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ABSTRACT Introduction: A large body of literature
aims at identifying growth models that fit best to given
mass-at-age data. The von Bertalanffy-Pütter differen-
tial equation is a unifying framework for the study of
growth models.

Problem: The most common growth models used
in poultry science literature fit into this framework,
as these models correspond to different exponent-pairs
(e.g., Brody, Gompertz, logistic, Richards, and von
Bertalanffy models). Here, we search for the optimal
exponent-pairs (a and b) amongst all possible exponent-
pairs and expect a significantly better fit of the growth
curve to concrete mass-at-age data.

Method: Data fitting becomes more difficult, as there
is a large region of nearly optimal exponent-pairs.
We therefore develop a fully automated optimization
method, with computation time of about 1 to 2 wk
per data-set. For the proof of principle, we applied it

to literature data about 217 male meat-type chickens,
Athens Canadian Random Bred, that were reared un-
der controlled conditions and weighed 28 times during
a time span of 170 D.

Results: We compared 2 methods of data fitting, least
squares using the sum of squared errors (SSE), which
is common in literature, and a variant using the sum
of squared log-errors SSElog. For these data, the opti-
mal exponent-pairs were (0.43, 4.06) for SSE = 2,208.6
(31% improvement over literature values for the resid-
ual standard deviation) and (0.89, 0.93) for SSElog =
0.04599. Both optimal exponents were clearly distinct
from the exponent-pairs of the common models in lit-
erature. This finding was reinforced by considering the
region of nearly optimal exponents.

Discussion: We explain, why we recommend using
SSElog for data fitting and we discuss prognosis, where
data from the first 8 wk of growth would not be enough.
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INTRODUCTION

Background

The growth of animals depends on multiple factors,
ranging from food composition to the social rank of the
animals. Mathematical growth models aim at a sim-
plified description in terms of growth curves that fit
well to size-at-age data (Kahm et al., 2010). The use of
such models in avian research was promoted by Ricklefs
(1967) and the most common models used in poultry
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science are the Brody, Gompertz, logistic, Richards, and
von Bertalanffy models (c.f. Gao et al., 2016; Sariyeel
et al., 2017; Gonçalves Gotuzzo et al., 2018; Tompić
et al., 2011). Typical applications for practitioners
(mentioned in the cited literature) include the monitor-
ing of the health status (comparing observed weights
with the growth curve) or the optimization of the
slaughtering age. Further, as the demand for food is
related to size, growth models may also aid in opti-
mizing feeding schemes. Consequently, there is a large
body of literature about this topic (Google Scholar:
6,000+ search results). Also, in wildlife and fisheries
management growth curves had important applications,
informing e.g., size-based regulations for hunting or
fishing (Ogle and Iserman, 2017). The same models
were also used in oncology to model tumor growth
(Wheldon, 1988).

The following differential equation (1) provides a
comprehensive framework for these growth models
(c.f. Kuhi et al., 2010). It was proposed by Pütter
(1920), whereby in the limit case of equal exponents,
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equation (1) is replaced by equation (2).

dm (t)
dt

= p · m(t)a − q · m(t)b (1)

dm (t)
dt

= p · m(t)a − q · ln (m (t)) · m(t)a (2)

These equations describe body mass m(t) as a func-
tion of age t, using 5 model parameters that are to be
determined from data-fitting: The exponent-pair a < b
and the constants p and q are non-negative, and m0 > 0
is an initial value; i.e., m(0) = m0. The typical solutions
are increasing, bounded, and sigmoidal (S-shaped). Ini-
tially the rate of growth increases, until the inflection
point is reached. Subsequently, it decreases to zero until
in the limit the asymptotic mass is reached. However,
for exceptional exponents and parameters, the growth
curves may be non-sigmoidal or unbounded.

Ricklefs (1968) suggested that the parameters of
growth models may have a biological meaning. Thus,
the parameter m0 of equation (1) has the obvious bi-
ological interpretation as hatching mass. (However, in
data fitting m0 is optimized rather than using the hatch-
ing weight.)

Pütter (1920) and von Bertalanffy (1957) provided
biophysical explanations of certain exponent-pairs.
For instance, von Bertalanffy (1957) proposed the
exponent-pair a = 2/3 and b = 1 as universal
mass-growth model for vertebrates. He explained the
exponent a = 2/3 from a surface restriction to oxygen
consumption and the exponent b = 1 from the esti-
mated energy needs for sustenance. West et al. (2001)
contested this choice and suggested a slightly different
exponent pair a = 3/4, b = 1. Other authors proposed
still different exponent-pairs. For instance, Brody’s
model uses the exponent-pairs a = 0 and b = 1. Brody
(1945) proposed it as a model for the final phase of
growth (bounded exponential growth). In fisheries man-
agement, this growth function is a model for length-at-
age; it is referred to as VBGF (von Bertalanffy growth
function). The logistic growth model of Verhulst (1838)
is characterized by the exponent-pair a = 1, b = 2. Early
growth studies for poultry (Grossmann et al., 1985) ap-
plied it. Power-laws between mass and time are special
cases of equation (1) too, if the value of q is set to zero.
In the case of equal exponents, equation (1) is replaced
by equation (2). The model of Gompertz (1832) with
a = b = 1 is a special case, considered e.g., in Aggrey
(2002). While the above ‘named models’ use 3 parame-
ters (p, q, m0), in Richards’ (1959) model a = 1 and the
exponent b > 1 is an additional fourth free parameter.
Similarly, for the generalized von Bertalanffy model,
b = 1 and 0 ≤ a < 1 is a free parameter. The authors
(Renner-Martin et al., 2019) developed an alternative
biological explanation for the exponents, based on a
model by Parks (1982): The first exponent a relates
instantaneous energy intake to body mass and the

difference b – a relates energy consumption to growth
(a larger difference meaning a faster growth for the
same consumption).

Further, the parameters p and q relate to biological
parameters, namely to asymptotic mass mmax, to mass
minc at the inception point, and to the maximal growth
rate. This, in turn, provides for another biological ex-
planation of the exponents: (a/b)1/(b–a) = minc/mmax
(for details: Renner-Martin et al., 2018, 2019).

Problem of the Paper

The most important parameters of the von
Bertalanffy-Pütter growth model are its exponents a
and b. There was a controversy about their ‘true’ val-
ues (Isaac and Carbone, 2010). For example, if a growth
model uses a false exponent-pair, then the relation of
the model parameters to biological factors may be lost.
Therefore, the problem of this paper is the identification
of the best-fitting exponent-pairs, as this task is a pre-
requisite for a meaningful biological analysis of growth
models of the type of equations (1) or (2).

Within the infinite set of all possible exponent-pairs
a < b, the exponent-pairs for the 3-parameter ‘named
models’ are exceptional; they form a finite set. Thus,
contrary to claims in growth literature about the uni-
versality of certain models (von Bertalanffy, 1957; West
et al., 2001), it seems to be unlikely that any of the 3-
parameter ‘named models’ can be supported solely by
biological reasons. Rather, the apparent dominance of
these models in growth model literature seems to come
from convenience, as for the mentioned exponent-pairs
the differential equations (1) and (2) could be solved by
elementary functions. Consequently, data fitting using
these models could be done simply by means of spread-
sheets (Renner-Martin et al., 2016). By contrast, for
general exponent-pairs the solutions of equations (1)
and (2) involve non-elementary functions (Marusic and
Bajzer, 1993; Ohnishi et al., 2014) that are computed
numerically (Burden and Faires, 1993; Leader, 2004).

The inherent restrictions from using simple 3-
parameters growth models (Brody, Gompertz, logistic,
von Bertalanffy, West) were observed already in early
literature, as environmental factors (e.g., dietary and
temperature stresses) may affect the overall shape of
growth, which could not be modeled adequately by
using the 3-parameter models. Consequently, Brisbin
et al. (1987) recommended the use of the 4-parameter
Richards model for poultry and Pauly (1981) proposed
the 4-parameter generalized von Bertalanffy model for
fish. These models could still be described in terms of
elementary functions, but data fitting became more dif-
ficult and literature reported numerical instability (Shi
et al., 2014). However, the exponent-pairs of these mod-
els were still restricted.

In view of this restricted character, the authors con-
jecture that the exponent-pairs that define the model
with the best fit to mass-at-age data of poultry may
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differ significantly from the exponent-pairs used in liter-
ature. This paper explores the conjecture for data about
chicken. It adapts an approach by Renner-Martin et al.
(2018) to identify the optimal parameters up to a given
accuracy and to verify their optimality.

MATERIALS AND METHODS

The paper uses the data from table 1 of Aggrey
(2002). The data were copied into a spreadsheet (MS
Excel) and processed in Mathematica 11.3 of Wolfram
Research. The output of optimization was exported to
a spreadsheet.

The source table recorded (amongst others) the
average mass-at-age and the standard deviation for a
sample of 217 male chickens of the Athens Canadian
Random Bred strain that survived the first 170 D since
hatching. Their mass (in gram) was measured on 28 D
at intervals of 3 to 14 D. The birds were reared under
laboratory conditions using a pre-defined ad libitum
feeding regime. The paper seeks best-fitting models
to these average-weight-at-age data. Alternative ap-
proaches would be the identification of optimal models
for each of the 217 chickens, either using the unpub-
lished original data or using simulated chicken data. In
view of the CPU-time of 1 to 2 wk for each optimiza-
tion, these alternative approaches were not considered.

The authors compared 2 approaches for assessing the
fit of a model to the data. The first approach (method
of least squares) identified model parameters that mini-
mized the sum SSE of squared errors. It is very common
in poultry literature (e.g., Aggrey, 2002) and its implicit
statistical assumption is a normal distribution of mass-
at-age. The second approach assumed a heteroscedastic
distribution of mass-at-age, the lognormal distribution.
This approach is common in fisheries research (Manabe
et al., 2018).

For both approaches, data fitting aimed at iden-
tifying the maximum-likelihood parameters of the
growth models. For the first approach, this was the
standard method of least squares. For the second
approach, the method of least squares was used to fit
the logarithmically transformed growth function u(t)
= ln(m(t)) to the logarithmic transformation of mass
data. As the sample size did not change over time,
there was no need to use weights for the data points.

The search for optimal parameters modified the ap-
proach of Renner-Martin et al. (2018) as follows. Op-
timization aimed at identifying the optimal exponent-
pairs with an accuracy of 0.01. We initially considered
exponent-pairs on a grid (a = m · 0.01, b = a + n ·
0.01, with integers 0 ≤ m ≤ 130 and 1 ≤ n ≤ 300) and
we added grid points (SSE needed larger values of b),
if the optimum was not yet identified. The considered
grid-points are displayed with the results.

The outer loop of optimization ran through a = m ·
0.01. The inner loop, for each a, ran through the val-
ues b = a + n · 0.01 and sought parameters (p, q, m0)
that achieved the best fit of the (log-transformed) so-

lution of equation (1) to the (log-transformed) data,
assuming the grid-point exponent-pair. Thus, using the
abbreviation SSE = sum of squared errors, for the first
approach optimization was reduced to the identification
of the following function on the grid:

SSEopt (a, b) = min
m 0,p,q

(SSE) ,

assuming model (1) with exponents a, b. (3)

Similarly, using SSElog, in equation (3) the SSE be-
tween ln(m(t)) and the log-transformed average weight,
the second approach defined a function SSElogopt(a, b)
on the grid.

For each grid-point (a, b), the optimization of p, q,
and m0 was done using a variant of the method of
simulated annealing (Vidal, 1993), as this made the
optimization process fully automated without stack-
overflows (previous approaches needed human inter-
vention). The authors provide a Mathematica file as
supporting material. The optimization of p, q, m0 for
a grid point of the form (a, a + 0.01) started with
the estimate p = q = 1 and m0 = observed hatching
weight. It was successively improved using 50,000 an-
nealing steps. The annealing-parameters were adjusted
after each 1,000 steps using the hitherto obtained opti-
mization results (adaptive cooling). For the subsequent
grid points in the b-direction, the previous optimiza-
tion results were used as starting values and improved
in 10,000 annealing steps.

This approach allowed to identify miscalculations (if
SSE differed largely for neighboring grid-points). Fur-
ther, the visualization of the near-optimal exponents
allowed to verify the optimal character of the optimal
grid point. If it was on the boundary of the grid, more
grid-points were considered. Thereby, near-optimality
was defined by an SSEopt (or SSElogopt) not exceeding
the least SSEopt (or SSElogopt) by 5% or more.

CPU-time for the computations was 1 to 2 wk, de-
pending on the number of grid-points. Considering
more points of time would only slightly affect CPU-
time and consideration of more chicken would be with-
out effect (as optimization used averages). The output
was exported to a spreadsheet table in the format (a,
b, m0, p, q, SSEopt(a, b)). It is provided as a supporting
material.

RESULTS

Figures 1 and 2 for SSE and SSElog, respectively,
plot the exponent-pairs of the ‘named models’ (blue),
the grid that was searched for the optimal exponent-
pair (yellow), the optimal exponent pair for the con-
sidered data (black), and the nearly optimal exponent-
pairs (red). For each figure, the model defined from the
optimal exponent-pair was distinct from the usual mod-
els considered in poultry science, since none of the 5
exponent-pairs of the 3-parameter ‘named models’ was
nearly optimal (e.g, their SSEopt exceeded the minimal
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Figure 1. Exponent-pairs of the ‘named models’ (blue), the
searched grid (yellow), the nearly optimal exponent-pairs (red), and
the optimal exponent-pair (black), based on SSE.

Figure 2. Exponent-pairs of the ‘named models’ (blue), the
searched grid (yellow), the nearly optimal exponent-pairs (red) and
the optimal exponent-pair (black), based on SSElog.

SSE by more than 5%). Richards’ model (b = 1, a >
b) had no near-optimal exponent-pair, either. However,
for model comparison with SSElog, certain exponent-
pairs of the general Bertalanffy model (b = 1, a < b)
and of the generalized Gompertz model (a = b) were
nearly optimal.

We considered the least squares fit SSE in order to
compare our results with Aggrey (2002). The optimal
exponent-pair was a = 0.34, b = 4.06 with SSEopt =
2,214.799. This translated into a residual standard
deviation RSD = 9.044. In comparison to the best-fit
model of Aggrey (2002), this was a 31% improvement;
Aggrey (2002) achieved the least RSD = 11.43 for
the Gompertz model (a = b = 1). The other optimal
parameters for the current model were m0 = 17.131 g
(compare to the average hatching mass of 37 g), p =
1.991 and q = 6.029 · 10−13. The asymptotic mass for
the best-fitting growth curve was computed as 2,319.7 g
(compare to the maximal observed mass: 2,267.7 g) and
the mass at the inception point was 51.3% of the asymp-
totic mass. The maximal growth rate was 20.3 g/d
(at the inflection point).

Assuming a log-normal distribution, the optimal
exponent-pair was a = 0.89, b = 0.93 with SSEopt =
0.0459878 and the optimal parameters m0 = 32.92 g,
p = 1.0952, and q = 0.799. The computed asymptotic
mass was 2,671.1 g. The inflection point was attained
at day 61; the mass at the inflection point was 33.3% of

Figure 3. Data (blue) and optimal growth curve (black), based on
SSE.

Figure 4. Data (blue) and optimal growth curve (black), based on
SSElog.

the asymptotic mass and the maximal weight gain was
19.9 g/day.

Figures 3 and 4 plot the mass-at-age data of the
chicken and the optimal growth curves with the above
parameters, using SSE and SSElog for comparison. Ex-
cept for the curves for SSElog at the higher masses,
there were barely visible differences between the opti-
mal growth curves and the data. The visible differences
for SSElog at the higher masses occurred for 2 reasons.
First, younger animals were weighed more often (each
third day; later only each second week), whence devi-
ations at smaller weights were penalized more heavily.
Second, under the lognormal distribution assumption
the relative deviations matter and a deviation of a few
percent is easier to discern for higher masses than for
smaller ones.

Figures 5 to 8 exemplify the typical 4 phases of opti-
mization for SSElog and they explain, how the method
helped to verify the optimality of exponent-pairs. For
small values of the exponent a (e.g., a = 0), there
were large fluctuations in the computation of SSElogopt,
whence its value was not accurate. However, SSElogopt
was too large to be a candidate for the global minimum.
This phase was followed by high values of SSElogopt,
whereby the minimum was attained for the maximal
considered values of b (e.g., a = 0.5). However, owing
to the flatness of this curve at b, it was not expected
to find the overall optimal exponent-pairs for larger b.
The third phase (e.g., a = 0.7) was characterized by
the U-shape of SSElogopt as a function of b. Here the
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Figure 5. SSElogopt(a, b) with fixed exponent a as a function of b
for the first phase of optimization.

Figure 6. SSElogopt(a, b) with fixed exponent a as a function of b
for the second phase of optimization.

Figure 7. SSElogopt(a, b) with fixed exponent a as a function of b
for the third phase of optimization.

Figure 8. SSElogopt(a, b) with fixed exponent a as a function of b
for the fourth phase of optimization.

minimum could be clearly discerned. At the final phase
(e.g., a = 1.1), the optimum was achieved at the first
grid point. Thereby, phases 3 and 4 appear to be typical
for this optimization. For our data, the overall optimum
of SSElogopt was achieved in phase 3 and it increased for
larger values of a. If the overall optimum were achieved
in phase 4, then the optimization would have to be re-
peated for equation (2).

DISCUSSION

A biological analysis of growth requires an optimiza-
tion of many potential models for many data about
different species of chicken. For this purpose, the au-
thors developed available method to identify the opti-
mal exponent-pairs. It worked without human interven-
tion and the reliability of the outcome could be judged
from a study of the different phases of optimization.
The application of this optimization method to different
growth data and the biological interpretation of these
results is a topic of future research. The paper served
as a proof of principle using data for a well-established
control strain of meat-type chicken, Athens Canadian
Random Bred chicken (Collins et al., 2016).

The considered strain is a meat bird from 60 yr ago,
which may no longer be representative of the mod-
ern broiler. We therefore propose a question for future
research: What are the optimal exponents of modern
strains, and if they differ from the old ones, into what
direction did they move? Are there patterns that relate
environmental factors and animal biology to the shape
(e.g., size and location) of the regions of near-optimal
exponent-pairs? How do the optimal exponent-pairs of
individual chicken compare to those of their group?

However, there are possible drawbacks. For exam-
ple, the optimal exponents and the regions of near-
optimality did strongly depend on which method for
data-fitting was used. We recommend using SSElog for
optimization. First, it resulted in an exponent-pair that
was close to the usual models. While the method of
least squares (SSE) provided a visually excellent fit, the
optimal exponents seem to contradict the intuitions of
past researchers, who sought for optimal models with
not so large exponents. Second, the assumption of a
lognormal distribution, on which SSElog is based, was
plausible for the used data, as the standard deviations
were approximately proportional to mass. By contrast,
the assumption of a normal distribution made SSE vul-
nerable to larger spreads for higher weights. Third, for
the optimization using SSElog, a substantial speed-up
is possible, as a smaller grid closer to the diagonal may
be used. Thus, 1 to 2 D computation time per data are
feasible, whence also the individual optimization for 100
to 200 chickens becomes feasible, if several computers
are run in parallel. In comparison, optimization using
SSE turned out to be impractical, as the large initial
grid was too small; it finally was doubled.

As another possible drawback to the proposed re-
search program, farmers change the feeding regime
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Figure 9. Data and best fit curves for the first 57and 131 D, based
on SSElog.

after 8 wk. Therefore, long-term data about growth un-
der natural conditions need to be generated in labora-
tory studies. We checked, if 8 wk would be enough to
study growth. Figure 9 illustrates that 8 wk would not
suffice, as the prognosis of the model would be unreli-
able. However, using SSElog (but not SSE), 16 weeks
may provide reasonable results.

SUPPLEMENTARY DATA

Supplementary data are available at Poultry Science
online.
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