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The aim of this work is to present a method for accurately estimating heart and respiration

rates under different actual conditions based on a mattress which was integrated with

an optical fiber sensor. During the estimation, a ballistocardiogram (BCG) signal, which

was obtained from the optical fiber sensor, was used for extracting the heart rate and

the respiration rate. However, due to the detrimental effects of the differential detector,

self-interference, and variation of installation status of the sensor, the ballistocardiogram

(BCG) signal was difficult to detect. In order to resolve the potential concerns of individual

differences and body interferences, adaptive regulations and statistical classifications

spectrum analysis were used in this paper. Experiments were carried out to quantify

heart and respiration rates of healthy volunteers under different breathing and posture

conditions. From the experimental results, it could be concluded that (1) the heart rates of

40–150 beats per minute (bpm) and respiration rates of 10–20 breaths per minute (bpm)

were measured for individual differences; (2) for the same individuals under four different

posture contacts, the mean errors of heart rates were separately 1.60 ± 0.98 bpm, 1.94

± 0.83 bpm, 1.24 ± 0.59 bpm, and 1.06 ± 0.62 bpm, in contrast, the mean errors of

the polar beat device were 1.09 ± 0.96 bpm, 1.44 ± 0.99 bpm, and 1.78 ± 0.94 bpm.

Furthermore, the experimental results were validated by conventional counterparts which

used skin-contacting electrodes as their measurements. It was reported that the heart

rate was 0.26 ± 2.80 bpm in 95% confidence intervals (± 1.96SD) in comparison with

Philips sure-signs VM6 medical monitor, and the respiration rate was 0.41± 1.49 bpm in

95% confidence intervals (± 1.96SD) in comparison with ECG-derived respiratory (EDR)

measurements for respiration rates. It was indicated that the developed system using

adaptive regulations and statistical classifications spectrum analysis performed better

and could easily be used under complex environments.
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INTRODUCTION

In order to address the potential concerns of chronic diseases
and sub-health status, the development of remote, intimate, and
immediate medical treatments with extensive mobile network
coverage is really significant. Especially, with the coming
of aged societies, the urgent need of remote, miniaturized,
and portable healthcare equipment is imperative for health
monitoring, adjuvant treatments, and rehabilitation exercises
to every user (1–3). Many physiological parameters can be
obtained by this equipment. The cardiopulmonary function
which means measuring the heart rate (HR) and the respiration
rate (RR) is the most important function of this device. The
heart rate, which is represented by the number of contractions
of the heart per minute, is closely correlated with various
heart diseases, such as sinus tachycardia, heart arrhythmia, and
premature ventricular contraction. As for the respiration rate,
which is a parameter referring to the number of breaths per
minute, it can be used as an indicator for various abnormal
physical conditions such as asthma, anxiety, pneumonia, and
drug abuse.

Traditional approaches of monitoring heart and respiration
rates include (1) using an electrocardiogram (ECG) (4, 5)
to record electrical activities of the heart over a period of
time by the close connection between the electrodes and
the skin of subjects, (2) using photoplethysmography (PPG)
(6–8) to reflect the cardiac-induced changes in tissue blood
volumes according to the measured results of probes which are
clamped to fingers, and (3) using polysomnography (PSG) (9)
to comprehensively record biophysiological changes of subjects
while sleeping. However, these methods are not suitable for long-
term monitoring due to their inconvenience and the discomfort
they bring to the subjects. Recently, as an alternative approach
of collecting physiological parameters without close contact
with subjects, the ballistocardiogram (BCG) has been widely
researched (10–13). More specifically, BCG can be used to
measuring the vibrations from the head to the soles of the
subjects due to blood pumping. The current studies of extracting
BCG signals have been focused on the developments of the
approaches and the platforms which include electromagnetic
wave scanning reflectors (14), piezoelectric films (EMFI) (15),
seismic detectors (16), optical fibers (17, 18), and so on.
Among these approaches and platforms, electromagnetic wave
scanning reflection is difficult to implement because it can be
easily influenced by external environmental variations and it
requires complicated hardware. Piezoelectric films also have
their obvious disadvantages such as poor sensitivities and
high production costs. Furthermore, piezoelectric films require
multi-level amplifications which increase system complexity
and production costs drastically. Seismometers are relatively
expensive and insensitive to respiration. Fortunately, as a non-
inductive equipment, optical fibers can could be used to obtain
physiological parameters with high reliability, durability, and low
cost, especially in harsh environments. In this paper, thus, an
optical fiber-based mattress system was developed and could be
used not only for professional medical environments but also
within households.

However, the ballistocardiogram (BCG) signal based on a
fiber sensor is difficult to detect due to the detrimental effects
from the different subjects, self-interference, different installation
status, and so on (19, 20). Firstly, the signals received by the
optical fibers are very weak, thus the corresponding extraction
of physiological parameters is challenged (9). Secondly, some
physiological movements, such as snoring in sleeping, can
deform the waveforms of BCG. Furthermore, the waveforms
of BCG would vary significantly from different subjects, and
even for the same subject but in different recording periods
(21). Finally, the variation of installation status of the sensor
has a significant impact on the BCG signal. So, in this study, a
specially designed detection method was developed in order to
accurately extract heart and respiration rates from BCG signals
on the basis of a fiber sensor. First of all, the optical fiber system
was designed with an adjustable transmitter driving circuit and
a trans-impedance amplifier. Moreover, thanks to the real-time
feedback voltages from an adaptive feedback algorithm used
in this study, the individual differences could be adjusted in
time. Furthermore, statistical classifications based on the analysis
of signal spectra were conducted to locate fundamental and
harmonic frequencies, which was beneficial for the extraction of
heart and respiration rates.

The main work of this study is organized as follows:
Introduction summarizes the progress and problems in
measuring BCG; Methods introduces the acquisition system
on the basis of an optical fiber mattress and provides the
developed extraction method of BCG signals; Results and
discussion concludes the measurements of heart and respiration
rates on the basis of the developed system; and Conclusions is
the conclusion.

METHODS

System Setup
The block diagram of the BCG signal acquisition system is
shown in Figure 1. A mattress, in which an optical fiber was
embedded, was placed on a bed. After a subject laid on the
mattress, the micro-bending changed pre-stress and was fixed.
Then, the heart vibration of the subject brought additional
stress to the mattress which led to fiber deformation and
finally changed the light transmission (Figure 2). Subsequently,
the decaying light signals were converted into current signals
by the light detector which was coupled with the received
connector. Next, current signals were amplified and converted
to voltage counterparts, and adaptive adjustments of individual
differences(see Adaptive Adjustment of Individual Differences)
were conducted to confine the measured signals within an
optimal range. Finally, signal processing was conducted to
extract key physiological parameters including heart and
respiration rates.

Structure of the Optical Fiber-Embedded
Mattress
The structure of the optical fiber mattress is shown in Figure 3. It
mainly consisted of a sensitive section and a collection of transmit
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FIGURE 1 | Block diagram of the BCG signal acquisition system.

FIGURE 2 | Optical conduction loss caused by mechanical deformation of micro-bending fiber under the action of stress.

and receive connectors. The sensitive section included gradient
multimode fiber (MMF), a micro-bending device, and the upper
and lower covering plastic materials (22, 23). Where the MMF
was located in the center of the entire structure, close to the
micro-bender, the upper and lower two layers of soft covering
material were used to clamp the MMF and micro-bender in the
middle, forming a sandwich structure. The soft material, which
covered above and below the sandwich structure, could protect
the fiber well and improve the reliability and stability of the
mattress. At the same time, in order to ensure the high sensitivity
of the fiber mattress, it was required that the fiber optics were
evenly distributed. In order to meet the above requirements, the
design used a serpentine back-fold ingress sloth to distribute
the fiber optic sensor evenly in the middle of the mattress,
while usingMMF to improve optocoupled efficiency and enhance
detection sensitivity.

First of all, the design of the optical fiber mattress was based
on a previously reported theoretical model (24). The change of
light transmission in response to an applied stress is defined as:

1C = (
1C

1X
) � 1F � 1E (1)

Where 1F is the applied stress, 1C is the coefficient variation
representing the change of light transmission, 1X is the change
of small deformation,1E is the original environment change that
is connected with some parameters which include the pressure
coefficient (K), the cross-sectional area (A), the Young’s modulus
(Y), and the mattress length (L). 1E is shown as follows:

1E = (K +
A � Y

L
)
−1

(2)
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FIGURE 3 | Internal structure of the optical fiber mattress.

Where K is the force constant of the fiber, which is associated
with the fiber diameter (d) and the number of bends (γ )
as follows:

K = 3 � π � Y � d4 � γ (3)

In order to achieve the highest sensitivity of the fiber mattress,
the above parameters were carefully selected. To bemore specific,
the fiber was evenly distributed in themiddle layer of themattress
and closely followed the bend line in a pattern of serpentine
return. Furthermore, the MMF (composed of silica) was used
to enhance the efficiency of optical coupling because its core
diameter is much larger than single-mode fibers. The micro-
bending device was also added to increase the deformations of the
fiber. Finally, the plastic cover was painted to protect the optical
fiber and improve the reliability and stability of the mattress.

Weak Signal Processing
The key issue of obtaining the electrical signals from the optical
fiber mattress was that the signals had small amplitudes. This
paper used the following methods to solve this issue. Firstly,
the weak current signal was translated into a voltage signal with
amplification by a trans-impedance amplifier. For weak signal
processing, current and voltage noises of the system must be
kept at a low level. Secondly, the optical fiber transmitter and
receiver were placed within a metal shield and shielding rings
were included in the transmitting and receiving circuits. The
wavelength of the fiber optic sensor was 900–1,650 nm, with a
typical value of 1,310 nm and a saturated power of 10 mW. It
was shown that the current level of the detector was at the nA
level, and the signal amplitude after the first-step cross-resistance
amplification was approximately 40mV. In practice, the feedback
resistor brought more noise into the circuit as well, although
increasing the feedback resistor improved the magnification
ratio. As a result, the front two levels of the amplification circuits

mainly consisted of the OPA656 (TI) amplifier, and the third-
level amplification adopted an analog front-end as a 16-bit high-
precision sigma delta AD of an ADS1115 (TI) sampling circuit to
realize weak signal processing (see Figure 4).

Adaptive Adjustment of Individual
Differences
When the fiber mattress was under force, the amplitudes of the
received signals varied significantly from subject to subject. In
order to address this problem, an adaptive feedback algorithm
was used to automatically adjust the controlling voltages of
the transmitter driving circuit and the magnification of the
amplification circuit. At the same time, a feedback loop was also
proposed for the acquisition and control of the optical fiber which
could further eliminate individual differences dynamically.

The workflow of the feedback acquisition and the control
flow of optical fibers are described as follows (see Figure 5).
After a subject laid on the fiber mattress, the initial value of
the transmitter driving voltage U0 and the magnification (Rf1
and U2/U1) of the amplification circuit were fixed. Then the
main control chip MCU received an AC signal which was from
the sampling and was used to judge whether the amplitude of
the signal was within an appropriate range or not. If the single
was within the appropriate amplitude, no adjustment would be
conducted. Otherwise, the output voltage of the control circuit
(transmitter drive voltage U0) would be changed to adjust the
magnification of the amplifier. Finally, it formed a collection
control feedback loop to confine the output voltage in the best
detection range.

In the application, the master chip STM32F407 received the
AC signal of the ADS1115 via I2C, and then, according to the
size of the DC component of the AC signal, the drive voltage U0
of the fiber transmitter was controlled by theDA5571module and
the variable resistance of the digital interline AD5241 to achieve
the cross-block amplifier magnification control, and finally form
a receiver control ring to achieve the best output.
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FIGURE 4 | Preprocessed circuit including three-stage amplification.

FIGURE 5 | The feedback loop of the fiber acquisition control.

Compound Signal Separation
The waveforms, which were pre-processed after being adaptively
adjusted, were inevitably contained by the components of
breath, muscle fibrillation, and heart pumping. Thus, it
was difficult to directly extract heart and respiration rates
from the waveforms. As the amplitudes and frequencies of
respiration were different from heartbeat, a 9–25Hz band
filter was used to separate heart beat waveforms and a 0.6–
10Hz low-pass half-band filter was used to extract the breath
waveforms (see Figure 6).

The band filter had the effect of selecting useful frequencies to
pass through and suppressing useless frequencies. After setting
the vibration signal to x(n), then the output signal through the

FIR is:

yf (n) =

N
∑

i=0

hix[n− i] (4)

Where hi is the system function of the filter, expressed as a finite
pulse response. The coefficient of bj for the filter is as shown as

hi =

N
∑

j=0

bjδ[i− j] (5)
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FIGURE 6 | Signal separation of BCG. The left side is the original signal of the sensor, and the right side is a pre-treated BCG signal according to the band filter (A)

static state waveform, (B) the holding breath, (C) slow respiration, and (D) the movement state.

The corresponding Z transformation is represented as:

H (z) =
+∞
∑

n=−∞

hnz
−n (6)

Based on the frequency band characteristics of the vibration
signal, the FIR filter parameters were of 90 orders and the band
pass filter with a band range of 9–25Hz was designed. The band
and phase frequency characteristics are shown in Figure 7.

Respiration Rate Extraction
The respiration waveforms were extracted by the aforementioned
methods (see Figure 6).

The detailed procedures for calculating respiration rates are
shown as follows:

(1) Pre-processing the BCG signals by a comb filter;
(2) Conducting FFT processing;
(3) Finding the maximum spectrum point in the range of 0.1–

0.5Hz (see Figure 8) with four states (e.g., static state,
holding breath, slow breath, and movement);

(4) Calculating the respiration rates based on formula 4 at
the corresponding frequency point, where fmax is the peak
frequency within 0.1–0.5Hz, for example, fmax could be fb1,
fb2, or fb3, and Rrwas expressed as the respiration rate;

(5) Refreshing the data once every 128 points, and then
returning to step (1).

Rr = fmax � 60 (7)

Heart Rate Extraction
The waveform of the heart beat was extracted by the
aforementioned methods which are shown in Figure 6. Firstly,
before presenting the algorithm, the morphologies of the
heart beat waveform were discussed. As shown in Figure 9A,

individual peaks of the heart beat were submerged under normal
and slow breath states (Figure 9C). Conversely, when the subject
held their breath (see Figure 9B), there were more clear and
prominent peaks on the heart beat waveform after a slight
jittering which happened before entering this state. These results
indicated that breath had varying degrees of interference with
the heart beat waveform. In addition to the breath interference,
motion disturbances such as physical movements also produced
inconspicuous peaks in the heart beat waveforms. Figure 9D
shows that motions and heart beats were superimposed which
led to serious interference in the waveform morphologies.
Therefore, the algorithm of peak detection was not effective
in this situation which means it was difficult to estimate the
waveform morphologies.

Secondly, the spectrum of the heart beat waveform
was introduced, and the base frequency was the frequency
component with the highest magnitude peak in the spectrum
around the lowest frequency, which was consistent with heart
beat frequencies within 0.6–3Hz in the heart beat waveform.
Harmonics with frequencies which were whole-number
multiples of the base frequencies were composed of BCG signal
components. Moreover, the relationship of base frequencies and
harmonics satisfied Formula 8, where fx1 is the base frequency,
fx2 is the second harmonics, and fx3 is the third harmonics.

6 � fx1 = 3 � fx2 = 2 � fx3 (8)
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FIGURE 7 | Response relationship between amplitude frequency and phase frequency of 9-25Hz six-order FIR Filter.

FIGURE 8 | Four types of breath waveforms (the left side) and spectra (right side), where fb1, fb2, and fb3 were frequencies of respiration, and fm3 and fm4 were

frequencies of movement. (A) static state, fb10 = 0.3052Hz, (B) the held breath state, fb20 = 0.1221Hz, (C) slow breath was accompanied by body movement

which included fb30 = 0.1831Hz and fm3 = 0.0610Hz, and (D) the movement state only included fm40 = 0.0610Hz of moved frequency.

Four types of heart beat waveforms (left side) and spectra
(right side) are shown in Figure 9. In the resting state, it can
be seen that the amplitudes of the second and third harmonics
were prominent, but the amplitude of the base frequency was
low due to respiratory interference. Still, the relationship between
two of the three frequency points was close to Formula 8 with
the detailed relationship shown in Figure 9A. The held breath
state (see Figure 9B) had an obvious base frequency compared

to the normal resting state besides prominent harmonics and
a good frequency relationship, therefore, base and harmonics
frequencies were judged based on the maximum amplitudes.
The slow breath state (see Figure 9C) suggested that amplitudes
of harmonics were relatively low due to breath interference,
and thus base and harmonics frequencies were not judged by
only amplitudes since peaks of other interferences were more
prominent, while the relationship between three frequency points
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FIGURE 9 | Four types of BCG waveforms (the left side) and spectra (right side), in which the fundamental frequency is X1,the second harmonic is X2,and the third

harmonic is X3, (A) in the normal resting state, (B) in the holding breath, (C) in the case of slow respiration, and (D) in the moving state.

was still close to the relationship in Formula 9. In the moving
state (see Figure 9D), it was shown that the amplitudes of base
frequency and harmonics were not obvious.

Statistical Classifications Spectrum
Analysis
According to the above discussion, the calculation of heart rate
can be converted into the extraction of the frequency of the
base and harmonic wave in the spectrum. In particular, when
the relationship of base frequency and harmonics was close to
Formula 8, the ratio of signal to noise was higher and the heart
rate could be judged by only finding the maximum amplitudes
of three frequencies (fx1, fx2, fx3). Heart rate extraction was very
difficult when the relationship between the base frequency and
harmonics was not obvious. In this way, statistical classification
and optimization must be further adopted to extract the base
frequency and harmonics.

The detailed flow chart of calculating heart rates is shown
as follows:

FFT
The frequency resolution of filtering BCG signals was 1Hz under
an AD sampling rate of 250Hz. In order to accurately extract
heart rates, a down sampling operation of 16 times was used
before FFT and thus the frequency resolution reached 0.015Hz
to meet the heart rate extraction requirements.

Location of Frequency Points
Combined with the characteristics of the signal’s spectrum, the
relationship between the base frequency and harmonics should
be as consistent as possible with Formula 8. In other words, the
ratio of frequency should meet Formula 9, where ϕ was a suitable
threshold where the right heart rate could be found. In most
cases, the appropriate frequency points can be selected based on
the maximum spectral amplitudes that simultaneously satisfy the
following formula.

1.5− ϕ <
fx3

fx2
< 1.5+ ϕ

2.0− ϕ <
fx2

fx1
< 2.0+ ϕ (9)

3.0− ϕ <
fx3

fx1
< 3.0+ ϕ

Then, after each spectral transformation, the frequency value
of fx1 was found. Identified heart beats HR (in Formula 10)
were stored.

HR = fx1 � 60 (10)

HR (heart rate in Formula 10) was calculated to fall into a sub-
particle of the heart beat (HSB) at sufficient intervals, and the
probability distribution under this HSB is shown in Figure 10.
Specifically, HSBs were set into 44 categories between 40 bpm and
140 bpm, where the category wasmarked asCj, and themedian of
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FIGURE 10 | The visualization of B1, B2, and B3 curves represents each update process of statistical probability distribution (from distribution B1–B2, B2–B3). The

horizontal axis represents the division of the sub-partition, and the ordinate represents the probability value in a certain interval.

the heart beat under each category was marked asHRj. When HR
was refreshed, the probability was redistributed from B1 to B2,
and B2 to B3. The category Cs with the max probability (Pmax)
was found, and then the median HRs under this category were
taken (shown in Formula 11).

{

Cs = argmax{P � (Cf |HR )} · · · j ∈ [1, 44]
HRs = median(Cs)

(11)

probability = probability � 0.75 · · · Pmax > TH1 (12)

When Pmax reached a certain value of TH1, it reduced
the distribution height of the curve to realize the dynamic
refreshment (see Formula 12). In our system, TH1 was set as 0.8.

Optimization
When the signal was disturbed by movement and respiration,
the correlation between the fundamental frequency and the
harmonic was not obvious. In order to overcome this problem,
whole frequencies were first found in the spectrum, and then
the statistical value HRs were combined to find the best base
frequency and harmonics.

Based on all the peaks of the spectrum(x1, x2, . . . , xn), the
frequency of 0.666–9Hz was divided into three categories.
According to the relationship between the base frequencies and
harmonics where M1, M2, and M3 represent three intervals
of 0.666–3Hz, 1.332–6Hz, and 1.998–9Hz, respectively. A
sequence of (x1, x2, . . . , xk) can be extracted under the limit
condition of three-time frequency (in Formula 13), where the
MM1, MM2, and MM3 have K sequences which respectively
contain sets of the fundamental frequency, second harmonics,
and third harmonics. The statistical heart rate Ha was considered
as a reference for differences between HRf (final heart rate) and
HRs. Since the sudden change was no more than 100ms during

the period of heart rates, we set τ <100ms (25) to prevent
abnormal errors.

{

HRf = 60 � fr1
∣

∣HRf −HRs
∣

∣ < 100ms
HRf = HRf otherwise

(13)

Finally, the best set of frequency points (f r1, fr2, fr3) was
found from k sequences to calculate the final heart rates HRf
(Formula 13).

Experimental Design
In order to evaluate the method for improving heart rate and
respiration rate estimation, some experiments were designed by
integrating an optical fiber sensor into a mattress under a variety
of conditions. The experiments were conducted in accordance
with the principles embodied in the Declaration of Helsinki and
in accordance with local ethical requirements.

Participants
A total of 26 male and 14 female healthy volunteers aged
between 20 and 60 years old who weighed between 40 and 80 kg
participated in the experiment.

The first part of the test was to observe the effects of a single
condition with other specific conditions under control.

Procedure
(A) Firstly, for individual subjects, we calculated the voltage
amplitude of the subject while they lay on the mattress. Next,
the BCG waveforms were affected by a variety of conditions. The
interference was more pronounced because the vibrations of the
heart beats were weaker than thoracic movements of breathing.
Then the algorithm of extracting heart rates were mainly verified,
and ECG was used for comparison. (B) Heart rates were
compared with each other under different breathing conditions,
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such as apnea (simulate breath holding state), normal breathing,
and slow breathing conditions. (C) Then the performance of the
optical fiber mattress in different moving states (e.g., slight and
large moves) was tested. (D) Experiments verified that the system
can measure heart rate in different posture states.

The second part of the test was designed to evaluate the
performance of the developed system in practical environments.

Procedure
(E) In particular, there are many things that we could not predict
at night, for example, wide-range changes of heart and respiration
rates. In order to validate whether the system can keep up
with the changes of heart and respiration rates, a 5-h nightly
experiment was conducted in comparison to commercial polar
beats of H10 medical equipment and electrocardiogram-derived
respiratorymeasurements. (F) The test was applied to verify heart
rates at different intensities by exercises and respiration rates
using controlling breath stages. These results were compared
with the Philips sure-signs VM6 Medical Monitor at the Naval
General Hospital and Tiantan Hospital (Beijing, China).

RESULTS AND DISCUSSION

Verification of Individual Differences
The participants made contact with the fiber mattress in three
different postures, and their signal amplitudes were stored [unit:
voltage (V)]. The experimental results showed that original
signals were in the range of 1–2 v due to individual differences

(see Table 1). Therefore, the system can be adapted to the
subject’s weight in the range of 40–80 kg.

Verification of Heart Rates Under Different
Breathing Conditions
The following three kinds of states were measured. It is shown
in Figure 11 that the averaged error of measuring heart rates
in apnea (breath holding) was 1.09 bpm, and most of the
deviations were within 2 bpm. At the same time, the mean error
of normal breath was 1.44 bpm with most of the deviations
within 2.5 bpm. Under the condition of slow breathing, the
mean error was 1.78 bpm. As a result, the measured heart rates
under normal respirations and apnea were more consistent with
the standard values, while slow breathing inevitably increased
thoracic amplitudes, which affected the calculation of heart rates
with larger mean errors.

TABLE 1 | Individual differences.

Range of weight (kg) Back (V) Left (V) Right (V)

40–50 kg 1.76–1.81 1.75–1.76 1.66–1.70

50–60 kg 1.56–1.58 1.59–1.60 1.1–1.2

60–70 kg 1.43–1.45 V 1.36–1.39 1.19–1.2

70–80 kg 1.77–1.83 V 1.05–1.06 1.65–1.70

FIGURE 11 | Different breathing states for apnea (breath holding), normal respiration, and slow respiration.
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FIGURE 12 | The four postures of the back (A) (near the chest), left (B), right (C), and sitting (D) (near the hips).
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FIGURE 13 | The deviation under four postures.

TABLE 2 | Paired sample test between two postures.

Mean value Variance Significance (P)

Pail test Back-left −0.34464 1.26890 0.1104

Pail test Back-right 0.36291 1.2637 0.102

Pail test Back-sit* 0.54228 1.20925 0.0265

Pail test Left-right* 0.70755 1.09075 0.004

Pail test Left-sit* 0.88692 1.14747 0.001

Pail test Right-sit 0.17937 0.84361 0.171

The meaning of the symbol * is that the postures of back-sit, left-right, and left-sit were

significantly different with P < 0.05.

Measurement Errors Under Different
Postures
The four postures of the back (near the chest), left, right,
and sitting (near the hips) (see Figure 12) were used to judge
the range of errors under different postures. The results in
the box diagram show that the states of right and sitting
(near the hips) had better results, and the overall mean
errors were within a measurable range (Figure 13). In order
to assess statistical similarities, the paired sample test was
conducted, of which Table 2 shows that the postures of back-
sit, left-right, and left-sit were significantly different with
P < 0.05.

Verification of Physical Movements
Disturbed environments including small movements (such as
movements of arms to see a mobile phone) and large movements
(such as a big laugh) were simulated. The results are shown
in Figure 14 where the abscissa represents updates of 10 heart

rates in the moving state, and the ordinate represents deviations
of heart rates between the system developed in this study and
the standard ECG device. As can be seen from the figure,
the algorithm of calculating the signal-to-noise ratio of the
spectrum can determine the quality of the waveform. Under
large movements, our system maintained the original values at
low values of signal-to-noise ratios. However, the standard ECG
had little impact, and large movements could affect heart rates.
Therefore, the comparison between the two devices indicates a
large deviation.

Trend of the Heart Rate and Respiration
Rate Changes Overnight
The trend of the heart rate is shown in Figure 15. There was a
zero value around 01:26:22, which may result from the absence
of the subject in bed. It has been observed that the trend of
the two signals was highly consistent with each other, and there
were some sudden changes in the polar device indicating large
movements due to the high heart beats related to movements.
In particular, signals were not calculated in this case in our
system. The respiration rates were measured synchronously in
one night by ECG-derived respiratory (EDR) measurements and
our system. The result in Figure 16 showed that the trend of
respiration rates had good correspondence.

Validation of the Clinical Test
The experiment was conducted in which the experimenter lay
flat under resting conditions, simulating the human body as
much as possible during sleep. System in the Navy General
Hospital, Temple of Heaven medical. The heart and respiration
rates were recorded for comparison with the Philips sure-signs
VM6 medical monitor (USA) in several hospitals(Naval General
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FIGURE 14 | The deviation under physical movement.

FIGURE 15 | Represents the heart rate measurement of our system in one night.
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FIGURE 16 | Represents the respiration rate measurement of our system in one night.

FIGURE 17 | Bland–Altman plot of heart rate estimation.

Hospital and Temple of Heaven Hospital, Beijing, China). More
specifically, the tests of heart rates were recorded with 215 groups
of data measured for different individuals, which were analyzed

and evaluated using the Bland-Altman plot (Figure 17). The
results showed that the mean error in the range of a 40 to 145
heart rate within (±1.96 SD) was −0.26 ± 2.80 bpm, tests of the
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FIGURE 18 | Bland–Altman plot of respiration rate.

respiration rates were recorded by 167 groups of datameasured at
different intensities. The Bland-Altman plot (Figure 18) was used
to analyze and evaluate the experimental results, which showed
an average error of 0.41 ±1.49 bpm in the 6–40 respiration
rates range.

Discussion
It is shown that the method of adaptive regulations has good
wide applicability for individuals of different weight. In the
range of 40–80 kg, the output signal is limited to 1–2V by
adaptive adjustment. If the adaptive method is not used, the
signal collected by the system will be too small to handle
because the weight is too small, and will saturate because
the weight is too much. Applying this method, a mattress
embedded with an optical fiber can be used in individuals of
different weights and different ages, so that the equipment has
universal applicability.

For different postures, the measure errors had different
situations. The states of right and sitting (near the hips) had better
results, and the overall mean errors were within a measurable
range. This indicates that the states of right and sitting are
the best conditions for signal detection. This can guide other
similar BCG signal acquisition equipment to obtain optimal
detection conditions.

Under large movements, the signals collected by our system
had a very low signal-to-noise ratio which was not as good
as standard ECG equipment. Although the BCG equipment
is not a substitute for the ECG equipment, it achieves most

of the performance of the ECG equipment under certain
conditions. However, in certain application fields, such as
a strong electromagnetic interference environment and sleep
state, the BCG equipment has a better application than ECG
equipment. This later experimental verification also proves that
BCG equipment has the same excellent detection performance as
ECG equipment under sleep conditions and clinical tests.

CONCLUSIONS

In this paper, a method of accurately estimating heart and
respiration rates was designed under different actual conditions
by the integration of an optical fiber sensor into a mattress. In
this method, the adaptive feedback was provided to eliminate
individual differences dynamically by automatically adjusting
the driving voltage of the transmitter driving circuit and
the magnification of the amplification circuit. Meanwhile, the
statistical classification method based on spectral transformation
was proposed in the detection of the perturbation state to
find the fundamental and harmonic frequencies. Experiments
were carried out in different individuals who had different
breathing habits and used different postures. These experiments
conclude the following results: (1) The algorithm can be
used to detect the heart rate under weak perturbation states;
(2) under different breathing patterns, the algorithm led to
fluctuations which was within a suitable range; (3) the system
can realize adaptive adjustments facing individual differences;
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(4) a large number of clinical trials showed that there was
a high correlation between this equipment and the standard
devices; and (5) this system could simultaneously extract
the two physiological parameters (the heart rates and the
respiration rates) by only using a single signal source. It is
shown that the developed system using adaptive regulations
and statistical classifications spectrum analysis had a good
performance and it could easily be used under complex
environments. Therefore, it can be concluded that this system
in the paper has a broad application prospect as a non-contact
sleeping mattress system in the field of healthcare (26–30).
However, the measurement was not suitable for subjects who
make large body movements and the experiments only tested
healthy subjects. Therefore, future efforts will focus on (1) the
extractions of heart rates with full resolutions under motion
disturbances and (2) measuring various patients to establish
a predictive relationship between measurement results and
disease stages.
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