1D SDBN BIN CNN2D SQB LSTM GRU TAN
6.9 5.8 5.65 4.9 4.85 3.2 2.9 1.8

5 0.47 2.8157 × 10−5 1- 2 3- 4- 5- 6- 7- 8-
BIN SQB SDBN CNN1D CNN2D TAN LSTM GRU
6.85 6.25 5.5 5.1 4 6 2.95 2.25

DS3 1 0.64 1.4015 × 10−7 1- 2- 3 4- 5- 6- 7- 8-
CNN1D CNN2D SDBN BIN GRU SQB TAN LSTM
7.45 6.45 6 4.4 3.9 3.1 2.9 1.8

5 0.74 7.00 × 10−9 1- 2- 3- 4- 5- 6- 7- 8-
CNN1D CNN2D SDBN GRU LSTM SQB TAN BIN
7.7 7.3 5.1 4.9 3 2.8 2.6 2.6

MUV 1 0.52 9.62 × 10−10 1- 2- 3- 4- 5- 6- 7-
BIN CNN2D CNN1D GRU LSTM SQB TAN
6.23 5.235 5 3.76 3.24 2.71 1.82

5 0.33 9.5856 × 10−6 1- 2- 3- 4- 5- 6- 7-
BIN CNN2D CNN1D SQB GRU TAN LSTM
5.56 5.21 4.91 3.65 3.47 2.76 2.44

Figure 15. Ranking of enhanced Siamese deep learning (RNN-GRU, RNN-LSTM, CNN1D, CNN2D) methods based on TAN, BIN, SQB, and
SDBN using Kendall W test results for DS1, DS2, DS3, and MUV at the top 1%.
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improvement, followed by BIN and CNN1D methods, while
GRU and LSTM have negative values, meaning that the retrieval
recall is worse compared with previous methods. Also, the TAN,
SQB, and SDBN have negative values, meaning that the retrieval
recall is worse compared with the proposed methods.
However, in the DS2 data set, the proposed CNN methods

have positive values at the top 1%, meaning that there is
improvement in retrieval recall compared with prior methods;
also, the previous studies have positive values, meaning that
there is improvement in retrieval recall compared with the
proposed methods, but the proposed CNN1Dmethod has a top
value of improvement, followed by SDBN, CNN2D, BIN, and
SQB. In the top 5%, only CNN1D has a positive value. On the
other side, the previous studies have positive values for BIN,
SQB, and SDBN methods and BIN has the top value of
improvement, followed by SQB, SDBN, and the proposed
CNN1D method.

6. CONCLUSIONS

Many techniques for capturing the biological similarity between
a test compound and a known target ligand in LBVS have been
established. LBVS is based on the premise that the target-
binding behavior of related property compounds will be related.
In spite of the good performances of the above methods
compared to their prior, especially when dealing with molecules
that have homogeneous active structural elements, however, the

performances are not satisfied when dealing with molecules that
are structurally heterogeneous.
The main goal of this research is to improve the retrieval

effectiveness of the similarity model, especially with molecules
that have structurally heterogeneous, and because of their
powerful generalization, feature extraction capabilities, and the
power of deep learning for dealing with big data, also the power
of Siamese architecture with dealing with complicated data
samples, especially with heterogeneous data samples. Therefore,
they have been used in this study. The Siamese deep learning
models have been enhanced using two distance layers and then a
fusion layer that combines the results from two distance layers
and then adding multiple layers after the fusion layer for some
models to improve the similarity recall between a test compound
and a known target ligand. In this architecture, several deep
learning methods have been used, which are LSTM, GRU,
CNN1D, and CNN2D. The results showed that the significance
of the proposed methods, especially Siamese CNN similarity
models, obviously outperformed the standard Tanimoto
coefficient (TAN) and previous studies (BIN, SQB, SDNB) at
both top 1% and 5%, especially when the model deals with
MDDR-DS1, MDDR-DS3, and MUV data sets that include
heterogeneous classes.

Figure 16. Ranking of enhanced Siamese deep learning (RNN-GRU, RNN-LSTM, CNN1D, CNN2D) methods based on TAN, BIN, SQB, and
SDBN using Kendall W test results for DS1, DS2, DS3, and MUV at the top 5%.

Table 14. Improvement Percentage of the Proposed Methods and Prior Methods for Each Data Set

previous studies proposed methods

TAN BIN SQB SDBN GRU LSTM CNN1D CNN2D

DS1 top 1% −59.037 −27.955 −34.942 −14.029 −1.155 −15.051 39.320 25.401
top 5% −57.819 −47.508 −58.173 −31.669 16.858 14.108 39.509 31.406

DS2 top 1% −37.911 2.400 1.852 3.946 −5.190 −4.989 11.243 3.606
top 5% −20.062 7.746 7.137 5.812 −8.796 −7.275 1.597 −2.530

DS3 top 1% −79.723 −56.487 −70.460 −6.758 −35.122 −107.770 44.872 31.746
top 5% −86.018 −87.382 −91.183 −38.262 17.277 −9.266 56.480 49.208

MUV top 1% −93.350 16.035 −77.736 −3.198 −14.241 24.255 22.283
top 5% −20.652 10.123 −11.820 −17.121 −25.851 5.637 10.929
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