
pharmaceuticals

Article

Population Pharmacokinetic Method to Predict Within-Subject
Variability Using Single-Period Clinical Data

Won-ho Kang 1,† , Jae-yeon Lee 1,2,† , Jung-woo Chae 1 , Kyeong-Ryoon Lee 3 , In-hwan Baek 4 ,
Min-Soo Kim 5, Hyun-moon Back 6, Sangkeun Jung 7, Craig Shaffer 8, Rada Savic 8,* and Hwi-yeol Yun 1,*

����������
�������

Citation: Kang, W.-h.; Lee, J.-y.;

Chae, J.-w.; Lee, K.-R.; Baek, I.-h.;

Kim, M.-S.; Back, H.-m.; Jung, S.;

Shaffer, C.; Savic, R.; et al. Population

Pharmacokinetic Method to Predict

Within-Subject Variability Using

Single-Period Clinical Data.

Pharmaceuticals 2021, 14, 114.

https://doi.org/10.3390/ph14020114

Academic Editor: Félix Carvalho

Received: 11 January 2021

Accepted: 29 January 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Pharmacy, Chungnam National University, Deajeon 34134, Korea; fjdwh01@gmail.com (W.-h.K.);
tianods89@gmail.com (J.-y.L.); jwchae@cnu.ac.kr (J.-w.C.)

2 Division of Convergence Technology New Drug Development Center, Osong Medical Innovation Foundation,
Cheongju 28160, Korea

3 Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology,
Ochang 28116, Korea; kyeongrlee@kribb.re.kr

4 College of Pharmacy, Kyungsung University, Busan 48434, Korea; baek@ks.ac.kr
5 College of Pharmacy, Pusan National University, Busan 46241, Korea; minsookim@pusan.ac.kr
6 Department, Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey,

New Brunswick, NJ 08854, USA; hmback89@gmail.com
7 Department of Computer Science and Engineering, Chungnam National University, Daejeon 34134, Korea;

hugmanskj@gmail.com
8 Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California,

San Francisco, CA 94158, USA; craig.shaffer@ucsf.edu
* Correspondence: rada.savic@ucsf.edu (R.S.); hyyun@cnu.ac.kr (H.-y.Y.); Tel.: +1-415-502-0640 (R.S.);

+82-42-821-5941(H.-y.Y.)
† Those of authors were contributed equally for this work as first author.

Abstract: Sample sizes for single-period clinical trials, including pharmacokinetic studies, are statis-
tically determined by within-subject variability (WSV). However, it is difficult to determine WSV
without replicate-designed clinical trial data, and statisticians typically estimate optimal sample sizes
using total variability, not WSV. We have developed an efficient population-based method to predict
WSV accurately with single-period clinical trial data and demonstrate method performance with
eperisone. We simulated 1000 virtual pharmacokinetic clinical trial datasets based on single-period
and dense sampling studies, with various study sizes and levels of WSV and interindividual vari-
abilities (IIVs). The estimated residual variability (RV) resulting from population pharmacokinetic
methods were compared with WSV values. In addition, 3 × 3 bioequivalence results of eperisone
were used to evaluate method performance with a real clinical dataset. With WSV of 40% or less,
regardless of IIV magnitude, RV was well approximated by WSV for sample sizes greater than
18 subjects. RV was underestimated at WSV of 50% or greater, even with datasets having low IIV and
numerous subjects. Using the eperisone dataset, RV was 44% to 48%, close to the true value of 50%.
In conclusion, the estimated RV accurately predicted WSV in single-period studies, validating this
method for sample size estimation in clinical trials.

Keywords: interindividual variability; residual variability; pharmacokinetics; statistical modeling

1. Introduction

Target sample sizes in clinical trials are calculated based on various components,
including type I error, type II error, significance level, power, and variability. Variability,
especially within-subject variability (WSV), is the most important factor to determine
sample size. Although the other components can be controlled through clinical trial
design, variability is dictated by subject characteristics. The variability from study subjects
can be separated into interindividual variability (IIV) and WSV. However, since at least
two periods of data are necessary to calculate the exact WSV, statisticians may use total

Pharmaceuticals 2021, 14, 114. https://doi.org/10.3390/ph14020114 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-0184-1613
https://orcid.org/0000-0003-4420-0533
https://orcid.org/0000-0001-6026-7063
https://orcid.org/0000-0003-2175-8876
https://orcid.org/0000-0002-9538-0565
https://orcid.org/0000-0001-8793-2449
https://doi.org/10.3390/ph14020114
https://doi.org/10.3390/ph14020114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14020114
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/1424-8247/14/2/114?type=check_update&version=2


Pharmaceuticals 2021, 14, 114 2 of 11

variability, not WSV, when calculating sample sizes. The use of total variability may
overestimate the sample sizes for clinical trials and cause ethical or economic issues due to
inefficient clinical trial design [1–6]. The ethical issues related to determining the number of
subjects are particularly critical. For a long time, a small number of subjects was considered
an unethical approach due to their low scientific value. However, more recently, it has been
reported that an unethical and inadequate number of subjects is being decided on to cover
statistical risk in clinical trials, and an appropriate and ethical approach was suggested,
namely, size of effect (delta, ∆), which is a critical factor determining the number of
subjects [7].

A population-based method is a statistical method using mixed effects to reflect popu-
lation characteristics. At the population level, variability can be expressed as a combination
of fixed and random effects. Fixed effects are represented by structural parameters and
covariate effects, whereas random effects are characterized by variability, such as interindi-
vidual variability (IIV) and residual variability (RV). Population-based methods have been
used to explain pharmacokinetic (PK) studies because they enable the distinction between
variability from within or between subjects [5,6,8]. Nonlinear mixed effect modeling (NON-
MEM) is typically used to analyze fixed and random effects simultaneously in PK results.
In NONMEM, the fixed effects (theta (θ) of NONMEM) can be expressed by a single value
or with equations to define relationships between parameters, such as the definition of
PK parameters alone or relations between covariates and PK parameters. Random effects
represent the distributional variance element of the model. NONMEM random effect
estimates consider IIV (eta (η)) to have a mean of zero and variance of omega squared (ω2),
whereas RV (epsilon (ε)) has a mean of zero and variance of sigma squared (σ2). Theoreti-
cally, RV originates from the difference between the true and observed values that result
from interassay variability, model misspecification, and process noise [8–10]. However,
RV from these sources can be minimized by validation of the bioanalytical method and
quality controls for clinical trials based on guidelines of good clinical practice. Thus, most
RV can be approximated as the within-subject variability (WSV) in well-designed and
controlled clinical trials. Regardless of difficulty for WSV quantitation, high WSV could
generate problems in clinical studies, such as the decision of subject number or difficulty
with consistency for suitable statistical power. Especially in bioequivalence studies, highly
variable drugs that exhibit area under the plasma concentration–time curve (AUCt) and
maximum plasma concentration (Cmax) values with WSV >30% could have difficulty in
deriving equivalence, even though the FDA and EMA have expanded the bioequivalent
limit in their guidelines for bioequivalence studies on highly variable drugs [11–16].

We hypothesize that WSV may be predicted accurately and efficiently using single-
period clinical trial results. The purpose of this study is to explore the performance of a
population-based method to accurately predict WSV with simulated single-period clinical
trials, validate this method by applying it to a measured clinical dataset collected after
administration of eperisone (known as a high WSV drug), and determine whether this
method could be used to improve sample size prediction in clinical trials.

2. Results
2.1. Performance of a Population-Based Method Using a Virtual Single-Period Clinical PK Trial

The first experiment used a simulated dataset generated by R (Text S1: example
of R code for generating simulation dataset), which contained various WSV levels but
unchanged IIV. The estimated RVs closely approximated the true values when WSV varied
from 10% to 40%. At WSV of 50%, the generated RV underestimated the true value
(Figure 1, Table 1). The proportion of predictive success was >90% when WSV was 10% to
30% for ≥12 subjects and when the WSV was 40% for ≥18 subjects (Figure S1). At WSV of
50%, the proportion of predictive success for all numbers of subjects were <66%.
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Figure 1. Residual variability (RV) in the first experiment. Approximation of RV for various levels of within-subject
variability (WSV) and numbers of study subjects using the datasets of the first experiment.

Table 1. Proportion of predictive success for various numbers of study subjects and levels of within-subject variability with
no interindividual variability (first experiment).

WSV (%)
Proportion of Predictive Success (%) * for Each Subject Number

n = 6 n = 12 n = 18 n = 24 n = 30

10 75 91 95 99 99
20 75 91 96 98 99
30 71 90 96 98 99
40 66 84 90 94 96
50 51 53 62 63 66

* Proportion of predictive success, at which estimated sigma (RVs) values are included in the true value, with WSV of ±10%. Abbreviation:
WSV, within-subject variability.

In the second experiment, the proportion of predictive success was >90%, regardless
of IIV value, when WSV varied from 10% to 40% for ≥18 subjects (Table 2, Figure 2 and
Figure S2). The proportion of predictive success was <68% when WSV was 50% at all IIVs,
even with the largest number of study subjects (30 subjects).

The proportion of predictive success was above >90% at WSV from 10% to 40% for
>18 subjects, regardless of IIV level; however, predictive success was low at WSV 50%. In
addition, we explored the covariance effect between IIVs of clearance (CL) and volume
of distribution (Vd) to evaluate the correlation effect between them; however, there were
no significant differences with or without covariance (Table S1, Text S2). As the data
simulations assumed no interaction between IIV, CL, and Vd, the results did not incorporate
covariances into the predictions.
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Figure 2. Residual variability (RV) in the second experiment. Approximation of RV for various levels of within-subject vari-
ability (WSV), interindividual variability (IIV), and numbers of study subjects using the datasets of the second experiment.
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Table 2. Proportion of predictive success for various numbers of study subjects and levels of within-subject variability and
interindividual variability (second experiment).

Setting Condition Proportion of Predictive Success (%)* for Each Subject Number

WSV (%) IIV (%) n = 6 n = 12 n = 18 n = 24 n = 30

10

10 72 85 94 97 99
20 68 87 94 98 99
30 73 86 94 96 97
40 69 87 90 92 93
50 70 82 88 88 85

20

10 70 86 93 96 98
20 74 87 94 97 99
30 71 87 94 96 98
40 70 88 95 95 99
50 72 86 87 97 98

30

10 73 88 93 98 99
20 70 86 92 96 98
30 68 88 92 96 98
40 69 84 94 96 98
50 71 72 91 96 97

40

10 71 82 89 94 98
20 66 83 90 95 96
30 70 84 92 94 96
40 70 87 91 94 97
50 71 85 90 94 97

50

10 50 56 62 62 63
20 54 62 59 66 65
30 55 58 61 64 68
40 56 59 65 65 67
50 54 60 62 66 68

* Proportion of predictive success at which estimated sigma (RVs) values are included in the true value, with WSV ±10%. Abbreviation:
WSV, within-subject variability; IIV, interindividual variability

2.2. Real Case Application

WSV (CVw, coefficient of within-subject variation) for Cmax (maximum drug concen-
tration) of eperisone (dose, 50 mg) was 50.21%, as reported previously [11], suggesting
that eperisone is a highly variable drug. To evaluate the present population-level method
with a clinical dataset, random sampling for the generation of a single-period dataset was
performed. For various numbers of subjects randomly sampled from PK data with a total
of 33 subjects, the RVs ranged from 44% to 48% (Table 3). Therefore, the estimated RVs
were similar to the real WSV despite the use of a small sample size.

Table 3. Residual variability for single-period and measured clinical datasets.

Single Period Dataset * Measured Dataset [11]

No. of Subjects RV (%) CVw for Cmax (%)

6 45

50.21
12 48
18 45
24 44
30 47

* Single-period trial, 33 subjects; no. of subjects sampled randomly. Datasets were made using data for individual pharmacokinetic data
points of the reference drug, as previously published [11]. Abbreviations: Cmax, maximum concentration; CVw, coefficient of within-subject
variation; RV, residual variability.
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3. Discussion

The main objectives of this study were to verify how well population approaches
could estimate RV compared with WSV in a single-period PK clinical trial, which simulated
datasets under various conditions. In general, IIV and RV stand for eta (η) and epsilon (ε)
in population approaches; it can cause a separation of variabilities with random effects.
Basically, unexplained RV can result from experimental error, assay variability, model
misspecification, and process noise. However, well-designed clinical trials, including
PK studies, incorporate bioanalytical method validation; assay variability is a minor
contributor to RV. In addition, clinical studies, including bioequivalence, typically follow
good clinical practices, so other errors (e.g., bioanalytical errors) except WSV are minimized
in RV. Therefore, WSV is the principal component of RV. Hence, WSV can be predicted as
the entire RV in population-based methods; the epsilon (RV) was used to judge how close
the estimated RVs approximated the WSVs.

According to results from datasets consisting of IIV equal to zero, RV estimation was
affected by sample size and magnitude of WSV size. The increase in sample size definitely
tended towards the fact that the population approach was able to predict an RV close to
theoretical WSV size. It was a predictable result since the degree of freedom would be
larger than a low sample size, and variability would be smaller, consequently. In addition,
RV could be well estimated up to around 40% of WSV using population approaches. If
the single-period clinical trial was performed with a sample size of over 18 subjects and
total variability was calculated to be under 40%, population approaches could be closely
predicted for WSV because total variability had to be smaller than WSV. However, the
interesting point was not to reach the 90% proportion of predictive success in all sample
sizes; the profile looked like a saturable curve (Figure S1). That meant that population
approaches were not only poor predictors of WSV, they would also not be improved by
increasing the sample size to over 50% WSV. Therefore, for clinical trial results with over
50% total variability, population approaches can be carefully accessed to predict WSV.

The interaction between IIV and WSV was considered in the prediction of RV. The
magnitude of WSV had a more dominant effect than IIV when predicting RV (Figure S2).
Regardless of the IIV level, the predictive power was sufficient at WSVs of 10% to 40%,
when the sample had >18 subjects. However, predictive power was insufficient for a WSV
of 50%, possibly because the population-based method could not estimate IIV accurately
with large unexplained RV. Similar to the results of 50% WSV without IIV in the first
experiment, the dataset consisting of 50% WSV, with various IIVs, could not predict the RV
as an alternative to WSV using a population-based method; the variability could not be
clearly separated between IIV and WSV in that case.

Typically, the IIV and RV are treated as different parameters in population-based
methods. Therefore, sufficient information for each variability parameter is needed for
accurate predictions of IIV and RV. A sufficient sample size is necessary to accurately define
IIV because IIV originates from interindividual error. In the current study, a sample of 6
subjects was too small to describe IIV because the predictive power was about 70% in all
conditions. In cases where preclinical and clinical studies are performed with 6 subjects in
a single-period study, results may be inaccurate.

Although we evaluated the interaction between IIVs (not IIV and WSV) to determine
the covariance effect between IIV and structural parameters, there were no significant
differences with or without covariance (Table S1). The covariance of IIVs between structural
parameters (CL and V) was not involved in the PK modeling because the covariance was
not reflected when we generated simulated datasets.

In the real case application, with data from 3 × 3 bioequivalence clinical trials (33
subjects), the within-subject coefficient of variance (CVw) for eperisone was AUC 33% and
Cmax 50% [11]. To test the performance of population-based methods for the prediction of
WSV in real clinical trials, the clinical trial dataset was used to perform a random sampling
of 6, 12, 18, 24, and 30 subjects. The observed range of Cmax of RVs from randomly sampled
datasets (44% to 48%) for 6 to 30 subjects was an underestimate; however, the range
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was sufficiently close to the real value of 50%. The difference in AUC (33% vs. 44–48%)
may have been related to the calculation methods of RV. When we obtained RV from the
population-based method, we used the −2-log likelihood to choose the best fit in a range
of plasma concentrations. Since the −2-log likelihood was calculated using the sum of
likelihood based on differences between the prediction and observation of each dependent
variable, it would be more accurate to calculate RV with Cmax than AUC because the method
for AUC is close to integral, not likelihood.

In fact, WSV estimation by population approach could be assessable for all drugs;
however, it would be a more informative method for highly variable drugs (e.g., simvas-
tatin, verapamil, nadolol, and propafenone [17–20]) than the others through the estimation
of reliable WSV. In addition, our approach would be helpful to establish a reasonable and
cost-reducible strategy for clinical or bioequivalence studies. The pros of the method were
the fact what it could not only design clinical study efficiently but could also be expanded
to covariate analysis in population PK analysis. The additional minimization of WSV could
be expected to connect with covariate analysis. Nevertheless, the main cons of the method
were that the clinician’s empirical decision was still required for sample size adjustment
in the case of clinical trials of new drug candidates that do not have any information on
human PK, variability, or covariates.

There may be a possible limitation of this study. The result for the applied example
of our population method was obtained only for one highly variable drug (eperisone).
Therefore, it will be necessary to evaluate the population method approach for other drugs
as a further study. In addition, the researchers have to be aware that our method was
confirmed based on a single-period study, so it needs to be implemented carefully when
WSV estimation over a two-period study is performed.

4. Materials and Methods
4.1. Overall Scheme to Evaluate Performance of the Population-Based Method

To test the theoretical validity of IIV and WSV values, a single-period virtual clinical
PK trial was simulated with various combinations of IIVs and WSVs. The structural
model, explained with clearance (CL) and volume of distribution (Vd) as parameters, was
assumed to be a 1-compartment model, with intravenous administration of the virtual drug.
Simulated datasets were generated using statistical software (R, R Studio, and NONMEM)
for the population-based method to estimate RV (NONMEM sample code provided in
Text S3). For the first experiment, 1000 datasets were simulated using 5 different WSVs
without IIVs. The dataset, consisting of combinations between 5 different IIVs and WSVs,
was created for additional experiments (Figure 3).

The mean population value of CL was set at 10 L/h and Vd at 50 L, and the variance
of structural parameters and plasma concentrations were set based on values of IIV and
RV. The exponential error was used to describe IIV, and the proportional error was used to
describe RV. Both errors were assumed to have a mean equal to zero and standard deviation
equal to the square root mean of the desired value (Text S1 is sample R code; see supplement
material). The chosen values CL and Vd were based on general PK characteristics of drugs
when taken as medicine once or twice daily. CL, Vd and half-life values were assumed by
10 L/h, 50 L, and 3.5 h, respectively. In general, the half-life (2–5 h) could be understood
to be typical of an oral drug taken once or twice a day, and the chosen values were also
confirmed with literature to verify that the values were real [21–25].
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volume of distribution; FOCE+I, first-order conditional estimation with interaction; POP PK, population pharmacokinetics.

4.2. Generating a Simulation Dataset and Performing Population PK Modeling for Scenarios
without Changes in IIV (First Experiment)

In the first experiment, the simulation dataset was generated (R) with intravenous
dosing; dose 100 mg; blood sampling times 0, 0.083, 0.167, 0.333, 0.5, 1, 2, 4, 6, 8, 12, and
24 h; CL 10 L/h (IIV, 0%); volume of distribution (Vd) 50 L (IIV, 0); WSV 10%, 20%, 30%, 40%,
and 50%; 6, 12, 18, 24, and 30 study subjects. As the conditions for 5 different study sizes
were tested for each of the 5 levels of WSV, there were 25 total scenarios, with 1000 datasets
for each scenario (Table 4). Data simulation was conducted (NONMEM) for population PK
modeling using a 1-compartment intravenous model with a proportional error model. The
estimation method was a first-order conditional estimation with an interaction option. The
sigma values resulting from each scenario were collected as estimated RVs.

Table 4. Components of simulation dataset for each experiment.

No. of
Experiment Scenario Contents Setting Value

1st 1
WSV (%) 10 20 30 40 50
IIV (%) 0

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

2nd

1
WSV (%) 10
IIV (%) 10 20 30 40 50

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

2
WSV (%) 20
IIV (%) 10 20 30 40 50

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

3
WSV (%) 30
IIV (%) 10 20 30 40 50

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

4
WSV (%) 40
IIV (%) 10 20 30 40 50

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

5
WSV (%) 50
IIV (%) 10 20 30 40 50

No. of subjects 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30 6→12→18→24→30

Abbreviation: IIV, interindividual variability; WSV, within-subject variability.

4.3. Generating Simulation Datasets and Performing Population PK Modeling for Scenarios with
Differing WSVs and IIVs (Second Experiment)

In the second experiment, the simulation dataset was generated (R) with intravenous
dosing; dose 100 mg; blood sampling times 0, 0.083, 0.167, 0.333, 0.5, 1, 2, 4, 6, 8, 12, and 24 h;
CL 10 L/h (IIV 10%, 20%, 30%, 40%, and 50%); Vd 50 L (IIV 10%, 20%, 30%, 40%, and 50%);
WSV 10%, 20%, 30%, 40%, and 50%; 6, 12, 18, 24, and 30 study subjects. It was assumed
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that the IIVs of CL and Vd changed equally. As 5 levels of IIV were assigned to each level
of WSV and 5 different numbers of subjects were allocated for each of 25 combinations
(5 IIVs × 5 WSVs), the total number of scenarios was 125, and there were 1000 datasets
for each scenario (Table 4). The PK modeling (NONMEM) and method for verifying the
predictive power of PK modeling were identical to those in the first experiment.

4.4. Evaluation of Predictive Power

The RVs estimated (NONMEM) were evaluated at 80% confidence, within ±10%
of the true WSV. The proportion of predictive success was calculated as the number of
acceptable RVs, where it falls in the above criteria, divided by the total number (1000 ea) of
RVs for percent description.

4.5. Application to Clinical Example (Real Case)

Bioequivalence studies for determining WSV were obtained (Korea United Pharmaceu-
tical Co. Ltd., Jeondong, Sejong, Korea). The reference drug was eperisone 50 mg (Murex,
Cho Dang Pharm Co., Ltd., Seoul, Korea), which is a high variability drug according to
various related guidelines and publications [11–15]. The CVw value, corresponding to WSV
of Cmax, was 50.21%, as reported previously [11]. We randomly sampled groups of 6, 12, 18,
24, and 30 study subjects from real clinical data of eperisone and performed PK modeling
using a 1-compartment model. Predictive power was compared with the same method
used to evaluate predictive power for the randomly sampled single-period datasets.

4.6. Softwares

Statistical software (R v. 3.6.1; R Studio v. 1.2.1335; Microsoft Excel 2016) was used to
generate the simulation datasets to describe single-period PK clinical trials and analyze
the results from the population-level method. Additional software was used to determine
the variability terms (IIV and RV) using population-level methods (NONMEM v. 7.4.0;
Pirana v. 2.9.8; PsN v. 4.9.0).

5. Conclusions

In summary, when we conducted population PK modeling with virtual single-period
PK datasets of various scenarios, the estimated RV closely predicted WSV. When the WSV
value was set below 50%, regardless of the magnitude of IIV, RV was approximated by WSV
for 18 or more subjects, with high predictive success (90%). Application of the population
PK method to randomly extracted single-period clinical PK data from a clinical 3 × 3
bioequivalence test confirmed method accuracy. Therefore, population-based methods
may efficiently and accurately predict WSV in single-period clinical trials and improve
sample size estimation.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/2/114/s1. Figure S1: The proportion of predictive success for scenarios of the first experiment.
Figure S2: The proportion of predictive success for scenarios of the second experiment. Table S1:
Tabulated summary for results of the comparison, with and without covariance between omegas.
Text S1: Sample R code for generating simulation dataset. Text S2: C++ and R script codes when
using the mrgsolve R package. Text S3: NONMEM PK model code.
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