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Abstract

Purpose

Diagnosis and resection of indeterminate pulmonary nodules (IPNs) is a growing challenge

with increased utilization of chest computed tomography. Photoacoustic (PA) -guided surgi-

cal resection with local injection of indocyanine green (ICG) may have utility for IPNs that

are suspicious for lung cancer. This preclinical study explores the potential of PA imaging

(PAI) to detect ICG-labeled tumors.

Materials and methods

ICG uptake by H460 lung cancer cells was evaluated in vitro. A phantom study was per-

formed to analyze PA signal intensity according to ICG concentration and tissue thickness/

depth using chicken breast. PA signals were measured up to 48 hours after injection of ICG

(mixed with 5% agar) into healthy subcutaneous tissue, subcutaneous H460 tumors and

right healthy lung in nude mice.

Results

Intracellular ICG fluorescence was detected in H460 cells co-incubated with ICG in vitro.

The concentration dependence of the PA signal was logarithmic, and PA signal decline

was exponential with increasing tissue depth. The PA signal of 2 mg/mL ICG was still

detectable at a depth of 22 mm in chicken breast. The PA signal from ICG mixed with

agar was detectable 48 hours post injection into subcutaneous tissue and subcutaneous

H460 tumors in nude mice. Similar features of PA signals from ICG-agar in mice lung

were obtained.
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Conclusion

The results from this preclinical study suggests that PAI of injected ICG-agar may be benefi-

cial for identifying deeply located tumors. These features may be valuable for IPNs.

Introduction

With continuing improvements of imaging modalities and the increased application of low-

dose computed tomography (CT) for lung cancer screening, more pathology with uncertain

significance is detected in the lung parenchyma [1]. Indeterminate pulmonary nodules (IPNs)

raise suspicion for lung cancer and should sometimes be surgically resected for diagnosis and

treatment as CT-guided fine needle aspiration, or fluoroscopy-guided transbronchial biopsy

can occasionally be inconclusive [2,3] with increased complication rates [4]. Although video-

assisted thoracic surgery (VATS) is known to be ideal for IPN resection [5], identifying IPNs

during VATS is somewhat challenging due to limited tactile perception, underscoring the

need for preoperative localization [6]. New techniques for preoperative assessments have been

introduced to improve success rates of planned resection and prevent unnecessary thoracot-

omy [7,8]. Fluorescence-guided lung resection has improved with the injection of agents such

as indocyanine green (ICG) under preoperative guidance with navigation bronchoscopy

[9,10], but it is hampered by limited penetration depth [11,12] and dispersion of injected con-

trast agents [13,14].

Photoacoustic imaging (PAI) is based on the photoacoustic (PA) effect, in which a laser is

absorbed by endogenous or exogenous absorbers and is subsequently converted into heat,

leading to thermoelastic expansion and thus generates acoustic waves which are detectable by

a conventional ultrasound (US) transducer [15]. This enables deep tissue imaging while main-

taining optical absorption contrast [16]. PAI can penetrate as deeply as 7 cm in tissue [17],

which is sufficient for many clinical applications such as breast imaging or sentinel lymph

node detection [18].

Agar has been used to localize IPNs either on its own [19] or mixed with dye such as methy-

lene blue [20]. Although liquid agar can dissolve various dye or contrast agents, it rapidly solid-

ifies upon local tissue injection.

In this preclinical study, we investigated the possibility of PA-guided surgery with local

injection of ICG mixed with agar as a fiducial marker for the detection of IPNs.

Materials and methods

In vitro study

The human NSCLC cell line NCI-H460 (large cell carcinoma) was purchased from the Ameri-

can Type Culture Collection (Rockville, MD, USA). Cells were cultured and maintained as

previously described by our laboratory [21]. H460 cells were cultured in humidified incubators

at 37˚C and 5% CO2. Park Memorial Institute 1640 medium (Life Technologies Inc, Carlsbad,

CA) was used. The media were also supplemented with 10% heat-inactivated fetal bovine

serum (FBS), 50 U/mL penicillin, and 50 mg/mL streptomycin (Pen Strep, Life Technologies

Inc). The cultured cells in one dish (BD Biosciences, Franklin Lakes, NJ) were incubated with

two drops of NucBlue1LiveReadyProbes (NucBlueTM, Thermo Fisher Scientific, Waltham,

MA) and ICG (IC green1, Akorn, Lake Forest, IL) of 3.2 x 10−9 M/mL of medium for 30 min-

utes at 37˚C under humidified air with 5% CO2. The cells in the other dish were incubated
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with NucBlue alone. The incubated cells were washed three times with phosphate-buffered

saline to remove both free ICG and NucBlue. The cells were then retrieved by 10-minute expo-

sure to 0.25% trypsin-ethylenediaminetetraacetic acid (Life Technologies Inc) to make cell sus-

pensions. 100μl of the cell suspensions into a cuvette and centrifuged at 800 rpm for 3 minutes

using Cytospin 3 (ShadonTM) to make cytologic slides. Those fluorescently stained cytologic

slides were examined under Yokogawa spinning disk confocal microscopy (Carl Zeiss, Ober-

kochen, Germany). A DAPI specific laser (510–540 nm) was used to visualize nuclei stained

with NucBlue, and an infrared (IR) wavelength laser (710–785 nm) was used to assess the pres-

ence of possible endogenous absorbers in H460 cells responding to near IR (NIR) light.

Optical properties of ICG

The absorption spectra of ICG were measured using Cary 300 Bio UV-Visible Spectrophotom-

eter (Agilent Technologies, Santa Clara, CA). After ICG powder was dissolved in distilled

water, samples were diluted with distilled water to prepare six different ICG concentrations

from 0.20 to 1.20 ug/mL. The values of attenuation coefficient for each concentration of ICG

were obtained at 1-nm intervals from 600 to 900 nm. Bovine serum albumin (BSA, Sigma-

Aldrich, St. Louis, MO) and purified agar powder (Sigma-Aldrich) were used as solutes to

observe the changes in the ICG absorption spectrum according to solute type.

Phantom study

Multiple blood vessel mimicking polymeric tubes were installed into Vevo1PHANTOM

(Visualsonics, Fujifilm, Tokyo, Japan). ICG solutions mixed with distilled water and 20 mg/

mL BSA were diluted to obtain eight different concentrations ranging from 0.125 to 5.0 mg/

mL. These solutions were injected into the blood vessel mimicking tubes that were subjected

to PAI in combination with conventional US (LZ-250, 20-MHz linear array transducer).

Chicken breast muscle (6-mm-thick) which was purchased from grocery market was then

placed over the tubes, the PA signal from ICG in the tubes was acquired in the range from 680

to 970 nm using a Vevo1LAZR system (Visualsonics, Fujifilm). To determine the maximum

depth of signal penetration, 2.0 mg/mL of ICG in 50-uL tubes was placed at different depths.

ranging from 0 to 22 mm deep)

In vivo study

All animal experiments were approved by and conducted in accordance with the Toronto

General Animal Care Committee under Animal Use Protocol 5908.01. All surgery or proce-

dure was performed under isoflurane anesthesia, and all efforts were made to minimize suffer-

ing. We inoculated a mixture of 100 ul of MatrigelTM and H460 cells (1x106 cells/mouse) in

the subcutaneous right flank tissue of nude female athymic mice (n = 3, Ncr-nu age 6–8 weeks;

Taconic Farms Inc, Hudson, NY). Mice were monitored once a day by veterinary technicians

using body conditioning scoring. Tumor formation was assessed daily, and tumor size was

measured using an electronic caliper until the maximum tumor diameter reached 15 mm.

Purified powdered agar was mixed with distilled water at a concentration of 5%. The agar pow-

der was dissolved at 90˚C using a microwave. Liquid agar was kept warm and transferred into

a tube that was placed in hot water (>50˚C) so that the agar would remain in its liquid form

until injection. A 200 uL mixture of 2.0 mg/mL ICG and liquid agar was injected into healthy

subcutaneous tissue in the left flank in 3 mice. Another 200 uL mixture of 2.0 mg/mL ICG and

liquid agar was injected deep into subcutaneous tumor in the right flank in 3 mice. PA signals

were measured up to 48 h after injecting the ICG-agar mixture. In order to identify the charac-

teristics of ICG-agar mixture in lung tissue, 100 ul mixture of 2.0mg/mL ICG-agar was injected
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into right lung of nude mice (n = 2) under ultrasound guidance. 8 mice in total were used in

this study and cage enrichment was provided by group housing, nestlets and PVC tubing for

all mice. After all experiments, mice were euthanized with CO2.

Histologic assessment

After mice were euthanized, the tumors and surrounding subcutaneous tissue were extracted.

The tissue samples were fixed with formalin and stained with hematoxylin and eosin (H&E)

for observation under bright-field microscopy to assess for histologic changes following ICG-

agar mixture injection.

Statistics

All graphs were plotted using R statistics (version 3.4.1).

Results

In vitro study

In both groups (NucBlue vs NucBlue + ICG), nuclei stained with NucBlue were detected

under the DAPI wavelength of confocal microscopy. No signal was detected in H460 cells

without ICG incubation under the IR wavelength while ICG uptake in the cell membrane or

cytoplasm were detected in ICG incubated H460 cells under the IR wavelength (Fig 1).

Absorption spectrum of ICG

ICG with a concentration of 0.2 ug/mL to 1.0 ug/mL dissolved in distilled water showed peak

absorption at 780 nm (S1 Fig). The concentration dependence of ICG absorption was linear,

expressed by the equation y = 0.402x + 0.045 (R2 = 0.985), where y represents the ICG absorp-

tion measured as attenuation coefficient and x represents the concentration of ICG in ug/mL

(S2 Fig). The spectrum of ICG varied depending on the kinds of solute. ICG dissolved in dis-

tilled water showed peak absorption at 780 nm, while ICG mixed with BSA or agar showed

peak absorption at 800 or 820 nm, respectively. Interestingly, unlike other substances, ICG

mixed with agar showed a second peak at 880 nm (S3 Fig).

Phantom study

The PA signal from each tube is displayed in red with the corresponding US signal in Fig 2A.

The spectra of PA signal of ICG mixed with BSA, acquired in the range of 680 to 970 nm, are

illustrated in Fig 2B. Although there was a slight ICG concentration dependent difference in

the spectra of PA signal, two different peak signal intensities were observed at around 700 and

800 nm. The average PA intensity measured at 800 nm was calculated in selected regions of

interest and then plotted against the ICG concentration in mg/mL (Fig 2C). The PA signal

intensity of ICG was logarithmically dependent on the concentration and plateaued at 2.0 mg/

mL. The intensities of the PA signal for 2.0 mg/mL ICG in chicken breast muscle are shown in

Fig 2D. We observed an exponential decline in the PA signal intensity with increasing muscle

depth (d, mm). The intensity of the PA signal measured at a thickness of 22 mm was 40 times

weaker than the signal measured at 3 mm, but it could still be visually confirmed on the PA

image and corresponding US image (Fig 3). The PA signal from ICG mixed with agar was also

measured. Agar itself has no meaningful PA signal, and ICG mixed with agar showed a second

peak of PA intensity at ~860 nm (S4 Fig).
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In vivo study

ICG-agar injected into healthy subcutaneous tissues in mice maintained its shape on US

even 24h and 48 h post injection (Fig 4A–4C). Conversely, the PA signal pattern from

injected ICG-agar changed over time. The PA spectrogram taken immediately following

injection showed strong signal at 800 and 900 nm (Fig 4A), similar to the pattern we

observed in the phantoms using the vessel mimicking tubes. At 24 h after injection, the PA

signal at 800 nm gradually weakened (Fig 4B), leaving only a 900 nm peak at 48 h (Fig 4C).

In addition, the strong signal at 900 nm on the PA image from ICG-agar injected deep into

H460 tumors in mice was visible at 48 h, even if no clear lesion was observed with US (Fig

4D). PA spectrogram obtained 48 h after injection into mice lung showed similar pattern

with that of subcutaneous model which has a 900nm peak (Fig 5A). Even if PA signals from

blood (dark orange), which contains oxy or de-oxyhemoglobin, was detected in the layer of

chest wall muscle, PA signal from ICG-agar (green) in right lung of mice was clearly seen

on transverse overlay image (Fig 5B) and 3D rendered image (Fig 5C).

Histologic assessment

The boundary between the injected ICG-agar and H460 tumor was clearly visible in resected

specimens (Fig 6A), and these delineations correlated well with PA images (Fig 6B) even

Fig 1. The images of H460 cells without ICG (A-C) and with ICG incubation (D-F) using confocal microscopy.

https://doi.org/10.1371/journal.pone.0231488.g001
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though the boundary between tumor and ICG-agar was not clear on US (Fig 6C). There was

none or little ICG-agar remaining in H&E-stained tissue after fixation with formalin, but the

boundary of the tumor was clearly observed, and normal morphology was maintained in the

surrounding healthy muscle tissue (Fig 6D and 6E).

Discussion

With the growing application of low-dose chest CT for lung cancer screening and regular

check-ups [1,22], the detection rate of small IPNs has gradually increased. Localization during

Fig 2. A. US and PA images from ICG at various concentrations. B. PA spectrum at various concentrations. C. The graph of PA signal intensity depending on ICG

concentration. D. Depth dependence PA signal from ICG in chicken breast muscle phantom.

https://doi.org/10.1371/journal.pone.0231488.g002
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VATS resection is very difficult for non-visible nodules or non-palpable, which prolongs oper-

ation time. Preoperative localization techniques have been introduced to improve the success

rates of planned resection and prevent unnecessary thoracotomy [7,8].

Among various localization methods, fluorescence-guided lung resection has improved

with the injection of fluorescent agents, such as ICG under guidance with navigation bron-

choscopy [9,10]. This method has advantages in reducing potential complications such as

symptomatic pneumothorax or hemothorax and avoiding radiation exposure during CT-

guided transthoracic localization [23,24]. However, limitations include limited penetration

depth and dispersion of injected contrast agents.

Due to the scattering and absorbing nature of biological tissue, optical fluence decays rap-

idly with increased depth [16]. As a result, the amount of light reaching the region of interest

located further away from the laser source may be insufficient to detect deeply located tumors.

PAI is a nascent imaging technology based on the PA effect that was discovered by Alexander

Graham Bell in 1880 [17]. This effect is due to the formation of sound waves following light

absorption in an endogenous (e.g., melanin or hemoglobin) or exogenous (e.g., ICG or nano-

particles) absorber. The generated US wave can be detected with a conventional US transducer

that enables deep tissue imaging while maintaining optical absorption contrast. This approach

enables strong optical contrast in optically scattered biological tissue at depths <1–5 cm

depending on the laser wavelength [25], optical properties of absorbers [18] and characteristics

of the acoustic transducers [26].

Given IPNs deep location at 2–3 cm from visceral pleura, we employed an NIR wavelength

laser for improved depth penetration. Besides melanoma, most cancer cells have few or no

endogenous absorbers that can absorb the NIR wavelength [27]. This was confirmed by our

confocal experiments using H460 human lung cancer cells. However, ICG incubated with

H460 cells was clearly detectable with the NIR wavelength and confirmed the possibility of

using ICG as an exogenous PA contrast agent [28].

Because ICG itself has a relatively low quantum yield (0.027, referring to fluorescence emis-

sion) [28], it has been adopted for cancer research studies using PAI to identify sentinel lymph

nodes. However, the hydrophobicity of ICG can result in substantial concentration and envi-

ronment-dependent changes in optical properties, as well as photo-instability. ICG-encapsu-

lated nanoparticles have been explored as an option to overcome these limitations. However,

one report stated that that PA signal from ICG liposome was clearly resolved to a depth of 10

mm using chicken breast muscle [29], which is not appropriate for IPN localization. Our

phantom study demonstrated that the PA signal increased logarithmically without a

Fig 3. US and PA image measured at 22mm depth from 2.0mg/ml ICG.

https://doi.org/10.1371/journal.pone.0231488.g003
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quenching effect, which decreases the fluorescence intensity at higher ICG concentrations [9],

up to 5 mg/mL. Even if an exponential decline of the PA signal intensity at a concentration of

2.0 mg/mL ICG was observed at greater depths of chicken breast muscle, the signal intensity at

a depth of 22 mm could still be visible via PAI. This suggests that PAI using a high concentra-

tion of ICG would be appropriate for localizing deep IPNs.

Agar is known to retain its shape in the lung, with or without contrast agents [19,20]. We

found that agar mixed with ICG maintained its shape on US images over 48 h after injection,

but the PA spectrogram of injected ICG-agar was different than that of ICG mixed with BSA.

This phenomenon seems to be related to the temperature dependent optical property of ICG.

Mauerer et al. [30] reported temperature dependent J-aggregation at high concentrations of

Fig 4. US and PA images and corresponding PA spectrogram from injected ICG-agar into healthy subcutaneous tissue at 0hr (A), 24hr (B), and 48hr (C) Fig 4D US and

PA image and spectrogram obtained from ICG agar injected deep to subcutaneous tissue H460 tumor (48hr).

https://doi.org/10.1371/journal.pone.0231488.g004
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ICG, resulting in the absorption peak at 893 nm. ICG-agar, which was mixed in agar solution

kept at 50ºC or higher just before injection, might cause a change of absorption spectrum. Fur-

thermore, an altered pattern in the ICG-agar PA spectrogram was observed over time not only

subcutaneous tissue but lung tissue in mice. We propose that the PA signal from J-aggregated

ICG bound with agar might only persist for 48 h after injection, although the effect of PA sig-

nal from free ICG, which would be drained into the lymphatic system over time, was strong

immediately post ICG-agar injection.

One of the desired characteristics of liquid fiducial markers is to have none or a limited

effect on the tumor and surrounding tissues. Agar does not change the histologic morphology

of lung tumors and surrounding tissues, either by itself [19] or after being mixed with methy-

lene blue [20]. Although ICG can accumulate by passive tumor cell-targeting or the inherent

ability of ICG to bind cell membranes, it does not affect the overall morphology or pathologic

diagnosis [10,12]. Resected specimens in this study also had clear tumor margins from injected

ICG-agar, and this correlated with the PA images despite the boundary being unclear on con-

ventional US. H&E staining after fixation with formalin, which dissolved ICG-agar, did not

reveal morphological changes at the tumor margin or in the surrounding tissue.

There are some limitations of this study. Although this study has been comprehensively

covered in vitro, phantom and in vivo experiments using subcutaneous mice and lung mice

model, but e did not examine larger animals. Further studies are therefore necessary to con-

firm the possibility of PAI for IPN localization using rabbits or pigs. Unlike other studies that

reported a maximum penetration depth of 7 cm [17], our maximum penetration depth was

shallow at 22 mm, despite the use of high ICG concentration. This is likely due to the LZ 250

(20-MHz linear array transducer) used in this study that has an optimum target depth of 10–

15 mm, which is well suited for preclinical applications [26]. Future investigations should use a

Fig 5. A. PA spectrogram obtained from ICG-agar 48hr after injection in mice lung. B. Transverse overlay image of mice lung with injected ICG-agar. C. 3D rendered

image of mice lung with injected ICG-agar.

https://doi.org/10.1371/journal.pone.0231488.g005
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low-frequency transducer to identify lesions that are�3 cm deep. In addition, the PA spec-

trum of ICG-agar changed over time, even if the spectral properties remained stable 48 h after

injection. Further studies using different kinds of liquid fiducial markers, such as lipiodol or

PalpMarkTM for example, should be performed to minimize PA spectral changes over time.

Conclusions

This preclinical study suggests that PAI of injected ICG-agar may be useful for localizing

deeply located tumors. This could be valuable for IPNs. ICG-agar maintained its shape up to

48 h post tissue injection without disrupting the histology of the tumor or surrounding tissue.

The PA properties of ICG changed over time but remained detectable on PAI. These results

should be validated with ICG-agar injection into large animal models such as rabbit or pig.

Supporting information

S1 Fig. The absorption spectrum of ICG dissolved in distilled water according to concen-

tration change.

(TIF)

Fig 6. Longitudinal cross section of subcutaneous tumor and ICG-agar after 48hr after injection. A: US image, B: US and PA overlay image, C: Resected specimens,

D, E:H&E stained slide.

https://doi.org/10.1371/journal.pone.0231488.g006
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S2 Fig. Calibration curve for ICG in distilled water, absorbance measured at 780nm.

(TIF)

S3 Fig. ICG absorbance in distilled water (blue, dashed line), bovine serum albumin (orange,

solid line) and agar (green, dotted line).

(TIF)

S4 Fig. The PA spectrogram (left), US image (right upper) and PA image (right lower).

Red line shows PA spectral change of ICG agar and green line shows that of agar itself in the

right image.

(TIF)

S1 Data set.

(ZIP)
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