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Abstract
Purpose Systemic juvenile idiopathic arthritis is a chronic
pediatric disease. The initial clinical presentation can
mimic other pediatric inflammatory conditions, which

often leads to significant delays in diagnosis and
appropriate therapy. SJIA biomarker development is an
unmet diagnostic/prognostic need to prevent disease
complications.
Experimental Design We profiled the urine peptidome to
analyze a set of 102 urine samples, from patients with SJIA,
Kawasaki disease (KD), febrile illnesses (FI), and healthy
controls. A set of 91 plasma samples, from SJIA flare and
quiescent patients, were profiled using a customized antibody
array against 43 proteins known to be involved in inflammatory
and protein catabolic processes.
Results We identified a 17-urine-peptide biomarker panel that
could effectively discriminate SJIA patients at active, quiescent,
and remission disease states, and patients with active SJIA from
confounding conditions including KD and FI. Targeted
sequencing of these peptides revealed that they fall into several
tight clusters from seven different proteins, suggesting disease-
specific proteolytic activities. The antibody array plasma
profiling identified an SJIA plasma flare signature consisting
of tissue inhibitor of metalloproteinase-1 (TIMP1), interleukin
(IL)-18, regulated upon activation, normal T cell expressed
and secreted (RANTES), P-Selectin, MMP9, and L-Selectin.
Conclusions and Clinical Relevance The urine peptidomic
and plasma protein analyses have the potential to
improve SJIA care and suggest that SJIA urine peptide

Clinical Relevance Sensitive and specific diagnostic biomarkers for
systemic onset juvenile idiopathic arthritis (SJIA) would allow its
differentiation from other febrile illnesses, such as Kawasaki disease
(KD) or acute infections (febrile illness (FI)) and facilitate prompt
initiation of appropriate treatment at disease onset. Early treatment
may reduce the risk of long-term complications and subsequent
disabilities. In addition, biomarkers that distinguish intercurrent SJIA
flare from infection in patients with known SJIA would be clinically
useful, as would markers that predict impending disease flare or
responder status to particular therapies, or provide an early indication
of a treatment response. Finally, biomarkers may provide clues to
unanswered questions concerning SJIA pathogenesis. Our compara-
tive analysis of SJIA, KD, and FI urine peptidomes identified a small
subset of the urine peptidome that effectively discriminates SJIA
patients in the active, quiescent, and remission disease states, and also
discriminates patients with active SJIA from confounding conditions
including KD and FI. Urine peptide diagnostic and prognostic
biomarkers could be of clinical use, especially for serial sampling of
pediatric SJIA patients. Targeted sequencing revealed that these
peptide markers fall into several tight clusters indicating SJIA-specific
proteolytic events. Plasma cataloging analysis of the normal plasma
peptidome shows that at least some of these nested peptide markers
originate in the circulation. A customized antibody array was used to
compare the plasma abundance of proteins known to be involved in
inflammatory and protein catabolic processes, revealing a SJIA flare
signature. Taken altogether, the urine peptidomic and plasma protein
and peptide analyses suggest a testable model that SJIA urine peptide
biomarkers may be an outcome of inflammation-driven effects on
catabolic pathways operating at multiple sites.

Electronic supplementary material The online version of this article
(doi:10.1007/s12014-010-9058-8) contains supplementary material,
which is available to authorized users.

X. B. Ling :K. Lau : C. Deshpande : J. L. Park :C. Macaubas :
C. Xiao :H. Cohen : J. Schilling : E. D. Mellins (*)
Department of Pediatrics, Stanford University,
Stanford, CA 94305, USA
e-mail: mellins@stanford.edu

D. Milojevic
UCSF,
San Francisco, CA 94143, USA

J. Kanegaye : J. C. Burns
UCSD,
La Jolla CA 92093, USA

V. Lopez-Avila
Agilent Technologies,
Santa Clara, CA 95051, USA

Clin Proteom (2010) 6:175–193
DOI 10.1007/s12014-010-9058-8

http://dx.doi.org/10.1007/s12014-010-9058-8


biomarkers may be an outcome of inflammation-driven
effects on catabolic pathways operating at multiple sites.
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Abbreviations
SJIA Systemic onset juvenile idiopathic arthritis
NSC Nearest shrunken centroid
LDA Linear discriminant analysis
MMP Matrix metalloproteinase
TIMP1 Tissue inhibitor of metalloproteinase 1
A1AT Alpha1 antitrypsin
COL1A1 Collagen type I alpha 1
COL1A2 Collagen type I alpha 2
COL3A1 Collagen type III alpha 1
COL9A2 Collagen type IX alpha 2
FGA Fibrinogen alpha
FGB Fibrinogen beta
UMOD Uromodulin
BCA Bicinchoninic acid
TNBS 2,4,6-trinitrobenzenesulfonic acid
SCX Strong cation exchange
LC-MS Liquid chromatography-mass spectrometry
MALDI Matrix-assisted laser desorption/ionization
m/z Mass-to-charge
ESI Electrospray ionization
iTRAQ Isobaric tags for relative and absolute quantification
ND SJIA disease at the time of new onset
F SJIA flare
SAF SJIA disease with both systemic and arthritis

phenotypes
AF SJIA disease with arthritis
QOM SJIA disease at the time of quiescence but still

on medicine
RD Remission of SJIA disease
KD Kawasaki disease
FI Febrile illness
GFDR Global false discovery rate
ESR Erythrocyte sedimentation rate
CRP C-reactive protein
WBC White blood cell count
PLT Platelets
ROC Receiver operating characteristic

Introduction

Systemic onset juvenile idiopathic arthritis is a chronic
inflammatory disease of childhood characterized by a
combination of systemic features [fever, rash, serositis
(e.g., pericarditis, pleuritis)] and arthritis. Current
diagnosis of SJIA is based solely on clinical findings

[1] and requires arthritis, daily fever for at least 2 weeks,
and at least one of the following: evanescent erythema-
tous rash, generalized lymph node enlargement, hepato-
megaly and/or splenomegaly, or serositis. This makes
early diagnosis of SJIA challenging, as its clinical
manifestations are similar to other diseases, including
malignancy, infection, Kawasaki disease (KD), and other
autoimmune or inflammatory disorders. Long-term dis-
ease outcome in SJIA is variable. About 50% of patients
experience a single episode that resolves. However, the
other half experience either polycyclic or non-remitting
disease.

Sensitive and specific diagnostic biomarkers for SJIA
would allow its differentiation from other febrile ill-
nesses, such as KD or acute infections (febrile illness
(FI)), and facilitate prompt initiation of appropriate
treatment at disease onset. Early treatment may reduce
the risk of long-term complications and subsequent
disabilities. In addition, biomarkers that distinguish
intercurrent SJIA flare from infection in patients with
known SJIA would be clinically useful, as would
markers that predict impending disease flare or responder
status to particular therapies, or provide an early
indication of a treatment response. Finally, biomarkers
may provide clues to unanswered questions concerning
SJIA pathogenesis.

There have been several previous biomarker discovery
efforts in SJIA. Initial studies, including ours [2], attempted
to identify early clinical variables that predict long-term
outcomes, such as joint damage or functional disability
at ≥2 years after disease onset [3–6]. Studies of serum
found elevated cytokines, chemokines, and acute-phase
reactants in active SJIA [7–10]. More recently, transcrip-
tional profiling of peripheral blood mononuclear cells from
SJIA subjects with active disease revealed a signature of
active SJIA that normalized in association with clinical
response to treatment [11, 12]. A single SELDI-based
analysis of plasma identified serum amyloid A as a plasma
biomarker of disease activity [13]. However, all these
efforts fall short of robust diagnostic and prognostic
biomarkers with practical clinical utility.

We sought to explore urine as a source of biomarkers.
Such markers would permit frequent tests, which would be
of use, especially in children, for a chronic pediatric disease
with a polycyclic course. A normal adult human excretes
30–130 mg of protein and 22 mg of peptides per day in
urine [14, 15]. Urine proteomic analysis has identified more
than 1,500 proteins including a large proportion of
membrane proteins [16]. Urine peptidomic analysis
revealed over 100,000 different peptides [17]. Our own
in-depth 2D mass spectra (MS)/MSMS analysis led to the
identification of 11,988 different urine peptide sequences
from 8,519 unique protein precursors in normal human
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urine [18]. Recent reviews have indicated that analysis of
the urinary proteome/peptidome can be highly informative for
both urogenital and systemic diseases and used for disease
classification [18, 19]. Naturally processed urine peptides
have certain advantages over proteins as biomarkers. The
roughly equal mass of protein and peptide in urine translates
into at least a tenfold greater molar abundance of peptides.
While the urine proteome contains a number of abundant
proteins that obscure the lower abundance proteins more
likely to be biomarkers, this problem does not complicate
analysis of peptides in urine. A one-dimensional HPLC
separation is sufficient for the analysis of greater than 25,000
urine distinct peptides.

Among the emerging quantitative proteomics technologies,
isobaric tags for relative and absolute quantification (iTRAQ)
allows concurrent protein sequence identification and relative
quantification of those peptides with known protein sequences
in up to eight different biological samples in a single
experiment [20]. However, due to its limited throughput and
current cost, iTRAQ is not feasible for simultaneous
comparison of the large number of disease subjects needed
to achieve the discovery of differential features with sufficient
statistical power. As an alternative, a label-free liquid
chromatography-mass spectrometry (LC-MS)-based approach
has been applied as a quantitative biomarker discovery
method. The label-free LC-MS approach can compare and
quantify peptides with precision and accuracy comparable to
those based on isotope labeling [21]. Although LC/ESI mass
spectrometry is typically used in label-free quantitative
proteomics, matrix-assisted laser desorption/ionization-time-
of-flight (MALDI-TOF) mass spectrometry is increasingly
being used and demonstrates low average coefficients of
variation for all peptide signals across the entire intensity
range in all technical replicates [22, 23]. Using the label-free
LC/MALDI-TOF profiling approach, we previously discovered
candidate urine peptide biomarkers of renal transplant rejection
[19, 24]. Subsequent urine peptide biomarker validation [19]
by multiple reaction monitoring (MRM) [25, 26] showed
significant correlation between the urine peptide measurements
obtained from label-free MALDI-TOF and from MRM using
stable isotope-labeled synthetic marker analogues to derive
absolute quantification.

The label-free LC-MALDI-TOF approach involves the
comparison of urine peptidomes of different samples, and
thus, multiple LC-MS spectra. However, comparing multiple
LC-MS spectra in a label-free analysis is computationally
intensive, demanding robust detection of LC-MS peaks,
alignment of all LC-MS peaks, and determination of the
common peak indices across all assayed samples. The output
of data processing is essentially a P XN table in which each of
the indexed P peptides has been quantified across the N
studied samples. This table, reduced from LC-MS spectra of
all samples, can be subjected to downstream statistical

learning including transformation, normalization, and unsuper-
vised/supervised analyses suited to the experimental design to
mine for a differential subset of the P peptides, which will then
be subjected to MSMS protein sequence identification and
future quantitative prospective MRM [25, 26] or antibody-
based validation.

We identified naturally occurring urine peptides with
specificity for active systemic SJIA compared with other
sources of fever. We hypothesized that SJIA flare is
associated with increased levels of circulating mediators
of inflammation that activate catabolic pathways leading to
the generation of novel peptide biomarkers that are found in
urine. We tested this hypothesis through global LC-MS
analysis of urine and plasma peptides as well as targeted
analysis of plasma proteins using antibody arrays.

Materials and Methods

Materials

The following reagents were used for the proteomics sample
analysis: nanopure or Milli-Q quality water (~18 megohm cm
or better); Amicon Ultra centrifugal filtration tubes were
obtained from Millipore (Bedford, MA, USA) ammonium
bicarbonate, ammonium formate, and formic acid were
obtained from Fluka (St. Louis, MO, USA); Tris–HCl, urea,
thiourea, DTT, iodoacetamide, calcium chloride, and TFA
were obtained from Sigma–Aldrich (St. Louis, MO, USA);
HPLC-grade methanol (MeOH) and HPLC-grade ACN were
purchased from Fisher Scientific (Fair Lawn, NJ, USA);
2,2,2-trifluoroethanol was obtained from Aldrich Chemical
(Milwaukee, WI, USA); and sequencing grade-modified
trypsin was purchased from Promega (Madison, WI, USA).
Sodium tetraborate, glycine, and picrylsuofonic acid were
obtained from Sigma–Aldrich (St. Louis, MO, USA).

Samples

Informed consent was obtained from the parents of all patients
and assent from all patients >6 years of age. This study was
approved by the human subject protection programs at UCSD,
UCSF, and Stanford University. Urine samples were obtained
from two new onset SJIA disease (ND), 18 active systemic
disease plus arthritis (SAF), nine SJIAwith active arthritis (AF),
18 quiescent SJIA on medication (QOM), nine SJIA in
remission off medication (RD), and ten healthy control (HC)
from Stanford University Medical Center and UCSF. In
addition, urine samples were obtained from 23 KD and 23
age-similar FI control patients evaluated for fever at Rady
Children’s Hospital San Diego. All KD patients had fever
and ≥4 of the five principal clinical criteria for KD (rash,
conjunctival injection, cervical lymphadenopathy, changes in
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the oral mucosa, and changes in the extremities) or three
criteria plus coronary artery abnormalities documented by
echocardiography [27] All FI control, patients had naso- or
oro-pharyngeal and stool viral cultures. Urine sample patient
demographics are described in Tables 1 (SJIA) and 2 (KD
and FI). Plasma samples included 25 SJIA flare (F), 14 SJIA
(Q) for the training analysis, and 41 SJIA F and 11 Q for the
“bootstrapping” testing analysis. Instead of in silico boot-
strapping simulation, samples belonging to different visits of
the same patient and even the same samples were assayed,
i.e., “bootstrapped” experimentally, for testing. For the
bootstrapping testing, a total of 52 SJIA samples were
analyzed by the antibody array, where 41 samples were from
19 patients at the time of SJIA flare, and 11 samples were
from eight patients at the time of SJIA quiescence. Plasma
sample patient demographics are described in Table 4.

Urine Peptidome Preparation for MALDI Analysis

Urine samples (5–10 mL) were collected in sterile tubes and
held at 4°C for up to 48 h before centrifugation (2,000×g×
20 min at room temperature) and freezing of the supernatant
at −70°C. Urine processing, preparation of peptides, extraction,
and fractionation are as previously described [18, 19, 24].
Urinary samples were processed by centrifugal filtration at
3,000×g for 20 min at 10°C through Amicon Ultra centrifugal
filtration devices (10 kDa cutoff; Millipore, Bedford, MA) pre-
equilibrated with 10 ml Milli-Q water. The filtrate (urine
peptidome) containing the low MW naturally occurring
peptides was processed with Waters Oasis HLB Extraction
Cartridges (Waters Corporation, Milford, MA) and extracted
with ethyl acetate. The resulting urine peptide samples were
quantified by the 2,4,6-trinitrobenzenesulfonic acid (TNBS)
assay, as previously described [28]. Three nanomoles peptides
were injected on a 100 μm×15 cm C18 reverse-phase column
(Michrom) and eluted with a gradient of 5% to 55%
acetonitrile over 50 min using a Michrom MS4 HPLC.
Twenty-second fractions were collected onto MALDI
targets with a Probot fraction collector (LC Packings). A
total of 100 fractions were collected and analyzed on
4700 MALDI-TOF/TOF (Applied Biosystems) in MS
mode. One microliter of matrix solution containing
4.8 mg/ml α-cyano-4-hydroxycinnamic acid (Agilent
Technologies, Palo Alto, CA, USA) and 30 fmol/μl
glu-fibrinopeptide (Sigma–Aldrich, St. Louis, MO, USA)
was automatically deposited by the Probot on each spot.

Plasma Peptidome Preparation for LTQ-FTICR Analysis

The plasma peptidome preparation protocol was adapted
from that of the urine peptidome analysis. The plasma
samples were centrifuged at 3,000×g for 20 min at 10°C
through Amicon Ultra centrifugal filtration devices (10 kDa T
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cutoff; Millipore, Bedford, MA) pre-equilibrated with 10ml
Milli-Q water. The retentate (plasma proteome) was washed
twice, brought to the final volume of 400 μl with 20mMTris–
HCl (pH 7.5), and quantitated by the BCA protein assay
(Pierce, Rockford, IL). The filtrate (plasma peptidome)
containing the low MW naturally occurring peptides was
processed with Waters Oasis HLB Extraction Cartridges
(Waters Corporation, Milford, MA), and extracted with ethyl
acetate. The resulting plasma peptide samples were quantified
by the TNBS assay, as previously described [28]. Three
nanomoles of peptides were fractionated by two-dimensional
chromatography—a SCX column as the first and a RP
column as the second dimension, and then subjected to
extensive MSMS sequence identification involving a
Thermo Finnigan LTQ-FTICR spectrometer.

Urine Peptidomic MS Label-Free Data Analysis

The ABI 4700 oracle database MS spectra were exported as raw
data points via ABI 4700 Explorer software version 2.0 for
subsequent data analyses. The m/z ranges were from 800 to
4,000 with peak density of maximum 30 peaks per 200 Da,
minimal S/N ratio of 5, minimal area of 10, minimal intensity of
150, and 200 maximum peaks per spot. We previously had
developed an informatics platform [18] which contains an
integrated set of algorithms, statistical methods, and computer
applications, to allow for MS data processing and statistical
analysis of LC-MS-based urine peptide profiling. The MS
peaks were located in the raw spectra of the MALDI data by an
algorithm that identifies sites (mass-to-charge ratio, m/z values)
whose intensities are higher than the estimated average
background and the ~100 surrounding sites, with peak
widths ~0.5% of the corresponding m/z value. To align peaks
from the set of spectra of the assayed samples, we applied
linkage hierarchical clustering to the collection of all peaks from
the individual spectra. The clustering, computed on a 24-node
LINUX cluster, is two dimensional, using both the distance
along the m/z axis and the HPLC fractionation time, with the
concept that tight clusters represent the same biological peak
that have been slightly shifted in different spectra. We then
extracted the centroid (mean position) of each cluster, to

represent the “consensus” position as the peak index (bin)
across all spectra. The normalization of the MALDI-TOF signal
intensity for each peptide feature was performed at two steps:
(1) within each LC fraction (MALDI plate spot), all peptide
peak signal intensities were normalized to the externally spiked
reference peptide (30 fmol/μl glu-fibrinopeptide) at each
MALDI plate spot; (2) each clustered peptide, with unique m/
z and LC fraction time, was normalized to the total signal
intensity of all the clustered peptides within the same sample.

MS/MS Analysis for Peptide Biomarkers

For urine peptidome analysis, we used the approach of ion
mapping [29, 30], whereby biomarker candidate MS peaks
were selected on the basis of discriminant analysis, and
then targeted for MS/MS sequencing analysis to obtain
protein identification.

Extensive MALDI-TOF/TOF and LTQ Orbitrap MS/MS
analyses coupled with database searches [29, 30] were
performed to sequence and identify these peptide biomarkers.
The identity of a subset of peptides detected was determined
by searching MS/MS spectra against the Swiss-Prot database
(June 10, 2008) restricted to human entries (15,720 sequences)
using the Mascot (version 1.9.05) search engine. Searches
were restricted to 50 and 100 ppm for parent and fragment
ions, respectively. No enzyme restriction was selected. Since
we were focusing on the naturally occurring peptides, hits were
considered significant when they were above the statistical
significant threshold (as returned by Mascot). Selected MS/MS
spectra were also searched by SEQUEST (BioWorks™
rev.3.3.1 SP1) against the International Protein Index human
database version 3.5.7 restricted to human entries (76,541
sequences). mMASS, an open source mass spectrometry tool
(http://mmass.biographics.cz/), was used for manual review of
the protein identification and MS/MS ion pattern analysis for
additional validation.

Customized Antibody Analysis

Customized antibody arrays, consisting of pairs of capture
and detection antibodies against 43 proteins, were utilized

Parameters KD n=23 FI n=23

Obs Median SD Range Obs Median SD Range

Age (year) 23 3 2.31 1–10 23 2 3.82 1–16

Gender (male%) 22 81.8% 23 60.9%

WBC (103/ul) 22 12.45 4.75 5.9–26.8 19 9.7 3.83 3.9–17.0

ESR (mm/h) 23 45 28.05 5–140 12 34.5 22.9 0–81

CRP (mg/dL) 21 5 6.1 0.3–21.2 13 2.1 3.51 0.3–12

PLT (103/ul) 22 404.5 103.07 236–642 19 267 102.08 144–585

Table 2 Patient characteristics—
KD and FI patients

obs number of observations, SD
standard deviation
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to profile SJIA plasma samples. These 43 proteins include
three groups of different molecular functions: (1) chemokines
and cytokines: CCL2 (MCP-1), CCL5 (RANTES), CCL7
(MCP-3), CCL8 (MCP-2), CCL11 (Eotaxin), CX3CL1
(Fractalkine), CXCL12 (SDF-1), IGF1, IFNG, IGFBP3,
IGFBP4, IGFBP6, IL-1A, IL-1B, IL-1R1, IL-2, IL-4, IL-5,
IL-6, IL-7, IL-8, IL-10, IL-12A, IL-12B, IL-13, IL-15, IL-17,
IL-18, MIP-1α, TNF, TNFRSF11B; (2) protein catabolism
regulators: TIMP1, TIMP2, MMP2, MMP2/TIMP2, MMP9,
MMP10; (3) cell surface molecules involved in leukocyte
adhesion: E-Selectin, L-Selectin, P-Selectin, ICAM1, and
VCAM1. Antibody array fabrication, processing, data
extraction and analysis were performed as previous
described [31].

Statistical Analysis

Patient demographic data were analyzed using “Epidemiological
calculator” (R epicalc package, version 2.10.0.0). The binned
LC-MALDI MS peak data obtained for all urine peptidome
samples were analyzed for discovery of discriminant biomarkers
using algorithms [32] of nearest shrunken centroid (NSC) for
biomarker feature selection, tenfold cross-validation analyses,
and Gaussian linear discriminant analysis (LDA) for classifica-
tion analyses. To control the number of false significant features
found during NSC mining, we permuted the data set 500 times
to calculate GFDR [33]. To quantify the difference between
classes for the identified peptide biomarkers, Student’s t test and
Mann–Whitney U tests were used for hypothesis testing, and
local false discovery rate (FDR) [34] tool was used to correct
multiple hypothesis testing. In order to test whether the selected
discriminated features could serve as a diagnostic biomarker
panel, a logistic regression model was used to find a linear
combination of the biomarkers that minimizes the total
classification error.

In order to avoid bias in data sets, we utilized a
bootstrapping technique to bootstrap 500 times to evaluate
the impact of the data construction on overall classification
performance of the biomarker panel. For each of the
bootstrapping sets, we used the LDA-derived prediction
scores for each sample to construct receiver operating

characteristic (ROC) curves [35, 36]. To summarize the
results, the vertical average of the 500 ROC curves was
plotted, and the boxes and whiskers were used to describe
the vertical spread around the average.

Results

SJIA, KD, and FI Sample Collection and Patient
Characteristics

We collected 56 intraday urine samples from pediatric SJIA
patients at two sites, Stanford and UCSF (Tables 1, 2, and 3).
These included patients with ND (n=2), SAF (n=18), AF
(n=9), SJIA quiescence (inactive disease on medication;
QOM, n=18), SJIA remission (inactive disease off all
medications) (RD, n=9). For comparison, samples from
subjects with KD (n=23), and acute FI (n=23) (Table 2;
collected at UCSD), and healthy, age-matched controls (HC,
n=10, collected at Stanford) were collected.

We also collected 66 plasma samples from pediatric
SJIA patients (Tables 4 and 5). These included patients with
SAF (n=25) and (n=14). If available, plasma samples from
multiple visits, considered as experimentally “bootstrap-
ped” samples, of the same SJIA patient at different disease
states were also collected for confirmatory analyses using
bootstrapping. Thirteen patients provided both urine and
plasma samples.

As expected, based on known differences in demographics
[37], there were differences in the age and gender distribu-
tion of our SJIA and the KD and FI urine subjects. Except
for ND patients (median age, 3 years; range, 1–5 years), the
SJIA patients (SAF: median age, 12.5 years; range, 3–
17 years; AF: median age, 13 years; range, 11–16 years;
QOM: median age, 13 years; range, 5–17 years; RD: median
age, 14 years; range, 6–21 years) are older than KD (median
age, 3 years; range, 1–10 years) and FI (median age, 2 years;
range, 1–10 years) patients. Except for ND patients (100%
male), there are fewer male SJIA patients (SAF, 33% male;
AF, 33% male; QOM, 39% male; RD, 22% male) than KD
(82% male) and FI (61% male) patients. As expected, active

Student’s t test (P value)

ND/SAF vs. AF/QOM/RD/KD/FI ND/SAF vs. QOM/RD ND/SAF vs. KD/FI

Gender 2.56E−01 6.49E−01 7.62E−02
Age (year) 2.12E−02 2.72E−01 1.31E−02
WBC (103/ul) 5.59E−04 3.95E−05 9.72E−02
ESR (mm/h) 5.08E−04 1.05E−06 5.41E−02
CRP (mg/dL) 7.19E−05 3.24E−03 2.90E−02
PLT (103/ul) 4.01E−05 3.82E−05 1.02E−01

Table 3 Patient characteristics—
Student’s t test significant
analysis (P value)
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SJIA patients differ significantly from inactive patients for
variables reflecting active inflammation. Clinical parameters
indicative of systemic disease activity (i.e., ESR (erythrocyte
sedimentation rate), C-reactive protein (CRP), white blood
cell count (WBC), platelets (PLT)) were increased in ND and
SAF groups compared with the subjects in the AF, QOM,
and RD groups (Tables 1, 2, and 3). Among patient groups
with systemic inflammatory conditions, SJIA (ND and SAF)
and KD patients have increased values for ESR compared
with FI patients, and the SJIA patients (ND and SAF) have
higher CRP values than either KD or FI groups (ESR, ND:
mean of 54, SAF mean of 52, KD, mean of 51, FI, mean of
31; CRP, ND: mean of 29.4, SAF mean of 28.05, KD, mean
of 7.4, FI, mean of 3.39). However, active SJIA patients, KD
patients and FI patients do not differ significantly (Student’s
t test, P value>0.01) in WBC, ESR, CRP, and PLT,
respectively. Demographic analysis analyses were also
performed for SJIA F and Q plasma samples. There were
no significant differences (Student’s t test, P value>0.01) of
age and gender but significant differences (Student’s t test, P
value <0.01) of WBC, ESR, and PLT (CRP, insufficient data
for analysis) between F and Q in both training and
bootstrapping testing patient samples (Table 5).

Discovery of a Biomarker Panel of 17-Urine Peptides
Indicative of SJIA Systemic Flare

Mass spectrometry-based urine peptidomics analyses
suffer from two major sources of variance [18]: analytical
issues including mass spectrometric ion suppression; and
biological issues including dilution of urine by different
hydration states of the urine donors. To standardize
amount of urine peptides for comparative analysis, we
have quantified each extracted urine peptidome by the
TNBS assay [28] and 3 nmol of peptides were subjected to
the downstream LC-MALDI-TOF profiling analysis. The
initial step in our biomarker discovery effort was to collect
urine peptide spectra by LC-MALDI-TOF profiling from
the 56 urine samples. The MS spectrum of each HPLC
fraction was analyzed by “MASS-Conductor” software
(Ling, unpublished), which extracts peaks from raw
MALDI spectra, enables common peak alignment,
generates consensus representative peaks across all spectra
via two-dimensional hierarchical clustering of both mass/
charge and the HPLC fractions, and normalizes peak
signal measurements.

To discover an SJIA systemic flare signature, the urine
spectra of the subjects with systemically active disease, SJIA
ND (n=2), and SAF (n=18) patients, were compared
simultaneously to the non-systemic group of SJIA AF (n=9)
and the QOM (n=18) patients and the other systemic
inflammation groups: KD (n=23) and FI (n=23). The data
mining process included selection of the discriminative urineT
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peptides, supervised classification, bootstrapping, and ROC
analysis, as outlined in Fig. 1.

Classifier discovery and feature selection by the NSC
algorithm [32] were performed using all the features in the
data set. NSC algorithm iteratively shrinks the standardized
class mean of the abundance for each peptide. Eventually
all urine peptides were ranked by the difference between
the shrunken class means. Tenfold internal cross-validation
analysis and LDA led to the discovery of a biomarker panel
of 17-urine-peptide biomarkers effectively differentiating
SJIA flare (ND and SAF) from contrasting group of AF,
QOM, RD, KD, and FI samples. Extensive MALDI-TOF/
TOF and LTQ Orbitrap MS/MS analysis coupled with
database searches [29, 30] were then performed to identify
these peptide biomarkers.

As shown in Tables 6 and 7, the 17-peptide biomarkers were
found to be degradation products of eight different proteins:
alpha1 antitrypsin (A1AT, two peptides having overlapping
sequences), collagen type I alpha 1 (COL1A1; five peptides
and three of them having overlapping sequences), collagen
type I alpha 2 (COL1A2; one peptide), collagen type III alpha
1 (COL3A1; one peptide), collagen type IX alpha 2 (COL9A2;
one peptide), fibrinogen alpha (FGA; two peptides having
overlapping sequences), fibrinogen beta (FGB; two peptides
having overlapping sequences), and uromodulin (UMOD;
three peptides having overlapping sequences). Sequence
alignment of these peptide biomarkers revealed tight sequence
clusters for A1AT-, COL1A1-, FGA-, FGB-, and UMOD-
derived biomarkers. The Mann–Whitney U tests (Table 6)
were performed to evaluate the significance of discriminations

Table 5 SJIA patient (flare and quiescent plasma samples) characteristics—Student’s t test significant analysis (P value)

Student t test P value

Training SJIA F vs. Q Bootstrapping testing SJIA F vs. Q

Gender 3.16E−01 3.51E−01
Age (year) 5.65E−01 2.84E−01
WBC (103/ul) 5.69E−05 4.31E−04
ESR (mm/h) 3.19E−09 1.98E−05
CRP (mg/dL) NA NA

PLT (103/ul) 7.44E−04 6.87E−05

“Bootstrapping” differing from in silico bootstrapping (re-sampling) simulation, samples belonging to different visits of the same patient and even
the same samples were assayed, i.e. “bootstrapped” experimentally

CRP C-reactive protein, NA not enough data points for the analysis

SJIA flare signature
analysis

2

Discovery set
(ND,SAF vs.  AF,QOM,RD,KD,FI)

1

LCMS
raw spectra

Peak finding
peak alignment

feature extraction

Urine peptide
index

NSC feature
selection

Ten-fold
Cross-validation

Urine profiling Urine biomarker analysis (NSC, LDA, ROC)

Feature
selection

Biomarker  identification

LDA analysis

17 peptide
biomarker panel

ROC analysis
500 bootstrap samples

3

Classification

Aim #1
ND.SAF

vs.
KD.FI

Aim #2
ND.SAF

vs.
QOM.RD

Fig. 1 Schematic of the
experimental design to discover
an SJIA systemic flare urine
peptide signature. Long-term
goals: Aim #1, identification of
diagnostic urine peptide profile
that distinguishes new onset
SJIA patients from other
systemic inflammatory states,
including Kawasaki
disease (KD) and febrile illness
(FI). Aim #2, prediction of
impending flare during
quiescent periods of SJIA
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between disease classes, as indicated, and between active
systemic disease (ND/SAF) and contrasting AF, QOM, RD,
and HC samples respectively. Two-nested peptides from A1AT
(A1AT1796 and A1AT1945), and peptides COL1A1-1580,

and FGB1794 differentiated ND/SAF from all other inflam-
matory classes (KD/FI/AF) and non-inflammatory classes
(QOM/RD/HC), with P values <0.05 or ~0.05. Of the
remaining 13 peptides, COL1A1-11734, COL9A2-1126,

Table 6 The 17-urine-peptide SJIA biomarkers were found to be degradation products of eight different proteins

Protein m/z U test P value Peptide sequence

ND/SAF
vs. KD

ND/SAF
vs. FI

ND/SAF
vs. AF

ND/SAF
vs. QOM

ND/SAF
vs. RD

ND/SAF
vs. HC

A1AT 1,796.96 3.87E−02* 9.74E−04** 1.67E−03** 2.57E−03** 2.97E−03** 1.35E−03** EAIPMSIPPEVKFNKP Cluster I
A1AT 1,945.98 1.24E−02* 5.91E−04** 1.37E−03** 7.26E−04** 2.04E−03** 1.35E−03** EAIPMSIPPEVKFNKPF

COL1A1 1,570.73 1.15E−02* 2.94E−03** 9.45E−01 2.06E−01 6.60E−01 6.73E−02 GAKGDAGApGApGSQGApG

COL1A1 1,580.71 1.99E−07** 7.24E−04** 2.01E−02* 8.54E−03* 4.25E−03** 8.22E−02 SpGSpGPDGKTGPPGpAG

COL1A1 1,734.8 6.56E−02 5.54E−02 4.36E−02* 2.51E−01 2.95E−01 9.48E−01 GPpGPpGKNGDDGEAGKPG Cluster II
COL1A1 1,810.89 3.42E−02* 1.42E−01 3.90E−01 3.03E−01 2.01E−02* 8.22E−02 GPpGKNGDDGEAGKpGRpG

COL1A1 2,408.07 3.69E−05** 1.35E−01 1.75E−02* 8.73E−02 5.98E−03* 2.16E−02* NGDDGEAGKPGRpGERGPpGP

COL1A2 1,853.79 2.50E−01 1.95E−01 2.53E−01 2.22E−02* 6.27E−01 5.02E−01 NGApGEAGRDGNpGNDGPpG

COL3A1 1,624.73 1.43E−03** 6.23E−03* 5.32E−01 9.90E−02 3.65E−01 9.48E−01 DGApGKNGERGGpGGpGP

COL9A2 1,126.49 3.14E−04** 8.66E−07** 2.97E−03** 6.43E−03* 1.83E−01 2.48E−01 PpGPpGYPGKQ

FGA 1,826.79 3.01E−02* 1.35E−01 9.45E−01 2.06E−01 1.99E−01 2.31E−01 DEAGSEADHEGTHSTKR Cluster III
FGA 1,883.8 4.14E−03** 5.91E−04** 3.17E−01 1.03E−02* 3.86E−02* 7.18E−03* DEAGSEADHEGTHSTKRG

FGB 1,631.83 2.26E−03** 1.43E−03** 1.37E−03** 1.26E−01 1.27E−01 4.22E−01 EEAPSLRPAPPPISGGG Cluster IV
FGB 1,794.9 5.86E−02 4.50E−03** 9.69E−03* 3.53E−03** 4.25E−03** 1.90E−02* EEAPSLRPAPPPISGGGY

UMOD 982.58 4.24E−07** 1.60E−04** 9.08E−01 1.96E−01 2.34E−01 1.00E+00 VLNLGPITR Cluster V
UMOD 1,654.91 4.47E−01 4.05E−01 4.25E−03** 3.31E−01 1.13E−02* 6.81E−01 SGSVIDQSRVLNLGPI

UMOD 1,755.95 5.33E−04** 3.50E−03** 2.31E−02* 2.64E−01 1.40E−01 1.69E−01 SGSVIDQSRVLNLGPIT

The Mann–Whitney U tests were performed to evaluate the significance of discriminations between disease classes, as indicated, and between
active systemic disease (ND/SAF) and healthy control (HC) samples

*0.005<P value<0.05; **P value<0.005

Table 7 Protein sources of urine peptides and standardized differential mean expression in indicated disease groups based on Student’s t test

Protein m/z Standardized difference (Student’s t statistics)

ND/SAF vs. KD ND/SAF vs. FI ND/SAF vs. AF ND/SAF vs. QOM ND/SAF vs. RD ND/SAF vs. HC

A1AT 1,796.96 1.85 2.44 2.99 2.68 2.73 2.44

A1AT 1,945.98 2.33 2.96 3.31 2.86 3.16 2.96

COL1A1 1,570.73 2.82 2.99 1.65 2.34 0.56 2.99

COL1A1 1,580.71 4.18 3.06 1.74 2.42 3.05 3.06

COL1A1 1,734.8 2.59 3.24 3.48 1.71 2.27 3.24

COL1A1 1,810.89 2.47 2.38 2.10 1.74 2.72 2.38

COL1A1 2,408.07 2.91 1.55 2.63 2.05 2.78 1.55

COL1A2 1,853.79 2.37 2.85 2.45 2.97 2.20 2.85

COL3A1 1,624.73 3.21 3.23 1.93 2.09 2.50 3.23

COL9A2 1,126.49 −4.76 −4.87 −2.63 −2.95 −1.25 −4.87
FGA 1,826.79 2.98 2.96 1.58 2.87 2.99 2.96

FGA 1,883.8 3.49 3.81 1.32 3.44 3.77 3.81

FGB 1,631.83 2.35 2.37 2.54 1.67 1.65 2.37

FGB 1,794.9 2.06 2.62 3.34 3.33 3.35 2.62

UMOD 982.58 3.49 3.23 0.56 2.18 2.26 3.23

UMOD 1,654.91 2.01 2.03 2.09 1.61 2.09 2.03

UMOD 1,755.95 2.62 2.40 2.50 1.57 1.71 2.40
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FGB1631 and UMOD1755 differentiated ND/SAF from all
other inflammatory classes (KD/FI/AF); the other nine
peptides did not show an obvious pattern. Analysis of the
Student’s t test statistic (Table 7) showed all but one urine

peptide (COL9A2-1126) in the 17-peptide signature are found
at higher levels in urine from systemic SJIA (ND/SAF) when
compared with other inflammatory (KD/FI/AF) and non-
inflammatory (QOM/RD/HC) classes respectively.
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Fig. 2 Evaluation of the 17-urine-peptide biomarker panel as a classifier
of SJIA versus systemic inflammation from Kawasaki disease or acute
febrile illness. a A logistic regression model was used to find a panel-
based algorithm that minimizes the total classification error discriminat-
ing SJIA systemic disease from inflammation due to KD/FI. The
maximum estimated probabilities for each of the wrongly classified
samples, are labeled with arrows. b A modified 2×2 contingency table
shows the percentage of classifications that agreed with clinical
diagnosis. c The discriminant analysis-derived prediction scores for
each sample were used to construct a receiver operating characteristic
(ROC) curve; 500 testing data sets, generated by bootstrapping, from the
SJIA systemic flare, KD, and FI data were used to derive estimates of

standard errors and confidence intervals for our ROC analysis. The
plotted ROC curve is the vertical average of the 500 bootstrapping runs,
and the box and whisker plots show the vertical spread around the
average. d Distribution of the standardized ROC AUC values of the 500
falsely discovered panels upon the 500 class-label permutated data set of
the cohort of SJIA F and KD/FI urine peptidomes. Examining all the
500 falsely discovered biomarker panel ROC AUC values, the number
of falsely discovered same-size panels that have ROC AUC values
greater than that of the original urine biomarker panel (represented by
the red vertical line) dividing the total number of the “falsely
discovered” biomarker panels led to the estimation of false discovery
rate FDR
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Seventeen-Urine-Peptide Biomarker Panel Effectively
Discriminates SJIA Flare from KD and FI

In order to test whether the 17-peptide biomarkers could
collectively serve as a diagnostic biomarker panel, a logistic
regression model was then used to find a linear combination
of the 17-peptide biomarkers that minimizes the total
classification error discriminating SJIA systemic ND and
SAF patients from KD and FI patients. Figure 2a plots the
linear discriminant probabilities of the peptide biomarker
panel. Samples had good separation between the highest and
next highest probability for the classification. Seventeen of
the 20 SJIA flare and all 46 non-SJIA (KD and FI) patients
were correctly classified. The maximum estimated probabilities
for each of the wrongly classified samples, are labeled with
arrows. A modified 2×2 contingency table (Fig. 2b) shows the
percentage of classifications that agreed with clinical diagno-
sis. Overall, the 17-peptide biomarker panel classified the
SJIA systemic flare samples with 85% positive agreement
with the clinical diagnosis, and the other systemic disease
samples with 100% agreement with the clinical diagnosis
(P=4.53×10−13).

To evaluate the performance of our peptide panel for
separating SJIA flare from KD and FI, we used the
discriminant analysis-derived prediction scores for each
sample and constructed ROC curves [35, 36]. In addition,
we utilized bootstrapping, a re-sampling technique to
construct multiple-testing data sets to further evaluate the
classification performance of the 17-urine-peptide bio-
marker panel. Figure 2b summarizes the 500 bootstrapping
runs of the SJIA systemic flare, KD, and FI samples to
derive the estimates of standard errors and confidence
intervals for our ROC analysis. The plotted ROC (Fig. 2c)
curve is the vertical average of the 500 bootstrapping runs,
and the boxes and whiskers plot the vertical spread around
the average. The ROC analysis yielded an averaged area
under the curve (AUC) value of 0.999, indicating high
performance.

Seventeen-Urine-Peptide Biomarker Panel Effectively
Discriminates SJIA Flare from Quiescence and Remission

We next sought to determine whether the panel of the 17-
urine-peptide biomarkers could serve as a flare signature to
discriminate SJIA flare samples from samples of patients at
QOM and RD. A logistic regression model was used to find
a linear combination of the 17-urine-peptide biomarkers to
minimize the total classification error, classifying patients
of SJIA systemic flare from QOM and RD. Figure 3a plots
the linear discriminant probabilities of the peptide biomarker
panel. Samples had good separation between the highest and
next highest probability for the classification. Eighteen of 20
SJIA flare (90%) and all 27 SJIA quiescent or remission

patients were correctly classified. The maximum estimated
probabilities for each of the wrongly classified samples
are labeled with arrows. A modified 2×2 contingency
table (Fig. 3b) shows the percentage of classifications that
agreed with clinical diagnosis. Overall, the 17-urine-
peptide biomarker panel classified the SJIA flare samples
with 90% positive agreement with the clinical diagnosis
and quiescent or remission samples with 100% agreement
with the clinical diagnosis (P=4.16×10−11). Figure 3c
summarizes the 500 bootstrapping runs of the SJIA
systemic flare, quiescent and remission samples to derive
the estimates of standard errors and confidence intervals
for our ROC analysis. The plotted ROC (Fig. 3c) curve is
the vertical average of the 500 bootstrapping runs, and the
boxes and whiskers plot the vertical spread around the
average. The ROC analysis yielded an AUC value of
0.998.

Unbiased Significance Analysis and Multiple Hypothesis
Testing

In the ROC analyses of the 17-urine-peptide biomarker
panel for discriminating SJIA F versus QOM/RD or SJIA F
versus KD/FI, bootstrapping (a re-sampling technique) was
used to avoid bias due to the presence of outliers in our
assayed samples. In both cases shown in the ROC plots, the
ROC analyses (Figs. 2 and 3c) yielded a significant AUC,
indicating the ROC curve was not affected significantly by
the bootstrapping process and demonstrating the robustness
of our 17-urine-peptide biomarker panel in discriminative
analyses.

As observed in other high throughput analyses, e.g.,
microarray expression profiling, where the number of
profiled features greatly exceeds that of the assayed
samples, concurrent analysis of MALDI-TOF spectral
peaks to evaluate null hypotheses for differential urine
peptide biomarkers leads to the multiple-testing problem.
To address the multiple-hypothesis testing problem, we
estimated the FDR in concurrent statistical tests of peptide
panels, of the same size as our biomarker panel; multiple
permutated “random” training data sets were constructed.
The class labels of our training samples in either cohorts of
SJIA F and QOM/RD, or cohorts of SJIA F and KD/FI,
were permutated 500 times such that each time every
sample would be randomly assigned a new class label
(SJIA F or QOM/RD in F and QOM/RD discrimination;
SJIA F or KD/FI in SJIA F and KD/FI discrimination). For
each of the 500 simulated “training” sets, NSC algorithm
was applied to rank all the MALDI-TOF spectral peak
features based upon their ability to discriminate the binary
classes: SJIA F versus QOM/RD; and SJIA F versus KD/
FI, respectively. The NSC-selected top 17-peak features
were then designated as the “panel” for LDA analysis. ROC
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analysis subsequently was used to calculate the AUC for
this “falsely discovered panel”. The AUC values of the 500
falsely discovered panels were standardized, and the
density distribution was plotted in Figs. 2 and 3d. FDR
was calculated as the number of AUC values greater than
that of our 17-urine-peptide panel divided by the total

number of AUC values of the “falsely” discovered panels.
As shown in Figs. 2 and 3d, the FDRs of our urine peptide
biomarker panel are estimated as 0.2% in SJIA F versus
QOM/RD discrimination, and 0.2% in SJIA F versus KD/
FI discrimination respectively. These results support the
notion that the discovery of our peptide biomarker panel is
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Fig. 3 Evaluation of the 17-peptide biomarker panel as a classifier of
active SJIA versus inactive (quiescent or remitted) SJIA. a A logistic
regression model was used to find a panel-based algorithm that
minimizes the total classification error discriminating active systemic
SJIA from inactive SJIA. The maximum estimated probabilities for each
of the wrongly classified samples, are labeled with arrows. b A
modified 2×2 contingency table shows the percentage of classifications
that agreed with clinical diagnosis. c The discriminant analysis-derived
prediction scores for each sample were used to construct a receiver
operating characteristic (ROC) curve; 500 testing data sets, generated by
bootstrapping, from the SJIA systemic flare, and inactive SJIA data were
used to derive estimates of standard errors and confidence intervals for

our ROC analysis. The plotted ROC curve is the vertical average of the
500 bootstrapping runs, and the box and whisker plots show the vertical
spread around the average. d Distribution of the standardized ROC
AUC values of the 500 falsely discovered panels upon the 500 class-
label permutated data set of the cohort of SJIA F and QOM/RD urine
peptidomes. Examining all the 500 falsely discovered biomarker panel
ROC AUC values, the number of falsely discovered same-size panels
that have ROC AUC values greater than that of the original urine
biomarker panel (represented by the red vertical line) dividing the total
number of the “falsely discovered” biomarker panels led to the
estimation of false discovery rate FDR
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unlikely to be the outcome of chance in multiple hypothesis
testing.

Direct Sequencing and Cataloging of Naturally Occurring,
Normal Plasma Peptides Revealed Nested COL1A1, FGA,
and FGB Peptides That Are Related to SJIA Urine Peptide
Biomarkers

We reasoned that, at least, some of the SJIA urine peptide
biomarkers, such as FGA peptide biomarkers, are likely
filtered from the circulation into urine. To explore this, we
fractionated normal plasma by two-dimensional chroma-

tography to extract the naturally occurring peptides for
MSMS peptide sequencing. Similar to other plasma peptide
direct sequencing efforts [38], we observed FGA peptide
clusters. We found seven FGA peptide clusters in plasma
(Electronic Supplementary Table 1), and our urine peptide
biomarkers FGA (20–38) 1,536.69, FGA (605–628)
2,560.2, and FGA (605–629) 2,659.24 were observed in
plasma FGA peptide clusters I and VII. We did not detect
FGA (605–621) 1,826.80, although this peptide was found
in a published plasma peptidome sequencing effort [38].
Urinary peptide FGA (607–622) 1,639.77, and FGA (605–
622) 1,883.80 were not detected in either our analysis or the

MH+ Sequence COL1A1 location

Urine peptide biomarkers

1,580.71 SpGSpGPDGKTGPPGpAG 543–560 COL1A1
Plasma peptides

1,723.80 LTGSpGSpGPDGKTGPPGp 540–558

1,266.59 SpGPDGKTGPpGpA 546–559

1,452.64 SpGSpGPDGKTGPpGP 543–558

1,436.65 SpGSPGPDGKTGPpGP 546–558

1,610.71 TGSpGSpGPDGKTGPpGP 541–558

1,594.72 TGSpGSPGPDGKTGPpGp 541–558

1,509.67 GSpGSpGPDGKTGPPGp 542–558

Urine peptide biomarkers

1,826.79 DEAGSEADHEGTHSTKR 605–621
1,883.8 DEAGSEADHEGTHSTKRG 605–622

Plasma peptides

1,354.52 DEAGSEADHEGTH 605–617 FGA
1,542.60 DEAGSEADHEGTHST 605–619

2,020.90 DEAGSEADHEGTHSTKRGH 605–623

2,091.92 DEAGSEADHEGTHSTKRGHA 605–624

2,560.20 DEAGSEADHEGTHSTKRGHAKSRP 605–628

2,659.24 DEAGSEADHEGTHSTKRGHAKSRPV 605–629

2,344.12 GSEADHEGTHSTKRGHAKSRPV 608–629

2,730.26 ADEAGSEADHEGTHSTKRGHAKSRPV 604–629

2,293.96 MADEAGSEADHEGTHSTKRGHA 603–624

2,762.25 MADEAGSEADHEGTHSTKRGHAKSRP 603–628

2,861.28 MADEAGSEADHEGTHSTKRGHAKSRPV 603–629

2,877.31 MADEAGSEADHEGTHSTKRGHAKSRPV 603–629

2,122.81 SYKMADEAGSEADHEGTHST 600–619

2,672.11 SYKMADEAGSEADHEGTHSTKRGHA 600–624

3,239.46 SYKMADEAGSEADHEGTHSTKRGHAKSRPV 600–629

3,255.46 SYKMADEAGSEADHEGTHSTKRGHAKSRPV 600–629

851.49 GHAKSRPV 622–629

Urine peptide biomarkers

1,631.83 EEAPSLRPAPPPISGGG 54–70 FGB
1,794.9 EEAPSLRPAPPPISGGGY 54–71

Plasma peptides

1,794.9 EEAPSLRPAPPPISGGGY 54–71

210.10 REEAPSLRPAPPPISGGGYR 53–72

Table 8 Identification of peptides
found in normal plasma that are
related to SJIA urine peptide
biomarkers
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previously published one [38]. The urinary FGA peptides
found in active SJIA samples (Table 8) lack one or two C-
terminal residues compared with a related plasma peptide
and thus appear to derive from exopeptidase activity. The
urinary COL1A1 peptide that is most differentially
expressed in active SJIA (Table 8) extends beyond the C
terminus of a closely related peptide found in normal
plasma, suggesting it may be generated by inhibition of
normal protease activity during SJIA. A urinary FGB
peptide found in SJIA (at similar levels in KD, but not
comparison groups with less systemic inflammation) is
identical to a peptide found in normal plasma, suggesting
that the precursor protein is increased during inflammation.
Our data indicate that at least some SJIA urine peptide
biomarkers likely originate in circulation and are filtered
into the urine.

Identification of TIMP1, IL18, RANTES, P-Selectin,
MMP9, and L-Selectin as SJIA Plasma Flare Biomarkers

Fibrinogen is degraded by MMP9 [39–41], and the
fibrinogen degradation fragments have been shown to be
biologically important molecules with numerous pro-
inflammatory actions [42]. We reasoned that the generation
of the SJIA urine biomarker peptides, including those
derived from fibrinogen, may be an outcome of the actions
of inflammatory mediators on protease expression and
regulation, generating a disease-specific degradation pattern
of source proteins, such as fibrinogen.

To explore this hypothesis, we utilized an antibody array,
consisting of pairs of capture and detection antibodies
against 43 proteins of chemokines and cytokines, protein
catabolism regulators, and cell surface molecules involved
in leukocyte adhesion, to profile and compare the F and Q
plasma samples (demographics shown in Tables 4 and 5).
Our training data set derived from plasma samples from 25
patients at the time of SJIA systemic flare and 14 patients at
the time of quiescence. Classifier discovery and feature
selection by a nearest shrunken centroid (NSC) algorithm
[32] was performed with all the 43 proteins. Ten fold
internal cross-validation analysis led to the discovery of a
candidate flare signature consisting of six proteins: TIMP1,
IL-18, RANTES, P-Selectin, MMP9, and L-Selectin
(Fig. 4a).

We used the NSC algorithm to derive shrunken class
means of biomarker protein abundance and gauged the
relative quantity of each plasma protein in the SAF and
QOM samples to assess the relative resolving power of
each biomarker (Fig. 4a). To validate the antibody array
observations, TIMP1 and MMP9 concentrations in SJIA
plasma were also determined using enzyme immunometric
assay kits from RayBiotech, Inc (Norcross, GA; data not
shown). All of the SJIA flare biomarker proteins were

found at higher levels in plasma at SJIA flare state. The
LDA classification results were used to calculate the
percentage of classification that agreed with clinical
diagnosis, as shown in a modified 2×2 contingency table
(Fig. 4b, left panel). The six-protein biomarker panel
classified the SJIA flare samples with 92% positive
agreement and the non-flare samples with 71.4% agreement
(Fig. 4c, left panel) (P=7.9×10−5).

To assess the performance of the peptide biomarker
panel in the classification of “unknown” samples, we
carried out an experimental bootstrapping approach. Instead
of in silico bootstrapping simulation, samples belonging to
different visits of the same patient and even the same
samples were assayed, i.e., “bootstrapped” experimentally,
for testing. For the bootstrapping testing, a total of 52 SJIA
samples (demographics shown in Tables 4 and 5) were
analyzed by the antibody array where 41 samples were
from 19 patients at the time of SJIA flare, and 11 samples
were from eight patients at the time of SJIA quiescence.
Figure 4b plots the linear discriminant probabilities of the
peptide biomarker panel for the training (left) and boot-
strapping data (right); in both cases, samples had good
separation between the highest and next highest probability
for the classification.

Our six-biomarker panel classified blindly the boot-
strapping samples with 87.8% agreement with the clinical
diagnosis for the flare samples and 81.8% agreement for the
quiescent samples (Fig. 4c, right panel) (P=2.4×10−5 for
the bootstrapping test). Based upon the discriminant
analysis-derived prediction scores for each sample, we
constructed ROC curves [35, 36] to evaluate the performance
of our plasma protein panel for distinguishing flare from
quiescence samples. Figure 4d summarizes the 500 boot-
strapping runs of the assayed SJIA flare and quiescent
samples to derive the estimates of standard errors and
confidence intervals for our ROC analysis. The ROC
analysis yielded an AUC values of 0.922 for the training

Fig. 4 Identification of six plasma proteins as a SJIA plasma flare
panel. a All of the six plasma biomarker proteins are of higher
abundance in SJIA flare. Relative abundance: the nearest shrunken
centroid values [32] have been utilized to represented the relative
abundance of biomarkers in either SJIA F or Q patient class. b A
logistic regression model was used to find a panel-based algorithm
that minimizes the total classification error discriminating SJIA F from
Q. The maximum estimated probabilities for each of the wrongly
classified samples, are labeled with arrows. c A modified 2×2
contingency table shows the percentage of classifications that agreed
with clinical diagnosis. d The discriminant analysis-derived prediction
scores for each sample were used to construct a receiver operating
characteristic (ROC) curve; 500 testing data sets, generated by in
silico bootstrapping, from the SJIA F and Q, both the training and the
experimentally bootstrapped, data were used to derive estimates of
standard errors and confidence intervals for our ROC analysis. The
plotted ROC curve is the vertical average of the 500 bootstrapping
runs, and the box and whisker plots show the vertical spread around
the average

�
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(Fig. 4d left panel) and 0.907 for the bootstrapping testing
(Fig. 4d right panel), respectively.

Discussion

Urine based proteomic profiling is a novel approach that
may lead to the discovery of non-invasive biomarkers for
diagnosing patients with different diseases, with the aim to
ultimately improve clinical outcomes [18]. Given new and
emerging analytical technologies and data mining algorithms,
the urine peptidome has become a rich resource for the
discovery of naturally occurring peptide biomarkers. For
pediatric diseases, urine is expected to become one of the most
useful body fluids in clinical proteomics for diagnosis and
risk-stratification. Mass spectrometry-based urinary protein
and peptide profiling has led to the discovery of highly
informative biomarkers for both urogenital and non-uro-
genital diseases [43].

At the current time, urine proteomics have been applied
primarily to diseases affecting the kidney and urinary tract.
Our focus on changes in urine that reflect systemic
inflammation is novel and potentially of broad use [18].
One of our long-term goals is to use urine biomarkers to
develop clinical tests that are non-invasive and feasible for
frequent sampling and determination. With this in mind,
urine peptidomes from SJIA patients were profiled to
identify naturally processed urine peptide biomarkers and
17-urine peptides emerged as a candidate SJIA flare panel.
This panel was found to be robust using statistical analyses.
Nonetheless, the panel requires validation using a new
sample set of sufficient size, guided by power analysis.

The panel discovered in this study appears capable of
discriminating patients with active SJIA from those with
quiescent or remitted disease. Similar to other molecular
changes, such as plasma protein profiles [44], this urine
peptide panel may detect incipient SJIA disease activity
prior to clinical evidence of disease. In order to offer a
significant clinical advantage to justify routine monitoring
of urine biomarkers, a test would have to be more sensitive
than the history and physical exam at predicting impending
flare, and would need to predict those disease flares which
do not self-resolve and therefore require escalation of
medical therapy. Serial evaluation of urine samples from
SJIA subjects using MRM analysis will be performed to
test this hypothesis.

The urine peptide panel also identifies subjects with
active SJIA when compared with those with KD and FI.
Our ability to discriminate between SJIA patients and other
acute systemic inflammatory conditions is promising for
future development of diagnostic tools. However, the SJIA
patients in this study, except for the two new onset patients,
are older than KD and FI patients. Collagens, bone growth

and other connective tissue production may differ substan-
tially. Therefore, development of diagnostic markers dis-
criminating new onset SJIA from confounding acute
inflammatory diseases, e.g., KD and FI, requires age-
matched subjects. To continue the discovery efforts and to
validate the current biomarker panel, we plan to assemble a
larger cohort of new onset SJIA. Another potential utility of
the SJIA urine biomarker panel is to distinguish SJIA flare
from infection in a patient with known SJIA, as these
scenarios require different therapeutic responses. Urine
samples from cohorts of both SJIA flare and SJIA patients
with known infection will be assembled to validate the
urine peptide biomarker panel revealed from this study.

The parent proteins of the urine peptide biomarkers
can be found in the circulation or kidney. For example,
A1AT, FGA, and FGB are all acute-phase plasma
proteins, which are synthesized by hepatocytes and
megakaryocytes [45] and are found at high levels in the
circulation in the setting of acute or chronic inflammation.
Increased fibrinogen and fibrin deposition within joints are
prominent indicators of active SJIA flare [46] and arthritis
[47]. We hypothesize that the SJIA urine peptide bio-
markers may result from changes in the concentrations of
inflammatory mediators and protein catabolism regulators,
altering the levels of peptides that are ultimately filtered
into urine or generated in the urinary tract from local
protease activity. The consequence is the generation of a
disease-specific molecular phenotype in SJIA urine. In
support of this model, we and others [38] have found urine
FGA peptide biomarkers in plasma. This would suggest
that the FGA urine peptide biomarkers are likely to be
present in circulation. Future prospective studies are
needed to determine whether the plasma A1AT, FGA,
and FGB peptides have diagnostic or prognostic value in
SJIA disease management. However, UMOD protein is
not derived from blood, but is produced by the thick
ascending limb of the loop of Henle in kidney. Our plasma
analysis failed to find any UMOD peptides, suggesting
that UMOD peptide biomarkers are coming from kidney.
The differential abundance of UMOD urine peptide
biomarkers in SJIA suggests that SJIA is likely to have
an impact on normal kidney function. Renal disorders in
SJIA patients are not well characterized. One 9-year-old
SJIA patient was characterized by an aggressive disease course
and developed renal amyloidosis just 2 years after the disease
onset [48]. A variety of renal disorders can occur in patients
with rheumatoid arthritis (RA), which may due to the
underlying disease. The most common disorders associated
with RA are membranous nephropathy, secondary amyloidosis,
a focal, mesangial proliferative glomerulonephritis, rheumatoid
vasculitis, and analgesic nephropathy [49, 50]. It is unclear
whether SJIA directly affects renal function or indirectly causes
renal inflammation.
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It would have been of interest to assess changes in total
protein or peptide excretion in our tested SJIA and
contrasting KD/FI samples. Amounts of inflammatory
proteins excreted in urine can change dramatically, and
febrile states have often been associated with increased
protein excretion [51, 52]. Future characterization of the
SJIA and KD/FI urine proteomes can help determine
whether disease-related changes in total of protein excretion
explain the changes in urine peptide profiles we observe in
SJIA. Disease-specific alterations of gene transcription in
the affected tissue and change in the balance of proteolytic
and anti-proteolytic activities in urine, as we have proposed
previously [18], may also contribute to the altered pattern
of urine peptides in SJIA. To further explore the possible
underlying mechanisms related to urine peptide generation,
we used an antibody array with 43 proteins known to be
involved in the inflammation of SJIA, including certain
proteases and their regulators. Plasma profiling of SJIA
flare and quiescent samples using this antibody array
identified a biomarker panel of TIMP1, IL-18, RANTES,
P-Selectin, MMP9, and L-Selectin, all of which are present
at higher abundance in SJIA flare than in quiescence. Given
that fibrinogen is a substrate of MMP9 [39–41], it is
possible that up regulation of MMP9 and TIMP1 in
circulation may be directly associated to the generation of
FGA peptide biomarkers that ultimately are enriched in
urine during active SJIA. It has been shown that treatment
of active rheumatoid arthritis with golimumab (human
monoclonal antibody to TNF-α) plus methotrexate signif-
icantly decreases serum IL-18, E-selectin, TIMP1 and
MMP9 levels [53]. IL-18 also has been reported to be a
candidate for a key cytokine in the pathogenesis of SJIA

[54]. Notably, IL-18 synthesis is increased in SJIA, but not
in KD [55], indicating that there are differences in the
inflammatory milieu in these (sometimes clinically similar)
diseases. Such differences may explain the differences in
expression of the FGA peptide biomarkers in urine between
SJIA flare and Kawasaki disease. The observation of P/L-
Selectins as part of the plasma biomarker panel suggests
that P/L-Selectin-mediated leukocyte migration might be
important in SJIA pathogenesis, possibly by mediating the
recruitment and/or trafficking of specific leukocyte subtypes
into inflammatory foci. Previously analysis [56] of rheumatoid
arthritis (RH)-specific collagen breakdown products indicates
that RH-specific fragments are formed locally in synovial
fluids during diseases process and then released into the
circulation. It is likely that the SJIA urine peptide biomarkers,
in a similar formation mechanism as RH-specific collagen
degradation products, originate due to local inflammation, and
then are released in the circulation, which are ultimately
enriched and ended in urine.

Together, urine peptidomics and targeted plasma profiling
revealed a urine biomarker panel of 17-urine peptides and a
plasma biomarker panel of six plasma proteins as SJIA flare
signatures. Shown in Fig. 5, our integrated analyses suggest
that the differential abundance of urine peptides in SJIA
urine may be an outcome of both the pathophysiological
changes initiated by IL-18 and RANTES and P/L-Selectin-
mediated inflammatory responses and the function of
leukocyte-derived TIMP1/MMP9; the latter would influence
protein catabolism in SJIA. The inflammatory cytokines may
also directly affect levels of expression of substrate proteins
and influence levels of expression of peptide derivatives of
these proteins.
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Fig. 5 Current model: SJIA urine peptide biomarkers reflect changes in expression of inflammatory mediators and proteolytic and anti-proteolytic
activities during active SJIA
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Evaluation of urine peptide profiles in future prospective
studies will test the robustness and diagnostic/prognostic
values of these urine peptide biomarkers and may provide
new insights into SJIA pathogenesis.
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