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Background: High-grade serous ovarian cancer (HGSOC) remains one of the most challenging gynecological malignancies, with
over 70% of ovarian cancer patients ultimately experiencing disease progression. The current prognostic tools for progression-free
survival (PFS) in HGSOC patients have limitations. This study aims to develop an explainable machine learning (ML) model for
predicting PFS in HGSOC patients.
Methods: Nine ML algorithms for PFS prediction were developed using a prospective cohort of 310 HGSOC patients consecu-
tively enrolled from a large Chinese tertiary hospital between January 2017 and December 2020. The optimal model was internally
validated using the 1000 bootstrap method. The SHapley Additive exPlanations (SHAP) method was employed to interpret the
model in terms of feature importance and feature effects. The final model, constructed with the optimal feature subset, was
deployed as an interactive web-based Shiny app.
Results: The random survival forest (RSF) model demonstrated superior predictive performance compared to other ML models, the
RFS model constructed with an optimal feature subset in the optimal imputed dataset achieved a superior 1000 bootstrap C-index of
0.755 (95% CI: 0.750–0.780) and a Brier score of 0.183 (95% CI: 0.175–0.190). SHAP analysis identified tumor residual, HE4, FIGO
stage, T stage, CA125, age, ascites volume, platelet counts, and BMI as the top nine contributing factors. It also revealed potential
nonlinear relationships and important thresholds between HE4, CA125, age, ascites volume, platelet counts, the body mass index,
and PFS risk. Additionally, interaction effects were found between tumor residual and age, HE4, and CA125. Finally, an interactive
web-based Shiny app for the model was developed and accessible at https://rsfmodels.shinyapps.io/ocRSF/.
Conclusion: An explainable ML model for PFS prediction in HGSOC patients was developed with superior results. The publicly
accessible web tool based on the optimized model facilitates its utility in clinical settings, potentially improving individualized patient
management and treatment decision-making in HGSOC.
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Introduction

Epithelial ovarian cancer remains one of the most challenging
malignancies with limited improvement in mortality over the
past decade, emerging as the fourth leading cause of female
cancer-related deaths[1]. In 2021, China reported approximately
57 000 new cases of ovarian cancer, with about 39 000 resulting

in mortality, reflecting an overall upward trend[2]. Over 70% of
ovarian cancer patients ultimately experience disease progression,
necessitating further therapeutic interventions, with high-grade
serous ovarian cancer (HGSOC) accounting for the majority[3].
Therefore, individualized prediction of progression risk and
identification of key prognostic variables are crucial for the man-
agement of patients with high-grade serous ovarian cancer.
To date, several studies have developed nomograms to predict

progression-free survival (PFS) in ovarian cancer patients[4,5].
A Cox model-based nomogram developed by Lee et al for plati-
num-sensitive recurrent ovarian cancer included tumor size, plati-
num-chemotherapy-free interval, CA-125 levels, the number of
organ metastatic sites, and the white blood count, achieving
a concordance index (C-index) of 0.645[6]. Another study by
Tjokrowidjaja et al developed a nomogram for BRCA-mutated,
platinum-sensitive recurrent ovarian cancer patients undergoing
maintenance olaparib therapy, incorporating predictors such as
CA-125 levels, platinum-free intervals, measurable disease pre-
sence, and the number of prior platinum therapy lines, achieving
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aC-index of 0.71 in the validation cohort[5]. However, these studies
have failed to consider certain important variables, such as age,
tumor residual, tumor stage, and HE4 levels, which might be the
primary reason for the relatively low predictive performance[7–10].
Recently, machine learning (ML) models have shown promise

in improving the diagnosis and prognosis of ovarian cancer[11,12].
These advanced models could detect complex, non-linear rela-
tionships between various features and disease outcomes, poten-
tially offering superior predictive capabilities compared to
traditional methods. To our knowledge, no ML models have
been specifically developed to predict PFS in HGSOC.
Given the limitations of current research and the lack of ML

studies on PFS prediction, this study aims to develop and validate
an explainableMLmodel for accurately predicting the individual-
level risk of progression in HGSOC. Additionally, we employed
the SHapley Additive exPlanations (SHAP) method to identify
key predictors and to demonstrate the effects of important fea-
tures as well as potential interactive effects between features.
Moreover, an interactive web-based Shiny app was designed for
the model to enhance its applicability in clinical settings.

Materials and methods

Patient selection

Our study cohort consisted of 436 patients diagnosed with malig-
nant ovarian tumors between January 2017 and December 2020,

who were prospectively and consecutively enrolled, with the final
follow-up date in June 2023. The exclusion criteria were as
follows: (1) patients not undergoing cytoreductive surgery for
ovarian cancer; (2) loss to follow-up postoperatively or unclear
treatment processes; and (3) postoperative pathological diagnosis
of non-HGSOC. The inclusion and exclusion criteria for cases are
illustrated in Supplementary Figure 1, http://links.lww.com/JS9/
D843. Standard written informed consent was obtained from all
participants or their legal representatives for data collection and
publication. STROCCS guidance for the reporting of data was
followed[13].

Candidate variable collection

The candidate variables for the model contained 12 clinicopatho-
logical variables, including age, the body mass index before treat-
ment, ascites volume, tumor residual, intraoperative blood loss,
FIGO stage, T stage, N stage,M stage, neoadjuvant chemotherapy
(NACT), hyperthermic intraperitoneal chemotherapy (HIPEC),
and P53 gene mutation, and 19 laboratory diagnostic variables,
including lactate dehydrogenase (LDH), human epididymis pro-
tein 4 (HE4), carcinoembryonic antigen (CEA), alpha-fetoprotein
(AFP), neuron-specific enolase (NSE), β-human chorionic gonado-
tropin (β-hCG), carbohydrate antigen 125 (CA125), CA199,
CA153, CA242, CA724, cytokeratin fragment 19, albumin, ala-
nine aminotransferase (ALT), the white blood cell count (WBC),
hemoglobin, the platelet count, serum creatinine (Cr), and blood

Figure 1. Overview of the study workflow.
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urea nitrogen (BUN). For variables with missing values, we
excluded those with more than 30%[14]. The excluded variables
were NSE, β-hCG, CA199, CA153, CA242, CA724, and cytoker-
atin fragment 19 (Supplementary Figure 2, http://links.lww.com/
JS9/D843). Subsequently, five methods were employed for data
imputation: mean, histogram, rpart, random forest (RF), and
K-nearest neighbor (KNN) (Supplementary Table 1, http://links.
lww.com/JS9/D843). The primary outcome was PFS, which was
defined as the interval from the initial diagnosis to the recorded
recurrence or progression.

Model and imputed dataset selection

The workflow of ML is shown in Fig 1. Nine ML models
were developed for predicting PFS in patients with HGSOC:
SVM, DeepSurv, DeepHit, CoxTime, CoxPH, rpart, xgboost,
GBM, and RSF (Supplementary Table 2, http://links.lww.com/
JS9/D843). To obtain an unbiased and objective evaluation of
multiple ML models based on different imputed datasets
under consistent conditions, a benchmarking test was designed
involving nested resampling, automatic hyperparameter tun-
ing, and random search techniques (Supplementary Figure 3,
http://links.lww.com/JS9/D843). The selection of the optimal
model and dataset was based on a comprehensive evaluation
of the C-index and Brier score (Fig. 2, Supplementary
Figure 4, http://links.lww.com/JS9/D843, and Supplementary
Table 4, http://links.lww.com/JS9/D843). As a result, the RSF

model and the KNN imputed dataset were selected for further
analysis.

Feature selection

To enhance the model’s applicability, the sequential forward
selection method was employed to select the optimal feature
subset based on the selected RSF model and KNN imputed
dataset above (Supplementary Figure 5, http://links.lww.com/
JS9/D843). Notably, the optimal feature subset was selected by
striking a balance between achieving a high C-index and main-
taining a manageable number of features (Supplementary
Figure 6, http://links.lww.com/JS9/D843 and Supplementary
Table 5, http://links.lww.com/JS9/D843).

Model construction and validation

The final model was developed using the optimal model,
imputed dataset, and feature subset above. The performance of
the final model was evaluated in terms of discrimination, cali-
bration, and clinical utility. Discrimination ability was measured
using the C-index and the time-dependent area under curve
(AUC). Calibration capability was assessed through calibration
curves and the integrated Brier score. Clinical utility was
evaluated using decision curve analysis (DCA). The final model
was validated internally using the 1000 bootstrap method.
Additionally, a model incorporating all features was developed,
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Figure 2. Selection of the optimal model and imputed dataset based on the C-index. Nine machine learning models (A-I) were developed across different
datasets (five imputed datasets using mean, histogram, rpart, RF (random forest), KNN (K-nearest Neighbor) methods, and complete case dataset). SVM,
support vector machine; RSF, random survival forest; GBM, gradient boosting machine.
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and its performance was assessed internally. Notably, the model
based on the optimal feature subset was used for web applica-
tion deployment, while the model incorporating all features was
used for model explanation. More details of model construction
and validation are provided in Supplementary Methods http://
links.lww.com/JS9/D843.

Model explanation and deployment

To elucidate the inner workings of the RSF model, the SHAP
method was applied to the developed model incorporating all
features. SHAP summary and dependence plots were used to
identify key predictors and investigate their relationships with
the outcome. Additionally, SHAP interactive plots were used to
identify potential interaction effects between features. To facil-
itate the accessibility and usability of the model, the final model
based on the optimal feature subset was deployed as an inter-
active web-based Shiny app that enables individualized survival
prediction, personalized interpretation, and explanation of the

model. More information was described in Supplementary
Methods (http://links.lww.com/JS9/D843).

Sensitivity analysis

Several sensitivity analyses were conducted to assess the robust-
ness of results in the cohort: (1) explaining the RSF model in the
dataset with complete information; (2) assessing feature impor-
tance using the permutation method; and (3) performing inter-
action effect analysis with the traditional Cox proportional
hazards model.

Statistical analysis

Summary statistics were presented as total frequencies and per-
centages for categorical variables and reported as median values
with an interquartile range (IQR) or as means with standard
deviations (SD) for continuous variables, as appropriate.
Differences in data distribution between datasets for both cate-
gorical and continuous variables were assessed by the χ2 test and

Table 1
Patients characteristics in the training cohort

Name Levels Total (N = 310)

Recurrence

PNo (N = 135) Yes (N = 175)

Age Mean ± SD 53.98 ± 8.72 53.09 ± 8.87 54.66 ± 8.57 .115
Body mass index Median (IQR) 22.67 (20.83 to 24.52) 22.55 (20.94 to 24.08) 22.76 (20.83 to 24.86) .618
T stage* T1 25 (8.1%) 21 (15.6%) 4 (2.3%) <.001

T2 23 (7.4%) 18 (13.3%) 5 (2.9%)
T3 262 (84.5%) 96 (71.1%) 166 (94.9%)

N stage* N0 214 (69%) 97 (71.9%) 117 (66.9%) .413
N1 96 (31%) 38 (28.1%) 58 (33.1%)

M stage* M0 250 (80.6%) 115 (85.2%) 135 (77.1%) .103
M1 60 (19.4%) 20 (14.8%) 40 (22.9%)

FIGO staging Stage I 23 (7.4%) 20 (14.8%) 3 (1.7%) <.001
Stage II 19 (6.1%) 15 (11.1%) 4 (2.3%)
Stage III 208 (67.1%) 80 (59.3%) 128 (73.1%)
Stage IV 60 (19.4%) 20 (14.8%) 40 (22.9%)

P53 gene mutation Wild 15 (4.8%) 12 (8.9%) 3 (1.7%) .008
Mutation 295 (95.2%) 123 (91.1%) 172 (98.3%)

Ascites Median (IQR) 300.00 (50.00 to 2000.00) 200.00 (50.00 to 1000.00) 500.00 (100.00 to 2350.00) .002
Intraoperative bleeding Median (IQR) 400.00 (200.00 to 700.00) 400.00 (200.00 to 700.00) 400.00 (200.00 to 750.00) .493
Tumor reduction R0 165 (53.2%) 97 (71.9%) 68 (38.9%) <.001

R1 103 (33.2%) 33 (24.4%) 70 (40%)
R2 42 (13.5%) 5 (3.7%) 37 (21.1%)

Neoadjuvant chemotherapy No 229 (73.9%) 115 (85.2%) 114 (65.1%) <.001
Yes 81 (26.1%) 20 (14.8%) 61 (34.9%)

Hyperthermic intraperitoneal chemotherapy No 173 (55.8%) 78 (57.8%) 95 (54.3%) .618
Yes 137 (44.2%) 57 (42.2%) 80 (45.7%)

Human epididymal protein 4 Median (IQR) 550.25 (241.30 to 946.10) 380.60 (171.56 to 710.10) 708.00 (362.05 to 1180.92) <.001
Carbohydrate antigen 125 Median (IQR) 786.35 (339.65 to 1635.00) 604.32 (158.40 to 1176.00) 931.50 (486.16 to 1826.00) <.001
Carcinoembryonic antigen Median (IQR) 1.06 (0.63 to 1.89) 1.11 (0.65 to 2.05) 1.04 (0.60 to 1.79) .307
Alpha-fetoprotein Median (IQR) 2.28 (1.62 to 3.33) 2.18 (1.61 to 3.21) 2.36 (1.68 to 3.45) .221
Lactic dehydrogenase Median (IQR) 235.00 (192.00 to 299.00) 224.00 (182.50 to 287.21) 242.00 (194.55 to 311.85) .074
White blood cell count Median (IQR) 6.60 (5.40 to 7.90) 6.30 (5.35 to 7.65) 6.80 (5.60 to 7.90) .257
Hemoglobin Median (IQR) 119.00 (106.00 to 127.00) 120.00 (107.00 to 127.00) 118.00 (105.64 to 127.00) .450
Platelet count Median (IQR) 288.50 (224.00 to 390.00) 263.00 (220.00 to 356.00) 316.00 (245.50 to 406.50) .005
Albumin Median (IQR) 38.90 (34.71 to 42.70) 40.40 (35.80 to 43.65) 37.80 (33.70 to 41.95) .005
Alanine aminotransferase Median (IQR) 13.80 (9.80 to 19.00) 14.00 (8.70 to 18.60) 13.60 (9.90 to 20.20) .218
Blood urea nitrogen Median (IQR) 4.75 (3.73 to 5.90) 4.87 (3.87 to 5.98) 4.71 (3.58 to 5.84) .354
Blood creatinine Median (IQR) 67.65 (60.00 to 74.70) 66.56 (58.80 to 73.15) 69.50 (61.00 to 75.50) .019

FIGO, International Federation of Gynecology and Obstetrics.
*indicated the 8th edition of the American Joint Committee on Cancer (AJCC) T, N, M stage.
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Mann–Whitney U test, respectively, with a 2-sided P-value <
0.05 considered statistically significant. R version 4.3.1 was
used to perform all statistical analysis.

Results

Baseline characteristics

The patients’ characteristics are summarized in Table 1. Among
the 310 included patients, the mean age was 53.98 years, and the
median BMI was 22.67. Patients with FIGO stage I or II disease
accounted for 13.5% (42/310) of the total, while the majority
(86.5%, 268/310) had advanced stage III or IV disease.
Immunohistochemical analysis demonstrated that the vast
majority of patients (95.2%, 295/310) had mutated p53 status.
At our institution, complete cytoreduction (R0 resection) was
achieved in 53.2% (165/310) of patients undergoing cytoreduc-
tive surgery, with a median intraoperative blood loss of 400 mL
(95% CI 200 to 700 mL). NACT was administered to 26.1%
(81/310) of the patients, and 44.2% (137/310) underwent
HIPEC. Patients were categorized based on their platinum-free
interval following platinum-based chemotherapy, with intervals
>6 months and ≤6 months classified as platinum-sensitive and
platinum-resistant, respectively. In this cohort, 84.8% (263/
310) of the patients were platinum-sensitive at initial chemother-
apy, while 15.2% (47/310) developed platinum resistance.

Model selection and construction

A total of nine ML models were developed to predict PFS based
on 24 candidate features in five imputed training cohorts. After

a benchmarking test (Supplementary Figure 3, http://links.lww.
com/JS9/D843), the RSF model in conjunction with the KNN
imputed dataset was selected due to its superior predictive per-
formances with the highest mean (SD) C-index of 0.720 (0.047)
and the lowest mean (SD) Brier score of 0.146 (0.041) than other
models with imputed datasets. Notably, these performance
metrics closely approximated those of the RSF model trained
on the complete dataset, which achieved a mean (SD) C-index of
0.755 (0.060) and a mean (SD) Brier score of 0.151 (0.039)
(Fig. 2, Supplementary Figure 4 http://links.lww.com/JS9/
D843, and Supplementary Table 4 http://links.lww.com/JS9/
D843). Next, the sequential forward selection method was per-
formed to identify optimal feature subsets that maximized the
performance of the RSF model and KNN imputed dataset
(Supplementary Figure 5 http://links.lww.com/JS9/D843). As
a result, the final model achieving the optimal C-index was
constructed by eight features: age, BMI, T stage, FIGO stage,
tumor residual, ascites volume, HE4, and CA125
(Supplementary Figure 6, http://links.lww.com/JS9/D843 and
Supplementary Table 5, http://links.lww.com/JS9/D843).
Additionally, the RSF model with all features was developed
for model explanation. Both RSF models, whether utilizing the
optimal features or all features, underwent hyperparameter opti-
mization (Supplementary Figures 7 and 8, http://links.lww.com/
JS9/D843).

Model evaluation

Fig 3 illustrates the performance of the RSF model using all
features (Fig. 3A-C) and the optimal feature subset (Fig. 3D-F)
in the KNN imputed dataset. Both models demonstrated
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C-index in training cohort: 
0.933 (95%CI, 0.927-0.939) 

C-index with 1000 Bootstrap:
0.742 (95%CI, 0.736-0.748) 

C-index in training cohort: 
0.918 (95%CI, 0.911–0.924)

C-index with 1000 Bootstrap:
0.755 (95%CI, 0.750–0.780) 

Brier Score  with 1000 Bootstrap
0.183 (95%CI, 0.175–0.190)

Brier score in the training cohort: 
0.081 (95%CI, 0.078–0.085)

Brier Score  with 1000 Bootstrap
0.175 (95%CI, 0.168–0.182)

Brier score in the training cohort: 
0.075 (95%CI, 0.071–0.078)

Figure 3. Performance of the RSF model with all features (A, B, C) and the best feature set (D, E, F) in the training cohort. The model performance was
comprehensively visualized with the time-dependent area under curve (A, D), calibration plot (B, E), and decision curve analysis plot (C, F). The red lines in plots
A and D represent the 1000 bootstrap resampling time-dependent area under curves. RSF, random survival forest.
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excellent discrimination, accuracy, and clinical applicability.
The RSF model utilizing all features achieved a C-index of
0.933 (95% CI: 0.927–0.939) in the KNN imputed dataset,
while the model with the optimal feature subset attained
a C-index of 0.918 (95% CI: 0.911–0.924) (Fig. 3A and 3D,
respectively). In internal validation using the 1000 bootstrap
method, the RSF model incorporating all features yielded
a C-index of 0.742 (95% CI: 0.736–0.748), whereas the final
RSF model utilizing the optimal feature subset demonstrated
a slightly superior C-index of 0.755 (95% CI: 0.750–0.780)
(Fig. 3A and D, respectively). These results indicate that both
RSF models exhibit robust discriminative ability, with the model
utilizing the optimal feature subset showing marginally
improved performance in internal validation. Additionally, the
calibration plots were used to assess the predicted accuracy of
1-year, 3-year, and 5-year PFS, revealing a noteworthy corre-
spondence with the ideal curve in both models (Fig. 3B and E).
The integrated Brier score for the RSF model with all features
was 0.175 (95%CI: 0.168–0.748), while the final RSFmodel with
the optimal feature subset achieved a score of 0.183 (95% CI:
0.175–0.190) in 1000 bootstrap resampling, suggesting the mod-
el’s high reliability and accuracy. Moreover, DCA curves affirmed
the RSF model’s commendable clinical applicability as a tool for
guiding medical intervention (Fig. 3C, F).

Model explanation

In terms of model explanation, the SHAP summary plot was
used to identify the key features. As shown in Fig 4, the top nine

most important variables contributing to PFS were tumor resi-
dual, HE4, FIGO stage, T stage, CA125, age, ascites volume,
platelet counts, and BMI. This feature importance ranking
showed good consistency with the result in the complete dataset
(Supplementary Figure 9, http://links.lww.com/JS9/D843).
Moreover, the top nine most important features were further
confirmed using the permutation method (Supplementary
Figures 15 and 16, http://links.lww.com/JS9/D843), except for
albumin, which showed reduced importance in the permutation
analysis.
SHAP dependence plots were used to elucidate the relation-

ships between the top nine important features and the outcome.
From the main and total effect plots (Fig. 5 and Supplementary
Figure 10, http://links.lww.com/JS9/D843), incomplete cytore-
duction, advanced tumor stage, tumor infiltration, and invasion
exhibited high SHAP values above zero, suggesting a positive
contribution to PFS. Notably, potential nonlinear relationships
and important thresholds were observed between HE4, CA125,
age, ascites, platelet counts, the body mass index, and PFS risk.
Specifically, patients with HE4 levels below 500 pmol/L, age
below 55, CA125 below 500 U/mL, and ascites volume below
1000 mL conferred a protective effect. Additionally, there were
obvious risk increases with CA125 above 500 U/mL and ascites
volume above 1000 mL. Moreover, the U-shaped relationships
were observed for the platelet count and BMI, suggesting that
both extremes (low/high) for these features are associated with
increased PFS risk. Similar results were also observed in the
complete dataset (Supplementary Figures 11 and 12, http://
links.lww.com/JS9/D843).

Figure 4. SHAP summary plot of the RSF model with all features in the training cohort. Each dot represented the value of an individual patient data point in the
training cohort, with feature’s value ranging from low (in blue) to high (in red). The distance of each dot from the center of the x-axis represents the magnitude of
impact (total SHAP value) on the model’s output, with the SHAP value above zero indicating contribution to death (increased death risk) and the SHAP value
below zero suggesting contribution to survival (reduced death risk). Features were ranked on the y-axis from the highest to the lowest average contribution
(average absolute SHAP value) in terms of feature importance. RSF, random survival forest; FIGO, International Federation of Gynecology and Obstetrics.
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The heat map was used to identify the feature set exhibiting
strong interaction effects. As shown in Fig 6, there were strong
interactions between tumor residual with age, HE4, and CA125.
These interaction patterns were consistently observed in the
complete dataset (Supplementary Figure 13, http://links.lww.
com/JS9/D843). Fig 7 illustrates the dependence plots for these
three feature sets. For instance, Fig 7A reveals a negative inter-
action (SHAP interaction values < 0, indicating improved prog-
nosis) between age < 55 years and unsatisfactory cytoreduction
(R1 or R2). However, for patients aged ≥ 55 years with unsa-
tisfactory cytoreduction, the positive interaction effect suggests
that patients aged ≥ 55 years and unsatisfactory cytoreduction
would fare worse than expected from the additive prognostic
effect of the two variables. Interestingly, the total effect depen-
dence plots (Fig. 7C) further corroborated these interaction
patterns, with negative interaction effects (protective effects)
observed for age < 55 years and unsatisfactory cytoreduction
and positive interaction effects for age ≥ 55 years and unsatis-
factory cytoreduction (Fig. 7C). The same interaction pattern
was seen in the complete dataset (Supplementary Figure 14,
http://links.lww.com/JS9/D843). Moreover, a positive interac-
tion effect (both on multiplicative and additive scales) between
tumor residual and age was determined using the traditional
Cox model (Supplementary Figure 17, http://links.lww.com/
JS9/D843 and Supplementary Table 6, http://links.lww.com/
JS9/D843). Similarly, negative interaction effects were observed
between residual tumor and HE4 or CA125 in SHAP depen-
dence plots and the traditional Cox model (Fig. 7,

Supplementary Figures 14, 18, and 19 http://links.lww.com/
JS9/D843, and Supplementary Tables 7 and 8 http://links.lww.
com/JS9/D843).

Model deployment

To enhance the accessibility and practical utility of the final
model with the optimal feature subset, an interactive web-
based application was developed using Shiny. This application
provides individualized survival predictions and explanations,
as well as a global interpretation of the model. The web applica-
tion is accessible at https://rsfmodels.shinyapps.io/ocRSF/.

Discussion

To our knowledge, this study represents the first comprehensive
investigation and comparison of nine ML models for predicting
PFS in HGSOC patients. The RSF model emerged as the optimal
choice, having been developed and validated with superior predic-
tive performance in terms of discrimination, accuracy, and clinical
applicability. Utilizing the SHAPmethod, we identified the top nine
contributing factors associated with increased PFS risk, revealing
insightful associations between key predictors and PFS.
Additionally, we identified three feature sets that demonstrated
strong interaction effects. Furthermore, a publicly accessible web
tool was developed for the model enhancing its utility in clinical
settings.

−40

−20

0

20

40

60

R0 R2

M
ai

n
 S

h
ap

 v
al

u
e

R1
Tumor residual

−40

−20

0

20

40

0 500 1000 1500
Human epididymal protein 4

M
ai

n
 S

h
ap

 v
al

u
e

−40

−20

0

20

stage 1 stage 2 stage 3 stage 4
FIGO Staging

M
ai

n
 S

h
ap

 v
al

u
e

−40

−20

0

20

T1 T2 T3
T stage

M
ai

n
 S

h
ap

 v
al

u
e

−20

−10

0

10

20

0 1000 2000 3000 4000 5000
Carbohydrate antigen 125

M
ai

n
 S

h
ap

 v
al

u
e

−20

−10

0

10

20

30 40 50 60 70
Age

M
ai

n
 S

h
ap

 v
al

u
e

−20

−10

0

10

20

0 1000 2000 3000 4000
Ascites

M
ai

n
 S

h
ap

 v
al

u
e

−20

−10

0

10

20

200 400 600
Platelet count

M
ai

n
 S

h
ap

 v
al

u
e

AA

−20

−10

0

10

20

15 20 25 30
Body mass index

M
ai

n
 S

h
ap

 v
al

u
e

A B C

FED

G H I

Figure 5. SHAP dependence plot of the top nine important features based on the main SHAP value in the training cohort. Plots showed the main effect of
a feature on progression-free survival, including tumor residual (A), human epididymal protein 4 (B), FIGO stage (C), T stage (D), carbohydrate antigen 125 (E), age
(F), ascites volume (G), platelet counts (H), and body mass index (I). FIGO, International Federation of Gynecology and Obstetrics.
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Previous studies have predicted PFS in ovarian cancer patients
primarily through Cox model-based nomograms, achieving
a C-index ranging from 0.645 to 0.710[5,6]. In contrast, our study
has developed the RSF model with eight features and achieved
a C-index of 0.918 (95% CI: 0.911–0.924). Importantly, an inter-
nal validation using a 1000-guided method yielded a C-index of
0.755 (95% CI: 0.750–0.780). Both of these values surpass the
performance of the aforementioned Cox regression nomogram
models. A primary explanation for the superior performance of
our RSF model may be its incorporation of additional important
variables predictive of PFS, such as CA125, HE4, age, and BMI.
While previous studies have suggested that these variables may
influence PFS, our findings further confirm their importance and
predictive significance in the context of ovarian cancer. The integra-
tion of CA125 and HE4 as biomarkers is particularly noteworthy.
CA125 is a well-established tumor marker in ovarian cancer, com-
monly used tomonitor treatment response and disease progression.

HE4 has emerged as a promising biomarker that may provide
additional insights, particularly in distinguishing between malig-
nant and benign pelvic masses[15]. By including both biomarkers,
our model capitalizes on their complementary roles in assessing
disease status. Incorporating patient-specific factors such as age
and BMI further enhances the model’s relevance. Age is a well-
documentedprognostic factor in ovarian cancer,witholder patients
often experiencing poorer outcomes due to various clinical and
biological factors[16]. Similarly, BMI has been associated with treat-
ment responses and overall prognosis in cancer patients[17]. By
considering these variables, our model provides a more nuanced
understanding of PFS in ovarian cancer patients.
Another key factor contributing to the enhanced predictive

capability of our model is the inherent strength of machine
learning approaches in identifying complex, non-linear relation-
ships that traditional Cox regression methods may overlook[18].
This assertion is supported by our model explanation results,

Figure 6. Heatmap of the interaction effect between feature pairs in the training cohort. The value indicated the normalized absolute interaction SHAP value, with
a higher score (darker red color) indicating a higher interaction effect between the feature pair. The bar plot suggested the sum absolute interaction SHAP value of
a feature with other features, with a darker blue color indicating a higher sum interaction effect. FIGO, International Federation of Gynecology and Obstetrics.
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which revealed potential non-linear relationships among HE4,
CA125, age, BMI, and PFS. Furthermore, we observed a stronger
interaction effect between residual tumor presence and the vari-
ables of age, HE4, and CA125, indicating that these factors may
work synergistically to influence patient outcomes. Overall, our
results highlight the potential of theRSFmodel as a powerful tool
for predicting PFS in HGSOC patients, surpassing the perfor-
mance of traditional Cox-based nomograms. The model’s ability
to integrate key biomarkers and patient-specific factors, along
with its capacity to detect complex interactions, underscores its
clinical applicability.
In our analysis of key predictors affecting PFS in ovarian

cancer patients, we identified nine critical variables by
order: residual tumor, HE4, FIGO stage, T stage, CA125,
age, ascites volume, platelet counts, and BMI. Concerning
tumor residual, prior research strongly indicated that satis-
factory cytoreduction is crucial for improving PFS and over-
all survival (OS)[19,20]. Our findings align with this,
revealing a negative correlation between postoperative resi-
dual tumor burden and PFS. This factor ranks highest
among all clinical features, reinforcing the importance of
aggressive surgical intervention. Despite ongoing debates
regarding the efficacy of suboptimal cytoreduction, our
study confirms the value of clinical physicians’ efforts to
achieve satisfactory cytoreduction within the permissible
range of surgical conditions[21,22]. This highlights the need
for a nuanced approach to surgical strategies in HGSOC

treatment, emphasizing that any degree of tumor reduction
may confer benefits to patient outcomes.
A particularly groundbreaking finding from our study is

the significant impact of preoperative plasma HE4 levels on
prognosis, which appears to surpass even tumor staging.
A recent study has indicated an association between abnor-
mal preoperative HE4 levels and the risk of residual disease
post-surgery[23]. Another study revealed higher HE4 levels
in wild-type ovarian cancer patients compared to those with
BRCA1/2 mutations, correlating with micronodular carci-
nomatosis and a poor prognosis[24]. Moreover, elevated
HE4 levels may indicate primary resistance to platinum-
based chemotherapy in BRCA1/2 mutation carriers[25].
Similarly, our study demonstrates that high plasma HE4
levels are a significant factor in influencing PFS. Notably,
the nonlinear effect of HE4 levels on prognosis suggests the
existence of a potentially valuable predictive threshold.
However, the molecular mechanisms by which HE4 influ-
ences tumor progression remain incompletely understood,
highlighting the need for further prospective analyses
focused on HE4 levels[7].
In our analysis of interactions, an important finding was the

observation of a positive interaction effect between tumor
residual and age. Specifically, patients ≥55 years old who
underwent R1/R2 cytoreductive surgery exhibited a worse
prognosis than would be expected based on the additive
effects of these two risk factors. Both age ≥ 55 and R1/R2

Figure 7. SHAP dependence plot of the three feature pairs based on interaction (A-C) and the total (D-E) SHAP value in the training cohort. Plots visualized the
effect of a feature colored by the second feature. Plots A-C indicated the interaction effect of two features on progression-free survival, with a higher interaction
SHAP value representing higher addictive positive risk. Plots D-E indicated the interaction effect of the total effect of the two features, and the different color
groups of the second feature with vertical dispersion of points (different total SHAP value) at a given x-value indicated the potential interaction effect between
feature pairs.
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cytoreductive surgery were identified as independent risk fac-
tors for PFS. This positive interaction effect between them
highlights the compounded risk that older patients face when
tumor residual burden is present following surgery. It suggests
that the impact of age on prognosis may be exacerbated by
the presence of tumor residual, indicating that older patients
with suboptimal surgical outcomes may require more intensive
monitoring and potentially more aggressive treatment strate-
gies. Therefore, understanding this interaction is crucial for
clinical decision-making, as it underscores the need for tai-
lored approaches to treatment in older patients with ovarian
cancer.
Finally, to further enhance clinical applicability, we

developed a web-based interactive application using Shiny.
The development of this interactive web application repre-
sents a significant step towards translating our research
findings into practical clinical applications. By enabling
healthcare providers to generate personalized survival esti-
mates and assess the impact of key variables, this tool
empowers clinicians to make more informed treatment deci-
sions tailored to each patient’s specific risk profile. In our
opinion, this level of personalization is crucial in ovarian
cancer management, where individual patient characteristics
can significantly influence treatment outcomes.
Our study has several limitations that should be acknowl-

edged. First, due to some patients being referred from ter-
tiary centers, pre-treatment imaging data were not
complete, resulting in the exclusion of imaging evidence
prior to treatment. This lack of comprehensive imaging
data may limit the robustness of our findings. Second, the
data used in this study were sourced from a single center,
which lacks external validation. This limitation may intro-
duce potential bias and restrict the generalizability of our
results to broader populations. Finally, recent research has
highlighted the potential significance of molecular biomar-
kers such as BRCA1/2, homologous recombination status
(HR status), microsatellite instability (MSI), mismatch
repair (MMR), and tumor mutational burden (TMB) in
ovarian cancer[26]. However, the omission of these impor-
tant biomarkers may limit the predictive accuracy of our
model. To address these limitations, future research should
focus on larger-scale, multicenter cohorts to validate our
findings and incorporate molecular testing results to
improve the model’s predictive performance.

Conclusion

This study presents the first comprehensive comparison of
machine learning models for predicting PFS in HGSOC, with
the RSF model demonstrating superior performance. Our
explainable model integrates key biomarkers and clinical fac-
tors, highlighting the significance of tumor residual, HE4,
FIGO stage, T stage, CA125, age, ascites volume, platelet
counts, and BMI in prognosis. The identification of an inter-
action effect between age and tumor residual underscores the
need for tailored treatment strategies in older patients.
Additionally, we developed a web-based Shiny application to
facilitate personalized survival predictions, enhancing the clin-
ical utility of our findings and supporting informed decision-
making in patient management.
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